1
|
Song J, Ghosh S, Deng X, Li C, Shang Q, Liu X, Wang Y, Gao X, Yang W, Wang X, Zhao Q, Shi K, Gao P, Xing G, Xiong Q, Zhang Q. Room-temperature continuous-wave pumped exciton polariton condensation in a perovskite microcavity. SCIENCE ADVANCES 2025; 11:eadr1652. [PMID: 39879295 PMCID: PMC11777180 DOI: 10.1126/sciadv.adr1652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/29/2024] [Indexed: 01/31/2025]
Abstract
Microcavity exciton polaritons (polaritons) as part-light part-matter quasiparticles garner considerable attention for Bose-Einstein condensation at elevated temperatures. Recently, halide perovskites have emerged as promising room-temperature polaritonic platforms because of their large exciton binding energies and superior optical properties. However, currently, inducing room-temperature nonequilibrium polariton condensation in perovskite microcavities requires optical pulsed excitations with high excitation densities. Here, we demonstrate continuous-wave optically pumped polariton condensation with an exceptionally low threshold of ~0.53 W cm-2 and a narrow linewidth of ~0.5 meV. Polariton condensation is unambiguously demonstrated by characterizing the nonlinear behavior and coherence properties. We also unveil the trapping potential landscape strategy to facilitate polariton relaxation and accumulation. Our findings lay the foundation for the next-generation energy-efficient polaritonic devices operating at room temperature.
Collapse
Affiliation(s)
- Jiepeng Song
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Sanjib Ghosh
- Beijing Academy of Quantum Information Sciences, Beijing 100094, P.R. China
| | - Xinyi Deng
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Chun Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Qiuyu Shang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Yubin Wang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Xiaoyue Gao
- School of Physics, Peking University, Beijing 100871, P.R. China
| | - Wenkai Yang
- School of Physics, Peking University, Beijing 100871, P.R. China
| | - Xianjin Wang
- School of Physics, Peking University, Beijing 100871, P.R. China
| | - Qing Zhao
- School of Physics, Peking University, Beijing 100871, P.R. China
| | - Kebin Shi
- School of Physics, Peking University, Beijing 100871, P.R. China
| | - Peng Gao
- School of Physics, Peking University, Beijing 100871, P.R. China
| | - Guichuan Xing
- Institute of Joint Key Laboratory of the Applied Physics and Materials Engineering, University of Macao, Macau 999078, P.R. China
| | - Qihua Xiong
- Beijing Academy of Quantum Information Sciences, Beijing 100094, P.R. China
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
2
|
Fan Y, Wan Q, Yao Q, Chen X, Guan Y, Alnatah H, Vaz D, Beaumariage J, Watanabe K, Taniguchi T, Wu J, Sun Z, Snoke D. High Efficiency of Exciton-Polariton Lasing in a 2D Multilayer Structure. ACS PHOTONICS 2024; 11:2722-2728. [PMID: 39036061 PMCID: PMC11258782 DOI: 10.1021/acsphotonics.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024]
Abstract
We have placed a van der Waals homostructure, formed by stacking three two-dimensional layers of WS2 separated by insulating hBN, similar to a multiple-quantum well structure, inside a microcavity, which facilitates the formation of quasiparticles known as exciton-polaritons. The polaritons are a combination of light and matter, allowing laser emission to be enhanced by nonlinear scattering, as seen in prior polariton lasers. In the experiments reported here, we have observed laser emission with an ultralow threshold. The threshold was approximately 59 nW/μm2, with a lasing efficiency of 3.82%. These findings suggest a potential for efficient laser operations using such homostructures.
Collapse
Affiliation(s)
- Yuening Fan
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Qiaochu Wan
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Qi Yao
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xingzhou Chen
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Yuanjun Guan
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Hassan Alnatah
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Daniel Vaz
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jonathan Beaumariage
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kenji Watanabe
- Research
Center for Electronic and Optical Materials, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research
Center for Materials Nanoarchitectonics, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jian Wu
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative
Innovation Center of Extreme Optics, Taiyuan, Shanxi 030006, China
- Chongqing
Key Laboratory of Precision Optics, Chongqing 401121, China
| | - Zheng Sun
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative
Innovation Center of Extreme Optics, Taiyuan, Shanxi 030006, China
| | - David Snoke
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
3
|
Shan H, Drawer JC, Sun M, Anton-Solanas C, Esmann M, Yumigeta K, Watanabe K, Taniguchi T, Tongay S, Höfling S, Savenko I, Schneider C. Second-Order Temporal Coherence of Polariton Lasers Based on an Atomically Thin Crystal in a Microcavity. PHYSICAL REVIEW LETTERS 2023; 131:206901. [PMID: 38039456 DOI: 10.1103/physrevlett.131.206901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/28/2023] [Accepted: 10/06/2023] [Indexed: 12/03/2023]
Abstract
Bosonic condensation and lasing of exciton polaritons in microcavities is a fascinating solid-state phenomenon. It provides a versatile platform to study out-of-equilibrium many-body physics and has recently appeared at the forefront of quantum technologies. Here, we study the photon statistics via the second-order temporal correlation function of polariton lasing emerging from an optical microcavity with an embedded atomically thin MoSe_{2} crystal. Furthermore, we investigate the macroscopic polariton phase transition for varying excitation powers and temperatures. The lower-polariton exhibits photon bunching below the threshold, implying a dominant thermal distribution of the emission, while above the threshold, the second-order correlation transits towards unity, which evidences the formation of a coherent state. Our findings are in agreement with a microscopic numerical model, which explicitly includes scattering with phonons on the quantum level.
Collapse
Affiliation(s)
- Hangyong Shan
- Institute of Physics, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | | | - Meng Sun
- Faculty of Science, Beijing University of Technology, 100124 Beijing, China
| | - Carlos Anton-Solanas
- Departamento de Física de Materiales, Instituto Nicolás Cabrera, Instituto de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Martin Esmann
- Institute of Physics, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Kentaro Yumigeta
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Sefaattin Tongay
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, USA
| | - Sven Höfling
- Julius-Maximilians-Universität Würzburg, Physikalisches Institut and Würzburg-Dresden Cluster of Excellence ct.qmat, Lehrstuhl für Technische Physik, Am Hubland, 97074 Würzburg, Germany
| | - Ivan Savenko
- Guangdong Technion Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, Guangdong Province 515603, China
- Technion-Israel Institute of Technology, 32000 Haifa, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Guangdong 515063, China
| | - Christian Schneider
- Institute of Physics, Carl von Ossietzky University, 26129 Oldenburg, Germany
| |
Collapse
|
4
|
Lüders C, Pukrop M, Barkhausen F, Rozas E, Schneider C, Höfling S, Sperling J, Schumacher S, Aßmann M. Tracking Quantum Coherence in Polariton Condensates with Time-Resolved Tomography. PHYSICAL REVIEW LETTERS 2023; 130:113601. [PMID: 37001069 DOI: 10.1103/physrevlett.130.113601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/21/2023] [Indexed: 06/19/2023]
Abstract
Long-term quantum coherence constitutes one of the main challenges when engineering quantum devices. However, easily accessible means to quantify complex decoherence mechanisms are not readily available, nor are sufficiently stable systems. We harness novel phase-space methods-expressed through non-Gaussian convolutions of highly singular Glauber-Sudarshan quasiprobabilities-to dynamically monitor quantum coherence in polariton condensates with significantly enhanced coherence times. Via intensity- and time-resolved reconstructions of such phase-space functions from homodyne detection data, we probe the systems' resourcefulness for quantum information processing up to the nanosecond regime. Our experimental findings are confirmed through numerical simulations, for which we develop an approach that renders established algorithms compatible with our methodology. In contrast to commonly applied phase-space functions, our distributions can be directly sampled from measured data, including uncertainties, and yield a simple operational measure of quantum coherence via the distribution's variance in phase. Therefore, we present a broadly applicable framework and a platform to explore time-dependent quantum phenomena and resources.
Collapse
Affiliation(s)
- Carolin Lüders
- Experimentelle Physik 2, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Matthias Pukrop
- Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Universität Paderborn, 33098 Paderborn, Germany
| | - Franziska Barkhausen
- Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Universität Paderborn, 33098 Paderborn, Germany
| | - Elena Rozas
- Experimentelle Physik 2, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | | | - Sven Höfling
- Technische Physik, Physikalisches Institut and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97074 Würzburg, Germany
| | - Jan Sperling
- Theoretical Quantum Science, Institute for Photonic Quantum Systems (PhoQS), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Stefan Schumacher
- Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Universität Paderborn, 33098 Paderborn, Germany
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Marc Aßmann
- Experimentelle Physik 2, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
5
|
Li D, Shan H, Rupprecht C, Knopf H, Watanabe K, Taniguchi T, Qin Y, Tongay S, Nuß M, Schröder S, Eilenberger F, Höfling S, Schneider C, Brixner T. Hybridized Exciton-Photon-Phonon States in a Transition Metal Dichalcogenide van der Waals Heterostructure Microcavity. PHYSICAL REVIEW LETTERS 2022; 128:087401. [PMID: 35275663 DOI: 10.1103/physrevlett.128.087401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 11/01/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Excitons in atomically thin transition-metal dichalcogenides (TMDs) have been established as an attractive platform to explore polaritonic physics, owing to their enormous binding energies and giant oscillator strength. Basic spectral features of exciton polaritons in TMD microcavities, thus far, were conventionally explained via two-coupled-oscillator models. This ignores, however, the impact of phonons on the polariton energy structure. Here we establish and quantify the threefold coupling between excitons, cavity photons, and phonons. For this purpose, we employ energy-momentum-resolved photoluminescence and spatially resolved coherent two-dimensional spectroscopy to investigate the spectral properties of a high-quality-factor microcavity with an embedded WSe_{2} van der Waals heterostructure at room temperature. Our approach reveals a rich multibranch structure which thus far has not been captured in previous experiments. Simulation of the data reveals hybridized exciton-photon-phonon states, providing new physical insight into the exciton polariton system based on layered TMDs.
Collapse
Affiliation(s)
- Donghai Li
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- University of Science and Technology of China, 230026 Hefei, China
| | - Hangyong Shan
- Institute of Physics, University of Oldenburg, D-26129 Oldenburg, Germany
| | - Christoph Rupprecht
- Technische Physik and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Heiko Knopf
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University, Albert-Einstein-Straße 15, 07745 Jena, Germany
- Fraunhofer-Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Straße 7, 07745 Jena, Germany
- Max Planck School of Photonics, Albert-Einstein-Straße 7, 07745 Jena, Germany
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ying Qin
- Materials Science and Engineering, School of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, USA
| | - Sefaattin Tongay
- Materials Science and Engineering, School of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, USA
| | - Matthias Nuß
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sven Schröder
- Fraunhofer-Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Straße 7, 07745 Jena, Germany
| | - Falk Eilenberger
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University, Albert-Einstein-Straße 15, 07745 Jena, Germany
- Fraunhofer-Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Straße 7, 07745 Jena, Germany
- Max Planck School of Photonics, Albert-Einstein-Straße 7, 07745 Jena, Germany
| | - Sven Höfling
- Technische Physik and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christian Schneider
- Institute of Physics, University of Oldenburg, D-26129 Oldenburg, Germany
- Technische Physik and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
6
|
Baryshev S, Zasedatelev A, Sigurdsson H, Gnusov I, Töpfer JD, Askitopoulos A, Lagoudakis PG. Engineering Photon Statistics in a Spinor Polariton Condensate. PHYSICAL REVIEW LETTERS 2022; 128:087402. [PMID: 35275646 DOI: 10.1103/physrevlett.128.087402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/09/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
We implement full polarization tomography on photon correlations in a spinor exciton-polariton condensate. Our measurements reveal condensate pseudospin mean-field dynamics spanning from stochastic switching between linear polarization components, limit cycles, and stable fixed points, and their intrinsic relation to the condensate photon statistics. We optically harness the cavity birefringence, polariton interactions, and the optical orientation of an incoherent exciton reservoir to engineer photon statistics with precise control. Our results demonstrate a smooth transition from a highly coherent to a super-thermal state of the condensate polarization components.
Collapse
Affiliation(s)
- S Baryshev
- Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Territory of Innovation Center Skolkovo, Bolshoy Boulevard 30, building 1, 121205 Moscow, Russia
| | - A Zasedatelev
- Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Territory of Innovation Center Skolkovo, Bolshoy Boulevard 30, building 1, 121205 Moscow, Russia
- School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - H Sigurdsson
- School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Science Institute, University of Iceland, Dunhagi 3, IS-107, Reykjavik, Iceland
| | - I Gnusov
- Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Territory of Innovation Center Skolkovo, Bolshoy Boulevard 30, building 1, 121205 Moscow, Russia
| | - J D Töpfer
- School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - A Askitopoulos
- Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Territory of Innovation Center Skolkovo, Bolshoy Boulevard 30, building 1, 121205 Moscow, Russia
| | - P G Lagoudakis
- Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Territory of Innovation Center Skolkovo, Bolshoy Boulevard 30, building 1, 121205 Moscow, Russia
- School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
7
|
Lüders C, Aßmann M. Distinguishing intrinsic photon correlations from external noise with frequency-resolved homodyne detection. Sci Rep 2020; 10:22411. [PMID: 33376250 PMCID: PMC7772345 DOI: 10.1038/s41598-020-79686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/11/2020] [Indexed: 11/09/2022] Open
Abstract
In this work, we apply homodyne detection to investigate the frequency-resolved photon statistics of a cw light field emitted by a driven-dissipative semiconductor system in real time. We demonstrate that studying the frequency dependence of the photon number noise allows us to distinguish intrinsic noise properties of the emitter from external noise sources such as mechanical noise while maintaining a sub-picosecond temporal resolution. We further show that performing postselection on the recorded data opens up the possibility to study rare events in the dynamics of the emitter. By doing so, we demonstrate that in rare instances, additional external noise may actually result in reduced photon number noise in the emission.
Collapse
Affiliation(s)
- Carolin Lüders
- Experimentelle Physik 2, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Marc Aßmann
- Experimentelle Physik 2, Technische Universität Dortmund, 44221, Dortmund, Germany.
| |
Collapse
|
8
|
Levinsen J, Marchetti FM, Keeling J, Parish MM. Spectroscopic Signatures of Quantum Many-Body Correlations in Polariton Microcavities. PHYSICAL REVIEW LETTERS 2019; 123:266401. [PMID: 31951450 DOI: 10.1103/physrevlett.123.266401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/19/2018] [Indexed: 06/10/2023]
Abstract
We theoretically investigate the many-body states of exciton polaritons that can be observed by pump-probe spectroscopy in high-Q inorganic microcavities. Here, a weak-probe "spin-down" polariton is introduced into a coherent state of "spin-up" polaritons created by a strong pump. We show that the ↓ impurities become dressed by excitations of the ↑ medium, and that they form new polaronic quasiparticles that feature two-point and three-point many-body quantum correlations that, in the low density regime, arise from coupling to the vacuum biexciton and triexciton states, respectively. In particular, we find that these correlations generate additional branches and avoided crossings in the ↓ optical transmission spectrum that have a characteristic dependence on the ↑-polariton density. Our results thus demonstrate a way to directly observe correlated many-body states in an exciton-polariton system that go beyond classical mean-field theories.
Collapse
Affiliation(s)
- Jesper Levinsen
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| | - Francesca Maria Marchetti
- Departamento de Física Teórica de la Materia Condensada & Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jonathan Keeling
- SUPA, School of Physics and Astronomy, University of St Andrews, St. Andrews KY16 9SS, United Kingdom
| | - Meera M Parish
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| |
Collapse
|
9
|
Schlaus AP, Spencer MS, Zhu XY. Light-Matter Interaction and Lasing in Lead Halide Perovskites. Acc Chem Res 2019; 52:2950-2959. [PMID: 31571486 DOI: 10.1021/acs.accounts.9b00382] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lead halide perovskites (LHPs) are attractive material systems for light emission, thanks to the ease and diverse routes of synthesis, the broad tunability in color, the high emission quantum efficiencies, and the strong light-matter coupling which may potentially lead to exciton-polariton condensation. This account contrasts the laser-like coherent light emission from highly lossy Fabry-Perot cavities, formed naturally from LHP nanowires (NWs) and nanoplates (NPs), with highly reflective cavities made of LHP gain media, sandwiched between two distributed Bragg reflector (DBR) mirrors. The mechanism responsible for the operation of conventional semiconductor lasers involves stimulated emission of electron and hole pairs bound by the Coulomb potential, i.e., excitons or, at excitation density above the so-called Mott threshold, an electron-hole plasma (EHP). We discuss how lasing from LHP NWs or NPs likely originates from stimulated emission of an EHP, not excitons or exciton-polaritons. A character central to this kind of lasing is the dynamically changing photonic properties in the naturally formed cavity. In contrast to the more static conditions of a DBR cavity, lasing modes and gain profiles are extremely sensitive to material properties and excitation conditions in an NW/NP cavity. While such unstable photonic cavities pose engineering challenges in the application of NW/NP lasers, they provide excellent probes of many-body physics in the LHP material. For sufficiently strong light-matter coupling expected for LHPs in DBR cavities, an exciton-polariton, i.e., the superposition state between the exciton and the cavity photon, can form. An exciting prospect of strong light-matter coupling is the potential formation of an exciton polariton condensate, which possesses many interesting quantum and nonlinear effects, such as superfluidity, long-range coherence, and laserlike light emission. However, it is difficult to distinguish coherent light from an exciton-polariton condensate and that from conventional stimulated laser emission. Several reports have established the condition of strong coupling for LHPs in DBR cavities. We stress, however, that these studies have not included necessary experiments to unambiguously establish the formation of exciton-polariton condensation, and several experiments and routes of analysis are needed to make a more convincing case for exciton-polariton condensation in LHP based systems. The potential of exciton-polariton condensation expands the horizon of LHP materials from conventional optoelectronics to quantum devices.
Collapse
Affiliation(s)
- Andrew P. Schlaus
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael S. Spencer
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - X-Y. Zhu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
10
|
Klaas M, Schlottmann E, Flayac H, Laussy FP, Gericke F, Schmidt M, Helversen MV, Beyer J, Brodbeck S, Suchomel H, Höfling S, Reitzenstein S, Schneider C. Photon-Number-Resolved Measurement of an Exciton-Polariton Condensate. PHYSICAL REVIEW LETTERS 2018; 121:047401. [PMID: 30095927 DOI: 10.1103/physrevlett.121.047401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 06/08/2023]
Abstract
We measure the full photon-number distribution emitted from a Bose condensate of microcavity exciton polaritons confined in a micropillar cavity. The statistics are acquired by means of a photon-number-resolving transition edge sensor. We directly observe that the photon-number distribution evolves with the nonresonant optical excitation power from geometric to quasi-Poissonian statistics, which is canonical for a transition from a thermal to a coherent state. Moreover, the photon-number distribution allows one to evaluate the higher-order photon correlations, shedding further light on the coherence formation and phase transition of the polariton condensate. The experimental data are analyzed in terms of thermal-coherent states, which gives direct access to the thermal and coherent fraction from the measured distributions. These results pave the way for a full understanding of the contribution of interactions in light-matter condensates in the coherence buildup at threshold.
Collapse
Affiliation(s)
- M Klaas
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - E Schlottmann
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623, Berlin, Germany
| | - H Flayac
- Institute of Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - F P Laussy
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna St, Wolverhampton WV1 1LY, United Kingdom
- Russian Quantum Center, Novaya 100, 143025 Skolkovo, Moscow Region, Russia
| | - F Gericke
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623, Berlin, Germany
| | - M Schmidt
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623, Berlin, Germany
- Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin, Germany
| | - M V Helversen
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623, Berlin, Germany
| | - J Beyer
- Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin, Germany
| | - S Brodbeck
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - H Suchomel
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - S Höfling
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - S Reitzenstein
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623, Berlin, Germany
| | - C Schneider
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
11
|
Stefanatos D, Paspalakis E. Efficient entanglement generation between exciton-polaritons using shortcuts to adiabaticity. OPTICS LETTERS 2018; 43:3313-3316. [PMID: 30004494 DOI: 10.1364/ol.43.003313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
We use shortcuts to adiabaticity, a method introduced to speed up adiabatic quantum dynamics, for the efficient generation of entanglement between exciton-polaritons in coupled semiconductor microcavities. A substantial improvement is achieved, compared to a recently proposed method that essentially enhances the nonlinearity of the system. Our method takes advantage of a time-dependent nonlinearity, which can become larger than the Josephson coupling between the cavities, while the conventional method is restricted to a constant nonlinearity lower than the coupling. The suggested procedure is expected to also find application in other research areas in optics, where nonlinear interacting bosons are encountered.
Collapse
|