1
|
Le H, Haidenbauer J, Kamada H, Kohno M, Meißner UG, Miyagawa K, Nogga A. Benchmarking Λ NN three-body forces and first predictions for A = 3 - 5 hypernuclei. THE EUROPEAN PHYSICAL JOURNAL. A, HADRONS AND NUCLEI 2025; 61:21. [PMID: 39901905 PMCID: PMC11787258 DOI: 10.1140/epja/s10050-024-01474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/14/2024] [Indexed: 02/05/2025]
Abstract
Explicit expressions for the leading chiral hyperon-nucleon-nucleon three-body forces have been derived by Petschauer et al (Phys Rev C93:014001, 2016). An important prerequisite for including these three-body forces in few- and many-body calculations is the accuracy and efficiency of their partial-wave decomposition. A careful benchmark of the Λ NN potential matrix elements, computed using two robust and efficient partial-wave decomposition methods, is presented. In addition, results of a first quantitative assessment for the contributions of Λ NN forces to the separation energies in A = 3 - 5 hypernuclei are reported.
Collapse
Affiliation(s)
- Hoai Le
- Institute for Advanced Simulation (IAS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Johann Haidenbauer
- Institute for Advanced Simulation (IAS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Hiroyuki Kamada
- Department of Physics, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu, 804-8550 Japan
- Research Center for Nuclear Physics, Osaka University, Ibaraki, 567-0047 Japan
| | - Michio Kohno
- Research Center for Nuclear Physics, Osaka University, Ibaraki, 567-0047 Japan
| | - Ulf-G. Meißner
- Institute for Advanced Simulation (IAS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
- Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, 53115 Bonn, Germany
- CASA, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Kazuya Miyagawa
- Research Center for Nuclear Physics, Osaka University, Ibaraki, 567-0047 Japan
| | - Andreas Nogga
- Institute for Advanced Simulation (IAS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
- CASA, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
2
|
Chambers-Wall G, Gnech A, King GB, Pastore S, Piarulli M, Schiavilla R, Wiringa RB. Quantum Monte Carlo Calculations of Magnetic Form Factors in Light Nuclei. PHYSICAL REVIEW LETTERS 2024; 133:212501. [PMID: 39642515 DOI: 10.1103/physrevlett.133.212501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/11/2024] [Indexed: 12/09/2024]
Abstract
We present quantum Monte Carlo calculations of magnetic form factors in A=6-10 nuclei, based on Norfolk two- and three-nucleon interactions, and associated one- and two-body electromagnetic currents. Agreement with the available experimental data for ^{6}Li, ^{7}Li, ^{9}Be, and ^{10}B up to values of momentum transfer q∼3 fm^{-1} is achieved when two-nucleon currents are accounted for. We present a set of predictions for the magnetic form factors of ^{7}Be, ^{8}Li, ^{9}Li, and ^{9}C. In these systems, two-body currents account for ∼40%-60% of the total magnetic strength. Measurements in any of these radioactive systems would provide valuable insights on the nuclear magnetic structure emerging from the underlying many-nucleon dynamics. A particularly interesting case is that of ^{7}Be, as it would enable investigations of the magnetic structure of mirror nuclei.
Collapse
|
3
|
Gnech A, Fore B, Tropiano AJ, Lovato A. Distilling the Essential Elements of Nuclear Binding via Neural-Network Quantum States. PHYSICAL REVIEW LETTERS 2024; 133:142501. [PMID: 39423417 DOI: 10.1103/physrevlett.133.142501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/23/2024] [Accepted: 08/14/2024] [Indexed: 10/21/2024]
Abstract
To distill the essential elements of nuclear binding, we seek the simplest Hamiltonian capable of modeling atomic nuclei with percent-level accuracy. A critical aspect of this endeavor consists of accurately solving the quantum many-body problem without incurring an exponential computing cost with the number of nucleons. We address this challenge by leveraging a variational Monte Carlo method based on a highly expressive neural-network quantum state ansatz. In addition to computing binding energies and charge radii of nuclei with up to A=20 nucleons, by evaluating their magnetic moments, we demonstrate that neural-network quantum states are able to correctly capture the self-emerging nuclear shell structure. To this end, we introduce a novel computational protocol based on adding an external magnetic field to the nuclear Hamiltonian, which allows the neural network to learn the preferred polarization of the nucleus within the given magnetic field.
Collapse
|
4
|
Elhatisari S, Bovermann L, Ma YZ, Epelbaum E, Frame D, Hildenbrand F, Kim M, Kim Y, Krebs H, Lähde TA, Lee D, Li N, Lu BN, Meißner UG, Rupak G, Shen S, Song YH, Stellin G. Wavefunction matching for solving quantum many-body problems. Nature 2024; 630:59-63. [PMID: 38750357 PMCID: PMC11153134 DOI: 10.1038/s41586-024-07422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/15/2024] [Indexed: 06/07/2024]
Abstract
Ab initio calculations have an essential role in our fundamental understanding of quantum many-body systems across many subfields, from strongly correlated fermions1-3 to quantum chemistry4-6 and from atomic and molecular systems7-9 to nuclear physics10-14. One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computational method to handle. Here we address the problem by introducing an approach called wavefunction matching. Wavefunction matching transforms the interaction between particles so that the wavefunctions up to some finite range match that of an easily computable interaction. This allows for calculations of systems that would otherwise be impossible owing to problems such as Monte Carlo sign cancellations. We apply the method to lattice Monte Carlo simulations15,16 of light nuclei, medium-mass nuclei, neutron matter and nuclear matter. We use high-fidelity chiral effective field theory interactions17,18 and find good agreement with empirical data. These results are accompanied by insights on the nuclear interactions that may help to resolve long-standing challenges in accurately reproducing nuclear binding energies, charge radii and nuclear-matter saturation in ab initio calculations19,20.
Collapse
Affiliation(s)
- Serdar Elhatisari
- Faculty of Natural Sciences and Engineering, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
- Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, Bonn, Germany
| | - Lukas Bovermann
- Institut für Theoretische Physik II, Ruhr-Universität Bochum, Bochum, Germany
| | - Yuan-Zhuo Ma
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
- Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou, China
| | - Evgeny Epelbaum
- Institut für Theoretische Physik II, Ruhr-Universität Bochum, Bochum, Germany
| | - Dillon Frame
- Institut für Kernphysik, Institute for Advanced Simulation, Jülich Center for Hadron Physics, Jülich, Germany
- Center for Advanced Simulation and Analytics (CASA), Forschungszentrum Jülich, Jülich, Germany
| | - Fabian Hildenbrand
- Institut für Kernphysik, Institute for Advanced Simulation, Jülich Center for Hadron Physics, Jülich, Germany
- Center for Advanced Simulation and Analytics (CASA), Forschungszentrum Jülich, Jülich, Germany
| | - Myungkuk Kim
- Center for Exotic Nuclear Studies, Institute for Basic Science, Daejeon, Korea
| | - Youngman Kim
- Center for Exotic Nuclear Studies, Institute for Basic Science, Daejeon, Korea
| | - Hermann Krebs
- Institut für Theoretische Physik II, Ruhr-Universität Bochum, Bochum, Germany
| | - Timo A Lähde
- Institut für Kernphysik, Institute for Advanced Simulation, Jülich Center for Hadron Physics, Jülich, Germany
- Center for Advanced Simulation and Analytics (CASA), Forschungszentrum Jülich, Jülich, Germany
| | - Dean Lee
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
| | - Ning Li
- School of Physics, Sun Yat-Sen University, Guangzhou, China
| | - Bing-Nan Lu
- Graduate School of China Academy of Engineering Physics, Beijing, China
| | - Ulf-G Meißner
- Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, Bonn, Germany
- Institut für Kernphysik, Institute for Advanced Simulation, Jülich Center for Hadron Physics, Jülich, Germany
- Center for Advanced Simulation and Analytics (CASA), Forschungszentrum Jülich, Jülich, Germany
- Tbilisi State University, Tbilisi, Georgia
| | - Gautam Rupak
- Department of Physics and Astronomy and HPC2 Center for Computational Sciences, Mississippi State University, Mississippi State, MI, USA
| | - Shihang Shen
- Institut für Kernphysik, Institute for Advanced Simulation, Jülich Center for Hadron Physics, Jülich, Germany
- Center for Advanced Simulation and Analytics (CASA), Forschungszentrum Jülich, Jülich, Germany
| | - Young-Ho Song
- Institute for Rare Isotope Science, Institute for Basic Science (IBS), Daejeon, Korea
| | - Gianluca Stellin
- ESNT, DRF/IRFU/DPhN/LENA, CEA Paris-Saclay and Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Sarkar A, Lee D. Convergence of Eigenvector Continuation. PHYSICAL REVIEW LETTERS 2021; 126:032501. [PMID: 33543947 DOI: 10.1103/physrevlett.126.032501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/30/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Eigenvector continuation is a computational method that finds the extremal eigenvalues and eigenvectors of a Hamiltonian matrix with one or more control parameters. It does this by projection onto a subspace of eigenvectors corresponding to selected training values of the control parameters. The method has proven to be very efficient and accurate for interpolating and extrapolating eigenvectors. However, almost nothing is known about how the method converges, and its rapid convergence properties have remained mysterious. In this Letter, we present the first study of the convergence of eigenvector continuation. In order to perform the mathematical analysis, we introduce a new variant of eigenvector continuation that we call vector continuation. We first prove that eigenvector continuation and vector continuation have identical convergence properties and then analyze the convergence of vector continuation. Our analysis shows that, in general, eigenvector continuation converges more rapidly than perturbation theory. The faster convergence is achieved by eliminating a phenomenon that we call differential folding, the interference between nonorthogonal vectors appearing at different orders in perturbation theory. From our analysis we can predict how eigenvector continuation converges both inside and outside the radius of convergence of perturbation theory. While eigenvector continuation is a nonperturbative method, we show that its rate of convergence can be deduced from power series expansions of the eigenvectors. Our results also yield new insights into the nature of divergences in perturbation theory.
Collapse
Affiliation(s)
- Avik Sarkar
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Dean Lee
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
6
|
Hansen MT, Briceño RA, Edwards RG, Thomas CE, Wilson DJ. Energy-Dependent π^{+}π^{+}π^{+} Scattering Amplitude from QCD. PHYSICAL REVIEW LETTERS 2021; 126:012001. [PMID: 33480796 DOI: 10.1103/physrevlett.126.012001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Focusing on three-pion states with maximal isospin (π^{+}π^{+}π^{+}), we present the first nonperturbative determination of an energy-dependent three-hadron scattering amplitude from first-principles QCD. The calculation combines finite-volume three-hadron energies, extracted using numerical lattice QCD, with a relativistic finite-volume formalism, required to interpret the results. To fully implement the latter, we also solve integral equations that relate an intermediate three-body K matrix to the physical three-hadron scattering amplitude. The resulting amplitude shows rich analytic structure and a complicated dependence on the two-pion invariant masses, represented here via Dalitz-like plots of the scattering rate.
Collapse
Affiliation(s)
- Maxwell T Hansen
- Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland
- Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - Raul A Briceño
- Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA
- Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Robert G Edwards
- Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA
| | - Christopher E Thomas
- DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - David J Wilson
- DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
7
|
Lu BN, Li N, Elhatisari S, Lee D, Drut JE, Lähde TA, Epelbaum E, Meißner UG. Ab Initio Nuclear Thermodynamics. PHYSICAL REVIEW LETTERS 2020; 125:192502. [PMID: 33216564 DOI: 10.1103/physrevlett.125.192502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/06/2020] [Accepted: 09/29/2020] [Indexed: 05/28/2023]
Abstract
We propose a new Monte Carlo method called the pinhole trace algorithm for ab initio calculations of the thermodynamics of nuclear systems. For typical simulations of interest, the computational speedup relative to conventional grand-canonical ensemble calculations can be as large as a factor of one thousand. Using a leading-order effective interaction that reproduces the properties of many atomic nuclei and neutron matter to a few percent accuracy, we determine the location of the critical point and the liquid-vapor coexistence line for symmetric nuclear matter with equal numbers of protons and neutrons. We also present the first ab initio study of the density and temperature dependence of nuclear clustering.
Collapse
Affiliation(s)
- Bing-Nan Lu
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ning Li
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Serdar Elhatisari
- Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey
| | - Dean Lee
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Joaquín E Drut
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255, USA
| | - Timo A Lähde
- Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Evgeny Epelbaum
- Ruhr-Universität Bochum, Fakultät für Physik und Astronomie, Institut für Theoretische Physik II, D-44780 Bochum, Germany
| | - Ulf-G Meißner
- Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
- Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany
- Tbilisi State University, 0186 Tbilisi, Georgia
| |
Collapse
|
8
|
Dawkins WG, Carlson J, van Kolck U, Gezerlis A. Clustering of Four-Component Unitary Fermions. PHYSICAL REVIEW LETTERS 2020; 124:143402. [PMID: 32338952 DOI: 10.1103/physrevlett.124.143402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Ab initio nuclear physics tackles the problem of strongly interacting four-component fermions. The same setting could foreseeably be probed experimentally in ultracold atomic systems, where two- and three-component experiments have led to major breakthroughs in recent years. Both due to the problem's inherent interest and as a pathway to nuclear physics, in this Letter we study four-component fermions at unitarity via the use of quantum Monte Carlo methods. We explore novel forms of the trial wave function and find one which leads to a ground state of the eight-particle system whose energy is almost equal to that of two four-particle systems. We investigate the clustering properties involved and also extrapolate to the zero-range limit. In addition to being experimentally testable, our results impact the prospects of developing nuclear physics as a perturbation around the unitary limit.
Collapse
Affiliation(s)
- William G Dawkins
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - J Carlson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - U van Kolck
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay, France
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
| | - Alexandros Gezerlis
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
9
|
Buraczynski M, Ismail N, Gezerlis A. Nonperturbative Extraction of the Effective Mass in Neutron Matter. PHYSICAL REVIEW LETTERS 2019; 122:152701. [PMID: 31050497 DOI: 10.1103/physrevlett.122.152701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/24/2019] [Indexed: 06/09/2023]
Abstract
We carry out nonperturbative calculations of the single-particle excitation spectrum in strongly interacting neutron matter. These are microscopic quantum Monte Carlo computations of many-neutron energies at different densities as well as several distinct excited states. As input, we employ both phenomenological and chiral two- and three-nucleon interactions. We use the single-particle spectrum to extract the effective mass in neutron matter. With a view to systematizing the error involved in this extraction, we carefully assess the impact of finite-size effects on the quasiparticle dispersion relation. We find an effective-mass ratio that drops from 1 as the density is increased. We conclude by connecting our results with the physics of ultracold gases as well as with energy-density functional theories of nuclei and neutron-star matter.
Collapse
Affiliation(s)
- Mateusz Buraczynski
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nawar Ismail
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Alexandros Gezerlis
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
10
|
Morris TD, Simonis J, Stroberg SR, Stumpf C, Hagen G, Holt JD, Jansen GR, Papenbrock T, Roth R, Schwenk A. Structure of the Lightest Tin Isotopes. PHYSICAL REVIEW LETTERS 2018; 120:152503. [PMID: 29756897 DOI: 10.1103/physrevlett.120.152503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/12/2018] [Indexed: 06/08/2023]
Abstract
We link the structure of nuclei around ^{100}Sn, the heaviest doubly magic nucleus with equal neutron and proton numbers (N=Z=50), to nucleon-nucleon (NN) and three-nucleon (NNN) forces constrained by data of few-nucleon systems. Our results indicate that ^{100}Sn is doubly magic, and we predict its quadrupole collectivity. We present precise computations of ^{101}Sn based on three-particle-two-hole excitations of ^{100}Sn, and we find that one interaction accurately reproduces the small splitting between the lowest J^{π}=7/2^{+} and 5/2^{+} states.
Collapse
Affiliation(s)
- T D Morris
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - J Simonis
- Institut für Kernphysik, TU Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - S R Stroberg
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Physics Department, Reed College, Portland, Oregon 97202, USA
| | - C Stumpf
- Institut für Kernphysik, TU Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt, Germany
| | - G Hagen
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - J D Holt
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - G R Jansen
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - T Papenbrock
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - R Roth
- Institut für Kernphysik, TU Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt, Germany
| | - A Schwenk
- Institut für Kernphysik, TU Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
11
|
Lonardoni D, Carlson J, Gandolfi S, Lynn JE, Schmidt KE, Schwenk A, Wang XB. Properties of Nuclei up to A=16 using Local Chiral Interactions. PHYSICAL REVIEW LETTERS 2018; 120:122502. [PMID: 29694099 DOI: 10.1103/physrevlett.120.122502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/29/2018] [Indexed: 06/08/2023]
Abstract
We report accurate quantum Monte Carlo calculations of nuclei up to A=16 based on local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We examine the theoretical uncertainties associated with the chiral expansion and the cutoff in the theory, as well as the associated operator choices in the three-nucleon interactions. While in light nuclei the cutoff variation and systematic uncertainties are rather small, in ^{16}O these can be significant for large coordinate-space cutoffs. Overall, we show that chiral interactions constructed to reproduce properties of very light systems and nucleon-nucleon scattering give an excellent description of binding energies, charge radii, and form factors for all these nuclei, including open-shell systems in A=6 and 12.
Collapse
Affiliation(s)
- D Lonardoni
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J Carlson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - S Gandolfi
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J E Lynn
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - K E Schmidt
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - A Schwenk
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - X B Wang
- School of Science, Huzhou University, Huzhou 313000, China
| |
Collapse
|