1
|
Elhatisari S, Bovermann L, Ma YZ, Epelbaum E, Frame D, Hildenbrand F, Kim M, Kim Y, Krebs H, Lähde TA, Lee D, Li N, Lu BN, Meißner UG, Rupak G, Shen S, Song YH, Stellin G. Wavefunction matching for solving quantum many-body problems. Nature 2024; 630:59-63. [PMID: 38750357 PMCID: PMC11153134 DOI: 10.1038/s41586-024-07422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/15/2024] [Indexed: 06/07/2024]
Abstract
Ab initio calculations have an essential role in our fundamental understanding of quantum many-body systems across many subfields, from strongly correlated fermions1-3 to quantum chemistry4-6 and from atomic and molecular systems7-9 to nuclear physics10-14. One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computational method to handle. Here we address the problem by introducing an approach called wavefunction matching. Wavefunction matching transforms the interaction between particles so that the wavefunctions up to some finite range match that of an easily computable interaction. This allows for calculations of systems that would otherwise be impossible owing to problems such as Monte Carlo sign cancellations. We apply the method to lattice Monte Carlo simulations15,16 of light nuclei, medium-mass nuclei, neutron matter and nuclear matter. We use high-fidelity chiral effective field theory interactions17,18 and find good agreement with empirical data. These results are accompanied by insights on the nuclear interactions that may help to resolve long-standing challenges in accurately reproducing nuclear binding energies, charge radii and nuclear-matter saturation in ab initio calculations19,20.
Collapse
Affiliation(s)
- Serdar Elhatisari
- Faculty of Natural Sciences and Engineering, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
- Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, Bonn, Germany
| | - Lukas Bovermann
- Institut für Theoretische Physik II, Ruhr-Universität Bochum, Bochum, Germany
| | - Yuan-Zhuo Ma
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
- Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou, China
| | - Evgeny Epelbaum
- Institut für Theoretische Physik II, Ruhr-Universität Bochum, Bochum, Germany
| | - Dillon Frame
- Institut für Kernphysik, Institute for Advanced Simulation, Jülich Center for Hadron Physics, Jülich, Germany
- Center for Advanced Simulation and Analytics (CASA), Forschungszentrum Jülich, Jülich, Germany
| | - Fabian Hildenbrand
- Institut für Kernphysik, Institute for Advanced Simulation, Jülich Center for Hadron Physics, Jülich, Germany
- Center for Advanced Simulation and Analytics (CASA), Forschungszentrum Jülich, Jülich, Germany
| | - Myungkuk Kim
- Center for Exotic Nuclear Studies, Institute for Basic Science, Daejeon, Korea
| | - Youngman Kim
- Center for Exotic Nuclear Studies, Institute for Basic Science, Daejeon, Korea
| | - Hermann Krebs
- Institut für Theoretische Physik II, Ruhr-Universität Bochum, Bochum, Germany
| | - Timo A Lähde
- Institut für Kernphysik, Institute for Advanced Simulation, Jülich Center for Hadron Physics, Jülich, Germany
- Center for Advanced Simulation and Analytics (CASA), Forschungszentrum Jülich, Jülich, Germany
| | - Dean Lee
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
| | - Ning Li
- School of Physics, Sun Yat-Sen University, Guangzhou, China
| | - Bing-Nan Lu
- Graduate School of China Academy of Engineering Physics, Beijing, China
| | - Ulf-G Meißner
- Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, Bonn, Germany
- Institut für Kernphysik, Institute for Advanced Simulation, Jülich Center for Hadron Physics, Jülich, Germany
- Center for Advanced Simulation and Analytics (CASA), Forschungszentrum Jülich, Jülich, Germany
- Tbilisi State University, Tbilisi, Georgia
| | - Gautam Rupak
- Department of Physics and Astronomy and HPC2 Center for Computational Sciences, Mississippi State University, Mississippi State, MI, USA
| | - Shihang Shen
- Institut für Kernphysik, Institute for Advanced Simulation, Jülich Center for Hadron Physics, Jülich, Germany
- Center for Advanced Simulation and Analytics (CASA), Forschungszentrum Jülich, Jülich, Germany
| | - Young-Ho Song
- Institute for Rare Isotope Science, Institute for Basic Science (IBS), Daejeon, Korea
| | - Gianluca Stellin
- ESNT, DRF/IRFU/DPhN/LENA, CEA Paris-Saclay and Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Novario SJ, Lonardoni D, Gandolfi S, Hagen G. Trends of Neutron Skins and Radii of Mirror Nuclei from First Principles. PHYSICAL REVIEW LETTERS 2023; 130:032501. [PMID: 36763401 DOI: 10.1103/physrevlett.130.032501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/04/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
The neutron skin of atomic nuclei impacts the structure of neutron-rich nuclei, the equation of state of nucleonic matter, and the size of neutron stars. Here we predict the neutron skin of selected light- and medium-mass nuclei using coupled-cluster theory and the auxiliary field diffusion Monte Carlo method with two- and three-nucleon forces from chiral effective field theory. We find a linear correlation between the neutron skin and the isospin asymmetry in agreement with the liquid-drop model and compare with data. We also extract the linear relationship that describes the difference between neutron and proton radii of mirror nuclei and quantify the effect of charge symmetry breaking terms in the nuclear Hamiltonian. Our results for the mirror-difference charge radii and binding energies per nucleon agree with existing data.
Collapse
Affiliation(s)
- S J Novario
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - D Lonardoni
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - S Gandolfi
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - G Hagen
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
3
|
Lee D, Bogner S, Brown BA, Elhatisari S, Epelbaum E, Hergert H, Hjorth-Jensen M, Krebs H, Li N, Lu BN, Meißner UG. Hidden Spin-Isospin Exchange Symmetry. PHYSICAL REVIEW LETTERS 2021; 127:062501. [PMID: 34420321 DOI: 10.1103/physrevlett.127.062501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/24/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
The strong interactions among nucleons have an approximate spin-isospin exchange symmetry that arises from the properties of quantum chromodynamics in the limit of many colors, N_{c}. However this large-N_{c} symmetry is well hidden and reveals itself only when averaging over intrinsic spin orientations. Furthermore, the symmetry is obscured unless the momentum resolution scale is close to an optimal scale that we call Λ_{large-N_{c}}. We show that the large-N_{c} derivation requires a momentum resolution scale of Λ_{large-N_{c}}∼500 MeV. We derive a set of spin-isospin exchange sum rules and discuss implications for the spectrum of ^{30}P and applications to nuclear forces, nuclear structure calculations, and three-nucleon interactions.
Collapse
Affiliation(s)
- Dean Lee
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Scott Bogner
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - B Alex Brown
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Serdar Elhatisari
- Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey
| | - Evgeny Epelbaum
- Ruhr-Universität Bochum, Fakultät für Physik und Astronomie, Institut für Theoretische Physik II, D-44780 Bochum, Germany
| | - Heiko Hergert
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Morten Hjorth-Jensen
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Physics and Center for Computing in Science Education, University of Oslo, N-0316 Oslo, Norway
| | - Hermann Krebs
- Ruhr-Universität Bochum, Fakultät für Physik und Astronomie, Institut für Theoretische Physik II, D-44780 Bochum, Germany
| | - Ning Li
- Sun Yat-sen University, School of Physics, 135 Xingang Road, Haizhu District, Guangzhou, Guangdong Province, 510000, China
| | - Bing-Nan Lu
- China Academy of Engineering Physics, Graduate School, Building 8, No. 10 Xi'er Road, ZPark II, Haidian District, Beijing, 100193, China
| | - Ulf-G Meißner
- Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany
- Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
- Tbilisi State University, 0186 Tbilisi, Georgia
| |
Collapse
|
4
|
Lu BN, Li N, Elhatisari S, Lee D, Drut JE, Lähde TA, Epelbaum E, Meißner UG. Ab Initio Nuclear Thermodynamics. PHYSICAL REVIEW LETTERS 2020; 125:192502. [PMID: 33216564 DOI: 10.1103/physrevlett.125.192502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/06/2020] [Accepted: 09/29/2020] [Indexed: 05/28/2023]
Abstract
We propose a new Monte Carlo method called the pinhole trace algorithm for ab initio calculations of the thermodynamics of nuclear systems. For typical simulations of interest, the computational speedup relative to conventional grand-canonical ensemble calculations can be as large as a factor of one thousand. Using a leading-order effective interaction that reproduces the properties of many atomic nuclei and neutron matter to a few percent accuracy, we determine the location of the critical point and the liquid-vapor coexistence line for symmetric nuclear matter with equal numbers of protons and neutrons. We also present the first ab initio study of the density and temperature dependence of nuclear clustering.
Collapse
Affiliation(s)
- Bing-Nan Lu
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ning Li
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Serdar Elhatisari
- Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey
| | - Dean Lee
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Joaquín E Drut
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255, USA
| | - Timo A Lähde
- Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Evgeny Epelbaum
- Ruhr-Universität Bochum, Fakultät für Physik und Astronomie, Institut für Theoretische Physik II, D-44780 Bochum, Germany
| | - Ulf-G Meißner
- Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
- Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany
- Tbilisi State University, 0186 Tbilisi, Georgia
| |
Collapse
|
5
|
Dawkins WG, Carlson J, van Kolck U, Gezerlis A. Clustering of Four-Component Unitary Fermions. PHYSICAL REVIEW LETTERS 2020; 124:143402. [PMID: 32338952 DOI: 10.1103/physrevlett.124.143402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Ab initio nuclear physics tackles the problem of strongly interacting four-component fermions. The same setting could foreseeably be probed experimentally in ultracold atomic systems, where two- and three-component experiments have led to major breakthroughs in recent years. Both due to the problem's inherent interest and as a pathway to nuclear physics, in this Letter we study four-component fermions at unitarity via the use of quantum Monte Carlo methods. We explore novel forms of the trial wave function and find one which leads to a ground state of the eight-particle system whose energy is almost equal to that of two four-particle systems. We investigate the clustering properties involved and also extrapolate to the zero-range limit. In addition to being experimentally testable, our results impact the prospects of developing nuclear physics as a perturbation around the unitary limit.
Collapse
Affiliation(s)
- William G Dawkins
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - J Carlson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - U van Kolck
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay, France
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
| | - Alexandros Gezerlis
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
6
|
Buraczynski M, Ismail N, Gezerlis A. Nonperturbative Extraction of the Effective Mass in Neutron Matter. PHYSICAL REVIEW LETTERS 2019; 122:152701. [PMID: 31050497 DOI: 10.1103/physrevlett.122.152701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/24/2019] [Indexed: 06/09/2023]
Abstract
We carry out nonperturbative calculations of the single-particle excitation spectrum in strongly interacting neutron matter. These are microscopic quantum Monte Carlo computations of many-neutron energies at different densities as well as several distinct excited states. As input, we employ both phenomenological and chiral two- and three-nucleon interactions. We use the single-particle spectrum to extract the effective mass in neutron matter. With a view to systematizing the error involved in this extraction, we carefully assess the impact of finite-size effects on the quasiparticle dispersion relation. We find an effective-mass ratio that drops from 1 as the density is increased. We conclude by connecting our results with the physics of ultracold gases as well as with energy-density functional theories of nuclei and neutron-star matter.
Collapse
Affiliation(s)
- Mateusz Buraczynski
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nawar Ismail
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Alexandros Gezerlis
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|