1
|
Sun S, Zhang K, Xu S, Shi X, Wang J. Diffusion of Nanosheets in Unentangled Polymer Melts. ACS Macro Lett 2025; 14:284-291. [PMID: 39965139 DOI: 10.1021/acsmacrolett.4c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Understanding the dynamics of nanosheets in polymer matrices is crucial for the processing of polymer nanocomposites and their applications in drug delivery. In this work, we investigate the diffusion of thin nanosheets in unentangled polymer melts using molecular dynamics simulations. We show that for nanosheets smaller than a characteristic size lc, which is a few times the polymer chain size, the continuum hydrodynamic theory based on macroscopic viscosity breaks down and significantly underestimates the diffusion coefficients. For nanosheets with sizes l < lc, we derive scaling relationships for both translational and rotational diffusion coefficients as functions of l and further reveal the dynamical coupling between nanosheet motion and the modes of the polymer melt. For l > lc, the continuum theory is recovered. Our findings reconcile the continuum and scaling theories for the diffusion of nanoparticles in polymer melts.
Collapse
Affiliation(s)
- Shiwei Sun
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Kai Zhang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, People's Republic of China
| | - Sai Xu
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jiuling Wang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, People's Republic of China
| |
Collapse
|
2
|
Kotkar SB, Poling-Skutvik R, Howard MP, Nikoubashman A, Conrad JC, Palmer JC. Dynamics of Nanoparticles in Solutions of Semiflexible Ring Polymers. J Phys Chem B 2024; 128:12586-12596. [PMID: 39641134 DOI: 10.1021/acs.jpcb.4c05674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We use hybrid molecular dynamics-multiparticle collision dynamics (MD-MPCD) simulations to investigate the influence of chain stiffness on the transport of nanoparticles (NPs) through solutions of semiflexible ring polymers. The NPs exhibit subdiffusive dynamics on short time scales before transitioning to normal diffusion at longer times. The terminal NP diffusivity decreases with increasing ring stiffness, similar to the behavior observed in solutions of semiflexible linear chains. The NP subdiffusive exponent is found to be strongly correlated with that of the polymer center of mass (COM) for the range of chain stiffnesses examined, which is at odds with the pronounced decoupling of the NP and polymer COM motions previously observed upon increasing the stiffness of linear chains. Our analysis indicates that these marked differences in the intermediate dynamics are rooted in distinct structural changes that emerge with increasing bending stiffness: Stiffer ring polymers adopt increasingly circular conformations and stack into transient tubes. The void space created near the ring centers is occupied by NPs and other polymers, resulting in strong dynamic coupling on short time scales.
Collapse
Affiliation(s)
- Shivraj B Kotkar
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ryan Poling-Skutvik
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Michael P Howard
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Jeremy C Palmer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
3
|
Nakai F, Uneyama T. Brownian yet non-Gaussian diffusion of a light particle in heavy gas: Lorentz-gas-based analysis. Phys Rev E 2023; 108:044129. [PMID: 37978684 DOI: 10.1103/physreve.108.044129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023]
Abstract
Non-Gaussian diffusion was recently observed in a gas mixture with mass and fraction contrast [F. Nakai et al., Phys. Rev. E 107, 014605 (2023)2470-004510.1103/PhysRevE.107.014605]. The mean-square displacement of a minor gas particle with a small mass is linear in time, while the displacement distribution deviates from the Gaussian distribution, which is called the Brownian yet non-Gaussian diffusion. In this work, we theoretically analyze this case where the mass contrast is sufficiently large. Major heavy particles can be interpreted as immobile obstacles, and a minor light particle behaves like a Lorentz gas particle within an intermediate timescale. Despite the similarity between the gas mixture and the conventional Lorentz gas system, the Lorentz gas description cannot fully describe the Brownian yet non-Gaussian diffusion. A successful description can be achieved through a canonical ensemble average of the statistical quantities of the Lorentz gas over the initial speed. Furhter, we show that the van Hove correlation function has a nonexponential tail, which is contrary to the exponential tail observed in various systems.
Collapse
Affiliation(s)
- Fumiaki Nakai
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Takashi Uneyama
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
4
|
Zhang S, Wang J, Ge T. Force-driven active dynamics of thin nanorods in unentangled polymer melts. SOFT MATTER 2022; 18:6582-6591. [PMID: 35968884 DOI: 10.1039/d2sm00731b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent advances in the functional material and biomedical applications of nanorods call for a fundamental understanding of the active motion of nanorods in a viscoelastic medium. Molecular dynamics simulations are performed to investigate a model system consisting of force-driven active thin nanorods in a melt of unentangled polymers. The activeness of a thin nanorod arises from a constant external force applied uniformly along the rod. The simulations demonstrate that the active force overcomes the randomness of the diffusive motion and results in a ballistic motion along the direction of the applied force at long timescales. The constant speed of the force-driven ballistic motion is determined by the balance of the active force and the friction from the coupling of the nanorod with the polymer viscosity. The friction coefficient, which is computed as the ratio of the active force and the speed, decreases as the active force increases. The origin of the reduction in the friction coefficient is the high speed that allows the nanorod to renew its local environment faster than the relaxation time of melt chains. A scaling theory is developed to quantify the dependence of the friction coefficient on the strength of the active force. The simulations also demonstrate that the force-driven ballistic motion suppresses the rotational diffusion of the rod and cuts off the de-correlation of the rod axis with time. On the scaling level, the long-time trajectory of a force-driven active nanorod piercing through unentangled polymers may be described as a stretched array of "active blobs", where the short-time random-walk trajectory within an active blob is unperturbed by the active force.
Collapse
Affiliation(s)
- Siteng Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.
| | - Jiuling Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.
| | - Ting Ge
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.
| |
Collapse
|
5
|
Perego A, Lazarenko D, Cloitre M, Khabaz F. Microscopic Dynamics and Viscoelasticity of Vitrimers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alessandro Perego
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Daria Lazarenko
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Michel Cloitre
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL Research University, 75005 Paris, France
| | - Fardin Khabaz
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
6
|
Lu Y, Liu XY, Hu GH. Double-Spring Model for Nanoparticle Diffusion in a Polymer Network. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Lu
- School of Mechanics and Engineering Science, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Xin-Yue Liu
- School of Mechanics and Engineering Science, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Guo-Hui Hu
- School of Mechanics and Engineering Science, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
7
|
Chen Y, Xu H, Ma Y, Liu J, Zhang L. Diffusion of polymer-grafted nanoparticles with dynamical fluctuations in unentangled polymer melts. Phys Chem Chem Phys 2022; 24:11322-11335. [PMID: 35485911 DOI: 10.1039/d2cp00002d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dynamics of polymer-grafted nanoparticles (PGNPs) in melts of unentangled linear chains were investigated by means of coarse-grained molecular dynamics simulations. The results demonstrated that the graft monomers closer to the particle surface relax more slowly than those farther away due to the constraint of the grafted surface and the confinement of the neighboring chains. Such heterogeneous relaxations of the surrounding environment would perturb the particle motion, making them fluctuating around their centers before they can diffuse through the melt. During such intermediate-time stage, the dynamics is subdiffusive while the distribution of particle displacements is Gaussian, which can be described by the popular fractional Brownian motion model. For the long-time Fickian diffusion, we found that the diffusivity D decreases with increasing grafting density Σg, grafted chain length Ng, and matrix chain length Nm. This is due to the fact that the diffusivity is controlled by the viscous drag of an effective core, consisting of the NP and the non-draining layer of graft segments, and that of the free-draining graft layer outside the "core". With increasing Σg, the PGNPs become harder with greater effective size and thinner free draining layer, resulting in a reduction in D. At extremely high Σg, the diffusivity can even be estimated by the diameter-renormalized Stokes-Einstein (SE) relation. With increasing Ng, both the effective core size and the thickness of the free-draining layer increase, leading to a reduction in diffusivity by D ∼ N-γg with 0.5 < γ < 1. Increasing Nm would lead to the enlargement of the effective core size but meanwhile result in the reduction of the free-draining layer thickness due to autophobic dewetting. The counteraction between these two opposite effects leads to only a slight reduction in the diffusivity, significantly different from the typical SE behavior where D ∼ Nm-1. These findings bear significance in unraveling the fundamental physics of the anomalous dynamics of PGNPs in various polymers, including biological and synthetic.
Collapse
Affiliation(s)
- Yulong Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Haohao Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yangwei Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Shukla P, Ahamad N, Debnath P. Diffusing Diffusivity
in Dynamics of Unentangled Polymer Melts. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Prakhar Shukla
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee Uttarakhand 247667 India
| | - Nabi Ahamad
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee Uttarakhand 247667 India
| | - Pallavi Debnath
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee Uttarakhand 247667 India
| |
Collapse
|
9
|
Wang J, O’Connor TC, Grest GS, Zheng Y, Rubinstein M, Ge T. Diffusion of Thin Nanorods in Polymer Melts. Macromolecules 2021; 54:7051-7059. [DOI: 10.1021/acs.macromol.1c00989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiuling Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Thomas C. O’Connor
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Gary S. Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Yitong Zheng
- Hongyi Honor School, Wuhan University, Wuhan, Hubei 430072, China
- Department of Physics, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Michael Rubinstein
- Thomas Lord Department of Mechanical Engineering and Materials Science, Departments of Biomedical Engineering, Chemistry, and Physics, Duke University, Durham, North Carolina 27708, United States
| | - Ting Ge
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
10
|
Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, Sapir L, Ouchi T, Wang Z, Johnson PN, Hu Y, Lundberg DJ, Stoychev G, Craig SL, Johnson JA, Kalow JA, Olsen BD, Rubinstein M. Molecular Characterization of Polymer Networks. Chem Rev 2021; 121:5042-5092. [PMID: 33792299 DOI: 10.1021/acs.chemrev.0c01304] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haley K Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Bassil M El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaodi Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | | | - Zi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Patricia N Johnson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Georgi Stoychev
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Physics, Duke University, Durham, North Carolina 27708, United States.,World Primer Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
11
|
Power AJ, Remediakis IN, Harmandaris V. Interface and Interphase in Polymer Nanocomposites with Bare and Core-Shell Gold Nanoparticles. Polymers (Basel) 2021; 13:541. [PMID: 33673125 PMCID: PMC7918087 DOI: 10.3390/polym13040541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
Metal nanoparticles are used to modify/enhance the properties of a polymer matrix for a broad range of applications in bio-nanotechnology. Here, we study the properties of polymer/gold nanoparticle (NP) nanocomposites through atomistic molecular dynamics, MD, simulations. We probe the structural, conformational and dynamical properties of polymer chains at the vicinity of a gold (Au) NP and a functionalized (core/shell) Au NP, and compare them against the behavior of bulk polyethylene (PE). The bare Au NPs were constructed via a systematic methodology starting from ab-initio calculations and an atomistic Wulff construction algorithm resulting in the crystal shape with the minimum surface energy. For the functionalized NPs the interactions between gold atoms and chemically adsorbed functional groups change their shape. As a model polymer matrix we consider polyethylene of different molecular lengths, from the oligomer to unentangled Rouse like systems. The PE/Au interaction is parametrized via DFT calculations. By computing the different properties the concept of the interface, and the interphase as well, in polymer nanocomposites with metal NPs are critically examined. Results concerning polymer density profiles, bond order parameter, segmental and terminal dynamics show clearly that the size of the interface/interphase, depends on the actual property under study. In addition, the anchored polymeric chains change the behavior/properties, and especially the chain density profile and the dynamics, of the polymer chain at the vicinity of the Au NP.
Collapse
Affiliation(s)
- Albert J. Power
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
| | - Ioannis N. Remediakis
- Department of Materials Science and Technology, University of Crete, GR-71003 Heraklion, Crete, Greece;
- Institute of Electronic Structure and Laser, (IESL), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
| | - Vagelis Harmandaris
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
- Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| |
Collapse
|
12
|
The Longitudinal Superdiffusive Motion of Block Copolymer in a Tight Nanopore. Polymers (Basel) 2020; 12:polym12122931. [PMID: 33302399 PMCID: PMC7762597 DOI: 10.3390/polym12122931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
The structure and dynamic properties of polymer chains in a confined environment were studied by means of the Monte Carlo method. The studied chains were represented by coarse-grained models and embedded into a simple 3D cubic lattice. The chains stood for two-block linear copolymers of different energy of bead-bead interactions. Their behavior was studied in a nanotube formed by four impenetrable surfaces. The long-time unidirectional motion of the chain in the tight nanopore was found to be correlated with the orientation of both parts of the copolymer along the length of the nanopore. A possible mechanism of the anomalous diffusion was proposed on the basis of thermodynamics of the system, more precisely on the free energy barrier of the swapping of positions of both parts of the chain and the impulse of temporary forces induced by variation of the chain conformation. The mean bead and the mass center autocorrelation functions were examined. While the former function behaves classically, the latter indicates the period of time of superdiffusive motion similar to the ballistic motion with the autocorrelation function scaling with the exponent t5/3. A distribution of periods of time of chain diffusion between swapping events was found and discussed. The influence of the nanotube width and the chain length on the polymer diffusivity was studied.
Collapse
|
13
|
Wheatle BK, Fuentes EF, Lynd NA, Ganesan V. Design of Polymer Blend Electrolytes through a Machine Learning Approach. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01547] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Bill K. Wheatle
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin 78712, Texas, United States
| | - Erick F. Fuentes
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin 78712, Texas, United States
| | - Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin 78712, Texas, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin 78712, Texas, United States
| |
Collapse
|
14
|
Nakai F, Masubuchi Y, Uneyama T. Short-time dynamics of a tracer in an ideal gas. Phys Rev E 2020; 102:032104. [PMID: 33075902 DOI: 10.1103/physreve.102.032104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/18/2020] [Indexed: 11/07/2022]
Abstract
A small tagged particle immersed in a fluid exhibits Brownian motion and diffuses on a long timescale. Meanwhile, on a short timescale, the dynamics of the tagged particle cannot be simply described by the usual generalized Langevin equation with Gaussian noise, since the number of collisions between the tagged particle and fluid particles is rather small. On such a timescale, we should explicitly consider individual collision events between the tagged particle and the surrounding fluid particles. In this study we analyze the short-time dynamics of a tagged particle in an ideal gas, where we do not have static or hydrodynamic correlations between fluid particles. We perform event-driven hard-sphere simulations and show that the short-time dynamics of the tagged particle is correlated even under such an idealized situation. Namely, the velocity autocorrelation function becomes negative when the tagged particle is relatively light and the fluid density is relatively high. This result can be attributed to the dynamical correlation between collision events. To investigate the physical mechanism which causes the dynamical correlation, we analyze the correlation between successive collision events. We find that the tagged particle can collide with the same ideal-gas particle several times and such collisions cause a strong dynamical correlation for the velocity.
Collapse
Affiliation(s)
- Fumiaki Nakai
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Yuichi Masubuchi
- Center for Computational Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Takashi Uneyama
- Center for Computational Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
15
|
Ge T, Rubinstein M, Grest GS. Effects of Tethered Polymers on Dynamics of Nanoparticles in Unentangled Polymer Melts. Macromolecules 2020; 53:6898-6906. [PMID: 34366485 DOI: 10.1021/acs.macromol.9b01921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Polymer-tethered nanoparticles (NPs) are commonly added to a polymer matrix to improve material properties. Critical to the fabrication and processing of such composites is the mobility of the tethered NPs. Here we study the motion of tethered-NPs in unentangled polymer melts using molecular dynamics simulations, which offer a precise control of the grafted chain length N g and the number z of grafted chains per particle. As N g increases, there is a crossover from particle-dominated to tethered-chain-dominated terminal diffusion of NPs with the same z. The mean squared displacement of loosely tethered NPs in the case of tethered-chain dominated terminal diffusion exhibits two sub-diffusive regimes at intermediate time scales for small z. The first one at shorter time scales arises from the dynamical coupling of the particle and matrix chains, while the one at longer time scales is due to the participation of the particle in the dynamics of the tethered chains. The friction of loosely grafted chains in unentangled melts scales linearly with the total number of monomers in the chains, as the frictions of individual monomers are additive in the absence of hydrodynamic coupling. As more chains are grafted to a particle, hydrodynamic interactions between grafted chains emerge. As a result, there is a non-draining layer of hydrodynamically coupled chain segments surrounding the bare particle. Outside the non-draining layer is a free-draining layer of grafted chain segments with no hydrodynamic coupling. The boundary of the two layers is the stick surface where the shear stress due to the relative melt flow is balanced by the friction between grafted and melt chains in the interpenetration layer. The stick surface is located further away from the bare surface of the particle with higher grafting density.
Collapse
Affiliation(s)
- Ting Ge
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA.,Departments of Biomedical Engineering, Chemistry, and Physics, Duke University, Durham, North Carolina 27708, USA
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
16
|
Xue C, Shi X, Tian Y, Zheng X, Hu G. Diffusion of Nanoparticles with Activated Hopping in Crowded Polymer Solutions. NANO LETTERS 2020; 20:3895-3904. [PMID: 32208707 DOI: 10.1021/acs.nanolett.0c01058] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A long-distance hop of diffusive nanoparticles (NPs) in crowded environments was commonly considered unlikely, and its characteristics remain unclear. In this work, we experimentally identify the occurrence of the intermittent hops of large NPs in crowded entangled poly(ethylene oxide) (PEO) solutions, which are attributed to thermally induced activated hopping. We show that the diffusion of NPs in crowded solutions is considered as a superposition of the activated hopping and the reptation of the polymer solution. Such activated hopping becomes significant when either the PEO molecular weight is large enough or the NP size is relatively small. We reveal that the time-dependent non-Gaussianity of the NP diffusion is determined by the competition of the short-time relaxation of a polymer entanglement strand, the activated hopping, and the long-time reptation. We propose an exponential scaling law τhop/τe ∼ exp(d/dt) to characterize the hopping time scale, suggesting a linear dependence of the activated hopping energy barrier on the dimensionless NP size. The activated hopping motion can only be observed between the onset time scale of the short-time relaxation of local entanglement strands and the termination time scale of the long-time relaxation. Our findings on activated hopping provide new insights into long-distance transportation of NPs in crowded biological environments, which is essential to the delivery and targeting of nanomedicines.
Collapse
Affiliation(s)
- Chundong Xue
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China
- University of Chinese Academy of Science, Beijing 100149, China
| | - Xinghua Shi
- National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100149, China
| | - Yu Tian
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoqing Hu
- Department of Engineering Mechanics & State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
17
|
Knoff DS, Szczublewski H, Altamirano D, Cortes KAF, Kim M. Cytoskeleton-inspired artificial protein design to enhance polymer network elasticity. Macromolecules 2020; 53:3464-3471. [PMID: 32601508 PMCID: PMC7323958 DOI: 10.1021/acs.macromol.0c00514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reducing topological network defects to enhance elasticity in polymeric materials remains a grand challenge. Efforts to control network topology, primarily focused on crosslinking junctions, continue to underperform compared to theoretical estimations from idealized networks using affine and phantom network theories. Here, artificial protein technology was adapted for the design of polymer-network hydrogels with precisely defined coil-like and rod-like strands to observe the impact of strand rigidity on the mechanical properties of polymeric materials. Cytoskeleton-inspired polymer-network hydrogels incorporated with rod-like protein strands nearly tripled the gel shear elastic modulus and relaxation time compared to coil-like protein strands, indicating an enhanced effective crosslinking density. Furthermore, asymmetric rod-coil protein designs in network strands with an optimal rod:coil ratio improved the hydrogel relaxation time, enhancing the stability of physical macromolecular associations by modulating crosslinker mobility. The careful design of strand rigidity presents a new direction to reduce topological defects for optimizing polymeric materials.
Collapse
Affiliation(s)
- David S. Knoff
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721
| | - Haley Szczublewski
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721
| | - Dallas Altamirano
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721
| | | | - Minkyu Kim
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721
- Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721
- BIO5 Institute, University of Arizona, Tucson, AZ 85719
| |
Collapse
|
18
|
Monkenbusch M, Kruteva M, Zamponi M, Willner L, Hoffman I, Farago B, Richter D. A practical method to account for random phase approximation effects on the dynamic scattering of multi-component polymer systems. J Chem Phys 2020; 152:054901. [PMID: 32035437 DOI: 10.1063/1.5139712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Investigations of polymer systems that rely on the interpretation of dynamical scattering results as, e.g., the structure factor S(Q, t) of single chains or chain sections may require the inclusion of effects, as described within the framework of the random phase approximation (RPA) for polymers. To do this in practice for the dynamic part of S(Q, t) beyond the initial slope is a challenge. Here, we present a method (and software) that allows a straightforward assessment of dynamical RPA effects and inclusion of these in the process/procedures of model fitting. Examples of applications to the interpretation of neutron spin-echo data multi-component polymer melts are shown.
Collapse
Affiliation(s)
- M Monkenbusch
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), 52425 Jülich, Germany
| | - M Kruteva
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), 52425 Jülich, Germany
| | - M Zamponi
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstr. 1, 85748 Garching, Germany
| | - L Willner
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), 52425 Jülich, Germany
| | - I Hoffman
- Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - B Farago
- Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - D Richter
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), 52425 Jülich, Germany
| |
Collapse
|
19
|
Rissanou AN, Bačová P, Harmandaris V. Investigation of the properties of nanographene in polymer nanocomposites through molecular simulations: dynamics and anisotropic Brownian motion. Phys Chem Chem Phys 2019; 21:23843-23854. [PMID: 31369014 DOI: 10.1039/c9cp02074h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The dynamical behavior of nanographene sheets dispersed in polymer matrices is investigated through united-atom molecular dynamics simulations. The Brownian motion of the sheet and the anisotropy in its translational and orientational diffusion are the topics of the current study. Different polymer matrices and pristine and functionalized graphene constitute various nanocomposite systems. Interactions between the nanographene flake and the matrix determine the dynamics of the systems. The dynamics is reduced in polyethylene oxide compared to polyethylene matrix, whereas carboxylated sheets move considerably slower than the pristine nanographene in any matrix. Diffusion is anisotropic for short times, while it becomes isotropic in the long time limit. The in-plane motion of the nanographene sheet is faster than the out-of-plane component, in agreement with the diffusion of perfectly oblate ellipsoids. In functionalized graphene, the anisotropy is suppressed. By exploring the temperature effect on both the nanographene sheet and polymer close to the surface, indications for coupling in the motion of the two components are revealed. The strong effect of edge functional groups on the dynamics can be used as a way to control the Brownian motion of nanographene sheets in polymer nanocomposites and consequently tailor the properties of the materials.
Collapse
Affiliation(s)
- Anastassia N Rissanou
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Greece.
| | - Petra Bačová
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Greece.
| | - Vagelis Harmandaris
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Greece. and Department of Mathematics and Applied Mathematics, University of Crete, GR-71409, Heraklion, Crete, Greece.
| |
Collapse
|
20
|
You W, Yu W. Slow Linear Viscoelastic Relaxation of Polymer Nanocomposites: Contribution from Confined Diffusion of Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wei You
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wei Yu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
21
|
Khan M, Regan K, Robertson-Anderson RM. Optical Tweezers Microrheology Maps the Dynamics of Strain-Induced Local Inhomogeneities in Entangled Polymers. PHYSICAL REVIEW LETTERS 2019; 123:038001. [PMID: 31386434 DOI: 10.1103/physrevlett.123.038001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Indexed: 06/10/2023]
Abstract
Optical tweezers microrheology (OTM) offers a powerful approach to probe the nonlinear response of complex soft matter systems, such as networks of entangled polymers, over wide-ranging spatiotemporal scales. OTM can also uniquely characterize the microstructural dynamics that lead to the intriguing nonlinear rheological properties that these systems exhibit. However, the strain in OTM measurements, applied by optically forcing a microprobe through the material, induces network inhomogeneities in and around the strain path, and the resultant flow field complicates the measured response of the system. Through a robust set of custom-designed OTM protocols, coupled with modeling and analytical calculations, we characterize the time-varying inhomogeneity fields induced by OTM measurements. We show that homogenization following strain does not interfere with the intrinsic stress relaxation dynamics of the system, rather it manifests as an independent component in the stress decay, even in highly nonlinear regimes such as with the microrheological large-amplitude-oscillatory-shear (MLAOS) protocols we introduce. Our specific results show that Rouse-like elastic retraction, rather than disentanglement and disengagement, dominates the nonlinear stress relaxation of entangled polymers at micro- and mesoscales. Thus, our study opens up possibilities of performing precision nonlinear microrheological measurements, such as MLAOS, on a wide range of complex macromolecular systems.
Collapse
Affiliation(s)
- Manas Khan
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, USA
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Kathryn Regan
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, USA
| | | |
Collapse
|
22
|
Karatrantos A, Koutsawa Y, Dubois P, Clarke N, Kröger M. Miscibility and Nanoparticle Diffusion in Ionic Nanocomposites. Polymers (Basel) 2018; 10:E1010. [PMID: 30960935 PMCID: PMC6403637 DOI: 10.3390/polym10091010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022] Open
Abstract
We investigate the effect of various spherical nanoparticles in a polymer matrix on dispersion, chain dimensions and entanglements for ionic nanocomposites at dilute and high nanoparticle loading by means of molecular dynamics simulations. The nanoparticle dispersion can be achieved in oligomer matrices due to the presence of electrostatic interactions. We show that the overall configuration of ionic oligomer chains, as characterized by their radii of gyration, can be perturbed at dilute nanoparticle loading by the presence of charged nanoparticles. In addition, the nanoparticle's diffusivity is reduced due to the electrostatic interactions, in comparison to conventional nanocomposites where the electrostatic interaction is absent. The charged nanoparticles are found to move by a hopping mechanism.
Collapse
Affiliation(s)
- Argyrios Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Yao Koutsawa
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Philippe Dubois
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials, University of Mons & Materia Nova Research Centre, Place du Parc 20, B-7000 Mons, Belgium.
| | - Nigel Clarke
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK.
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zurich, Leopold-Ruzicka-Weg 4, CH-8093 Zurich, Switzerland.
| |
Collapse
|
23
|
Nahali N, Rosa A. Nanoprobe diffusion in entangled polymer solutions: Linear vs. unconcatenated ring chains. J Chem Phys 2018; 148:194902. [DOI: 10.1063/1.5022446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Negar Nahali
- Sissa (Scuola Internazionale Superiore di Studi Avanzati), Via Bonomea 265, 34136 Trieste, Italy
| | - Angelo Rosa
- Sissa (Scuola Internazionale Superiore di Studi Avanzati), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|