1
|
Liu ZC, Li K, Xu Y. Dynamical Transition Due to Feedback-Induced Skin Effect. PHYSICAL REVIEW LETTERS 2024; 133:090401. [PMID: 39270160 DOI: 10.1103/physrevlett.133.090401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/26/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024]
Abstract
The traditional dynamical phase transition refers to the appearance of singularities in an observable with respect to a control parameter for a late-time state or singularities in the rate function of the Loschmidt echo with respect to time. Here, we study the many-body dynamics in a continuously monitored free fermion system with conditional feedback under open boundary conditions. We surprisingly find a novel dynamical transition from a logarithmic scaling of the entanglement entropy to an area-law scaling as time evolves. The transition, which is noticeably different from the conventional dynamical phase transition, arises from the competition between the bulk dynamics and boundary skin effects. In addition, we find that while quasidisorder or disorder cannot drive a transition for the steady state, a transition occurs for the maximum entanglement entropy during the time evolution, which agrees well with the entanglement transition for the steady state of the dynamics under periodic boundary conditions.
Collapse
Affiliation(s)
| | | | - Yong Xu
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
- Hefei National Laboratory, Hefei 230088, People's Republic of China
| |
Collapse
|
2
|
Zheng R, Qin J, Chen B, Yu Z, Zhou L. Improving metrology with quantum scrambling in a spin-1 Bose-Einstein condensate coupled to a cavity. OPTICS EXPRESS 2024; 32:25207-25222. [PMID: 39538938 DOI: 10.1364/oe.527465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/18/2024] [Indexed: 11/16/2024]
Abstract
Spinor Bose-Einstein condensate is an ideal candidate for implementing the many-body entanglement, quantum measurement and quantum information processing owing to its inherent spin-mixing dynamics. Here we present a system of an 87Rb atomic spin-1 Bose-Einstein condensate coupled to an optical ring cavity, in which cavity-mediated nonlinear interactions give rise to saddle points in the semiclassical phase space, providing a general mechanism for exponential fast scrambling and metrological gain augment. We theoretically study metrological gain and fidelity out-of-time-ordered correlator based on time-reversal protocols and demonstrate that exponential rapid scrambling dynamics can enhance quantum metrology. In addition, we use the out-of-time-ordered correlator to probe dynamical phase transitions. This work is useful to understand the intrinsic relation between the concepts from different subfields of quantum science.
Collapse
|
3
|
Masłowski T, Sedlmayr N. The dynamical bulk boundary correspondence and dynamical quantum phase transitions in the Benalcazar-Bernevig-Hughes model. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:335401. [PMID: 38729200 DOI: 10.1088/1361-648x/ad4a16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
In this article we demonstrate that dynamical quantum phase transitions (DQPTs) occur for an exemplary higher order topological insulator, the Benalcazar-Bernevig-Hughes model, following quenches across a topological phase boundary. A dynamical bulk boundary correspondence is also seen both in the eigenvalues of the Loschmidt overlap matrix and the boundary return rate. The latter is found from a finite size scaling analysis for which the relative simplicity of the model is crucial. Contrary to the usual two dimensional case the DQPTs in this model show up as cusps in the return rate, as for a one dimensional model, rather than as cusps in its derivative as would be typical for a two dimensional model. We explain the origin of this behaviour.
Collapse
Affiliation(s)
- Tomasz Masłowski
- The Faculty of Mathematics and Applied Physics, Rzeszów University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Nicholas Sedlmayr
- Institute of Physics, M. Curie-Skłodowska University, 20-031 Lublin, Poland
| |
Collapse
|
4
|
Cao K, Guo H, Yang G. Aperiodic dynamical quantum phase transition in multi-band Bloch Hamiltonian and its origin. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:155401. [PMID: 38171023 DOI: 10.1088/1361-648x/ad1a5a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
We investigate the dynamical quantum phase transition (DQPT) in the multi-band Bloch Hamiltonian of the one-dimensional periodic Kitaev model, focusing on quenches from a Bloch band. By analyzing the dynamical free energy and Pancharatnam geometric phase (PGP), we show that the critical times of DQPTs deviate from periodic spacing due to the multi-band effect, contrasting with results from two-band models. We propose a geometric interpretation to explain this non-uniform spacing. Additionally, we clarify the conditions needed for DQPT occurrence in the multi-band Bloch Hamiltonian, highlighting that a DQPT only arises when the quench from the Bloch states collapses the band gap at the critical point. Moreover, we establish that the dynamical topological order parameter, defined by the winding number of the PGP, is not quantized but still exhibits discontinuous jumps at DQPT critical times due to periodic modulation. Additionally, we extend our analysis to mixed-state DQPT and find its absence at non-zero temperatures.
Collapse
Affiliation(s)
- Kaiyuan Cao
- Research Center for Intelligent Supercomputing, Zhejiang Lab, Hangzhou 311100, People's Republic of China
| | - Hao Guo
- School of Physics, Southeast University, Jiulonghu Campus, Nanjing 211189, People's Republic of China
| | - Guangwen Yang
- Research Center for Intelligent Supercomputing, Zhejiang Lab, Hangzhou 311100, People's Republic of China
- Department of Computer Science and Technology, Tsinghua University, Haidian District, Beijing 100084, People's Republic of China
| |
Collapse
|
5
|
Meyer-Hoppe B, Anders F, Feldmann P, Santos L, Klempt C. Excited-State Phase Diagram of a Ferromagnetic Quantum Gas. PHYSICAL REVIEW LETTERS 2023; 131:243402. [PMID: 38181136 DOI: 10.1103/physrevlett.131.243402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/26/2023] [Accepted: 10/12/2023] [Indexed: 01/07/2024]
Abstract
The ground-state phases of a quantum many-body system are characterized by an order parameter, which changes abruptly at quantum phase transitions when an external control parameter is varied. Interestingly, these concepts may be extended to excited states, for which it is possible to define equivalent excited-state quantum phase transitions. However, the experimental mapping of a phase diagram of excited quantum states has not yet been realized. Here we present the experimental determination of the excited-state phase diagram of an atomic ferromagnetic quantum gas, where, crucially, the excitation energy is one of the control parameters. The obtained phase diagram exemplifies how the extensive Hilbert state of quantum many-body systems can be structured by the measurement of well-defined order parameters.
Collapse
Affiliation(s)
- B Meyer-Hoppe
- Leibniz Universität Hannover, Institut für Quantenoptik, Welfengarten 1, D-30167 Hannover, Germany
| | - F Anders
- Leibniz Universität Hannover, Institut für Quantenoptik, Welfengarten 1, D-30167 Hannover, Germany
| | - P Feldmann
- Leibniz Universität Hannover, Institut für Theoretische Physik, Appelstraße 2, D-30167 Hannover, Germany
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Physics and Astronomy, The University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada
| | - L Santos
- Leibniz Universität Hannover, Institut für Theoretische Physik, Appelstraße 2, D-30167 Hannover, Germany
| | - C Klempt
- Leibniz Universität Hannover, Institut für Quantenoptik, Welfengarten 1, D-30167 Hannover, Germany
| |
Collapse
|
6
|
Corps ÁL, Relaño A. Theory of Dynamical Phase Transitions in Quantum Systems with Symmetry-Breaking Eigenstates. PHYSICAL REVIEW LETTERS 2023; 130:100402. [PMID: 36962016 DOI: 10.1103/physrevlett.130.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/03/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
We present a theory for the two kinds of dynamical quantum phase transitions, termed DPT-I and DPT-II, based on a minimal set of symmetry assumptions. In the special case of collective systems with infinite-range interactions, both are triggered by excited-state quantum phase transitions. For quenches below the critical energy, the existence of an additional conserved charge, identifying the corresponding phase, allows for a nonzero value of the dynamical order parameter characterizing DPTs-I, and precludes the main mechanism giving rise to nonanalyticities in the return probability, trademark of DPTs-II. We propose a statistical ensemble describing the long-time averages of order parameters in DPTs-I, and provide a theoretical proof for the incompatibility of the main mechanism for DPTs-II with the presence of this additional conserved charge. Our results are numerically illustrated in the fully connected transverse-field Ising model, which exhibits both kinds of dynamical phase transitions. Finally, we discuss the applicability of our theory to systems with finite-range interactions, where the phenomenology of excited-state quantum phase transitions is absent. We illustrate our findings by means of numerical calculations with experimentally relevant initial states.
Collapse
Affiliation(s)
- Ángel L Corps
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Complutense de Madrid, Avenida Complutense s/n, E-28040 Madrid, Spain
| | - Armando Relaño
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Complutense de Madrid, Avenida Complutense s/n, E-28040 Madrid, Spain
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Avenida Complutense s/n, E-28040 Madrid, Spain
| |
Collapse
|
7
|
Marino J, Eckstein M, Foster MS, Rey AM. Dynamical phase transitions in the collisionless pre-thermal states of isolated quantum systems: theory and experiments. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:116001. [PMID: 36075190 DOI: 10.1088/1361-6633/ac906c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
We overview the concept of dynamical phase transitions (DPTs) in isolated quantum systems quenched out of equilibrium. We focus on non-equilibrium transitions characterized by an order parameter, which features qualitatively distinct temporal behavior on the two sides of a certain dynamical critical point. DPTs are currently mostly understood as long-lived prethermal phenomena in a regime where inelastic collisions are incapable to thermalize the system. The latter enables the dynamics to substain phases that explicitly break detailed balance and therefore cannot be encompassed by traditional thermodynamics. Our presentation covers both cold atoms as well as condensed matter systems. We revisit a broad plethora of platforms exhibiting pre-thermal DPTs, which become theoretically tractable in a certain limit, such as for a large number of particles, large number of order parameter components, or large spatial dimension. The systems we explore include, among others, quantum magnets with collective interactions,ϕ4quantum field theories, and Fermi-Hubbard models. A section dedicated to experimental explorations of DPTs in condensed matter and AMO systems connects this large variety of theoretical models.
Collapse
Affiliation(s)
- Jamir Marino
- Institut für Physik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Martin Eckstein
- Department of Physics, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Matthew S Foster
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America
- Rice Center for Quantum Materials, Rice University, Houston, TX 77005, United States of America
| | - Ana Maria Rey
- JILA, National Institute of Standards and Technology, and Department of Physics,University of Colorado, Boulder, CO 80309, United States of America
- Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309, United States of America
| |
Collapse
|
8
|
Marino J. Universality Class of Ising Critical States with Long-Range Losses. PHYSICAL REVIEW LETTERS 2022; 129:050603. [PMID: 35960567 DOI: 10.1103/physrevlett.129.050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/27/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
We show that spatial resolved dissipation can act on d-dimensional spin systems in the Ising universality class by qualitatively modifying the nature of their critical points. We consider power-law decaying spin losses with a Lindbladian spectrum closing at small momenta as ∝q^{α}, with α a positive tunable exponent directly related to the power-law decay of the spatial profile of losses at long distances, 1/r^{(α+d)}. This yields a class of soft modes asymptotically decoupled from dissipation at small momenta, which are responsible for the emergence of a critical scaling regime ascribable to the nonunitary counterpart of the universality class of long-range interacting Ising models. For α<1 we find a nonequilibrium critical point ruled by a dynamical field theory described by a Langevin model with coexisting inertial (∼∂_{t}^{2}) and frictional (∼∂_{t}) kinetic coefficients, and driven by a gapless Markovian noise with variance ∝q^{α} at small momenta. This effective field theory is beyond the Halperin-Hohenberg description of dynamical criticality, and its critical exponents differ from their unitary long-range counterparts. Our Letter lays out perspectives for a revision of universality in driven open systems by employing dark states tailored by programmable dissipation.
Collapse
Affiliation(s)
- Jamir Marino
- Institut für Physik, Johannes Gutenberg Universität Mainz, D-55099 Mainz, Germany and Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030, USA
| |
Collapse
|
9
|
Martínez-Peña R, Giorgi GL, Nokkala J, Soriano MC, Zambrini R. Dynamical Phase Transitions in Quantum Reservoir Computing. PHYSICAL REVIEW LETTERS 2021; 127:100502. [PMID: 34533342 DOI: 10.1103/physrevlett.127.100502] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 05/26/2023]
Abstract
Closed quantum systems exhibit different dynamical regimes, like many-body localization or thermalization, which determine the mechanisms of spread and processing of information. Here we address the impact of these dynamical phases in quantum reservoir computing, an unconventional computing paradigm recently extended into the quantum regime that exploits dynamical systems to solve nonlinear and temporal tasks. We establish that the thermal phase is naturally adapted to the requirements of quantum reservoir computing and report an increased performance at the thermalization transition for the studied tasks. Uncovering the underlying physical mechanisms behind optimal information processing capabilities of spin networks is essential for future experimental implementations and provides a new perspective on dynamical phases.
Collapse
Affiliation(s)
- Rodrigo Martínez-Peña
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Gian Luca Giorgi
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Johannes Nokkala
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Miguel C Soriano
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Roberta Zambrini
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
10
|
Hamazaki R. Exceptional dynamical quantum phase transitions in periodically driven systems. Nat Commun 2021; 12:5108. [PMID: 34471120 PMCID: PMC8410804 DOI: 10.1038/s41467-021-25355-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Extending notions of phase transitions to nonequilibrium realm is a fundamental problem for statistical mechanics. While it was discovered that critical transitions occur even for transient states before relaxation as the singularity of a dynamical version of free energy, their nature is yet to be elusive. Here, we show that spontaneous symmetry breaking can occur at a short-time regime and causes universal dynamical quantum phase transitions in periodically driven unitary dynamics. Unlike conventional phase transitions, the relevant symmetry is antiunitary: its breaking is accompanied by a many-body exceptional point of a nonunitary operator obtained by space-time duality. Using a stroboscopic Ising model, we demonstrate the existence of distinct phases and unconventional singularity of dynamical free energy, whose signature can be accessed through quasilocal operators. Our results open up research for hitherto unknown phases in short-time regimes, where time serves as another pivotal parameter, with their hidden connection to nonunitary physics.
Collapse
Affiliation(s)
- Ryusuke Hamazaki
- Nonequilibrium Quantum Statistical Mechanics RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research (CPR), RIKEN iTHEMS, Wako, Saitama, Japan.
| |
Collapse
|
11
|
Japaridze GI, Cheraghi H, Mahdavifar S. Magnetic phase diagram of a spin-1/2 XXZ chain with modulated Dzyaloshinskii-Moriya interaction. Phys Rev E 2021; 104:014134. [PMID: 34412371 DOI: 10.1103/physreve.104.014134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/29/2021] [Indexed: 11/07/2022]
Abstract
We consider the ground-state phase diagram of a one-dimensional spin-1/2 XXZ chain with a spatially modulated Dzyaloshinskii-Moriya interaction in the presence of an alternating magnetic field applied along the z[over ̂] axis. The model is studied using the continuum-limit bosonization approach and the finite system exact numerical technique. In the absence of a magnetic field, the ground-state phase diagram of the model includes, besides the ferromagnetic and gapless Luttinger-liquid phases, two gapped phases: the composite (C1) phase characterized by the coexistence of long-range-ordered (LRO) alternating dimerization and spin chirality patterns, and the composite (C2) phase characterized by, in addition to the coexisting spin dimerization and alternating chirality patterns, the presence of LRO antiferromagnetic order. In the case of mentioned composite gapped phases, and in the case of a uniform magnetic field, the commensurate-incommensurate type quantum phase transitions from a gapful phase into a gapless phase have been identified and described using the bosonization treatment and finite chain exact diagonalization studies. The upper critical magnetic field corresponding to the transition into a fully polarized state has been also determined. It has been shown that the very presence of a staggered component of the magnetic field vapes the composite (C1) in favor of the composite gapped (C2) phase.
Collapse
Affiliation(s)
- G I Japaridze
- Center for Condensed Matter Theory and Quantum Computations Ilia State University, Tbilisi, Georgia
| | - Hadi Cheraghi
- Department of Physics, University of Guilan, 41335-1914, Rasht, Iran
| | - Saeed Mahdavifar
- Department of Physics, University of Guilan, 41335-1914, Rasht, Iran
| |
Collapse
|
12
|
Muñoz-Arias MH, Poggi PM, Deutsch IH. Nonlinear dynamics and quantum chaos of a family of kicked p-spin models. Phys Rev E 2021; 103:052212. [PMID: 34134253 DOI: 10.1103/physreve.103.052212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/27/2021] [Indexed: 11/07/2022]
Abstract
We introduce kicked p-spin models describing a family of transverse Ising-like models for an ensemble of spin-1/2 particles with all-to-all p-body interaction terms occurring periodically in time as delta-kicks. This is the natural generalization of the well-studied quantum kicked top (p=2) [Haake, Kuś, and Scharf, Z. Phys. B 65, 381 (1987)10.1007/BF01303727]. We fully characterize the classical nonlinear dynamics of these models, including the transition to global Hamiltonian chaos. The classical analysis allows us to build a classification for this family of models, distinguishing between p=2 and p>2, and between models with odd and even p's. Quantum chaos in these models is characterized in both kinematic and dynamic signatures. For the latter, we show numerically that the growth rate of the out-of-time-order correlator is dictated by the classical Lyapunov exponent. Finally, we argue that the classification of these models constructed in the classical system applies to the quantum system as well.
Collapse
Affiliation(s)
- Manuel H Muñoz-Arias
- Center for Quantum Information and Control, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Pablo M Poggi
- Center for Quantum Information and Control, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Ivan H Deutsch
- Center for Quantum Information and Control, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
13
|
Lewis-Swan RJ, Barberena D, Cline JRK, Young DJ, Thompson JK, Rey AM. Cavity-QED Quantum Simulator of Dynamical Phases of a Bardeen-Cooper-Schrieffer Superconductor. PHYSICAL REVIEW LETTERS 2021; 126:173601. [PMID: 33988424 DOI: 10.1103/physrevlett.126.173601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/22/2021] [Indexed: 05/12/2023]
Abstract
We propose to simulate dynamical phases of a BCS superconductor using an ensemble of cold atoms trapped in an optical cavity. Effective Cooper pairs are encoded via the internal states of the atoms, and attractive interactions are realized via the exchange of virtual photons between atoms coupled to a common cavity mode. Control of the interaction strength combined with a tunable dispersion relation of the effective Cooper pairs allows exploration of the full dynamical phase diagram of the BCS model as a function of system parameters and the prepared initial state. Our proposal paves the way for the study of the nonequilibrium features of quantum magnetism and superconductivity by harnessing atom-light interactions in cold atomic gases.
Collapse
Affiliation(s)
- Robert J Lewis-Swan
- Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, Norman, Oklahoma 73019, USA
- Center for Quantum Research and Technology, The University of Oklahoma, Norman, Oklahoma 73019, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Diego Barberena
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Julia R K Cline
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Dylan J Young
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - James K Thompson
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Ana Maria Rey
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
14
|
Mzaouali Z, Puebla R, Goold J, El Baz M, Campbell S. Work statistics and symmetry breaking in an excited-state quantum phase transition. Phys Rev E 2021; 103:032145. [PMID: 33862795 DOI: 10.1103/physreve.103.032145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/02/2021] [Indexed: 11/07/2022]
Abstract
We examine how the presence of an excited-state quantum phase transition manifests in the dynamics of a many-body system subject to a sudden quench. Focusing on the Lipkin-Meshkov-Glick model initialized in the ground state of the ferromagnetic phase, we demonstrate that the work probability distribution displays non-Gaussian behavior for quenches in the vicinity of the excited-state critical point. Furthermore, we show that the entropy of the diagonal ensemble is highly susceptible to critical regions, making it a robust and practical indicator of the associated spectral characteristics. We assess the role that symmetry breaking has on the ensuing dynamics, highlighting that its effect is only present for quenches beyond the critical point. Finally, we show that similar features persist when the system is initialized in an excited state and briefly explore the behavior for initial states in the paramagnetic phase.
Collapse
Affiliation(s)
- Zakaria Mzaouali
- ESMaR, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Ricardo Puebla
- Instituto de Física Fundamental, IFF-CSIC, Calle Serrano 113b, 28006 Madrid, Spain.,Centre for Theoretical Atomic, Molecular and Optical Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - John Goold
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Morad El Baz
- ESMaR, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Steve Campbell
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.,Centre for Quantum Engineering, Science, and Technology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
15
|
De Nicola S, Michailidis AA, Serbyn M. Entanglement View of Dynamical Quantum Phase Transitions. PHYSICAL REVIEW LETTERS 2021; 126:040602. [PMID: 33576663 DOI: 10.1103/physrevlett.126.040602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The analogy between an equilibrium partition function and the return probability in many-body unitary dynamics has led to the concept of dynamical quantum phase transition (DQPT). DQPTs are defined by nonanalyticities in the return amplitude and are present in many models. In some cases, DQPTs can be related to equilibrium concepts, such as order parameters, yet their universal description is an open question. In this Letter, we provide first steps toward a classification of DQPTs by using a matrix product state description of unitary dynamics in the thermodynamic limit. This allows us to distinguish the two limiting cases of "precession" and "entanglement" DQPTs, which are illustrated using an analytical description in the quantum Ising model. While precession DQPTs are characterized by a large entanglement gap and are semiclassical in their nature, entanglement DQPTs occur near avoided crossings in the entanglement spectrum and can be distinguished by a complex pattern of nonlocal correlations. We demonstrate the existence of precession and entanglement DQPTs beyond Ising models, discuss observables that can distinguish them, and relate their interplay to complex DQPT phenomenology.
Collapse
Affiliation(s)
| | | | - Maksym Serbyn
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
16
|
Kuwahara T, Saito K. Absence of Fast Scrambling in Thermodynamically Stable Long-Range Interacting Systems. PHYSICAL REVIEW LETTERS 2021; 126:030604. [PMID: 33543944 DOI: 10.1103/physrevlett.126.030604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
In this study, we investigate out-of-time-order correlators (OTOCs) in systems with power-law decaying interactions such as R^{-α}, where R is the distance. In such systems, the fast scrambling of quantum information or the exponential growth of information propagation can potentially occur according to the decay rate α. In this regard, a crucial open challenge is to identify the optimal condition for α such that fast scrambling cannot occur. In this study, we disprove fast scrambling in generic long-range interacting systems with α>D (D: spatial dimension), where the total energy is extensive in terms of system size and the thermodynamic limit is well defined. We rigorously demonstrate that the OTOC shows a polynomial growth over time as long as α>D and the necessary scrambling time over a distance R is larger than t≳R^{[(2α-2D)/(2α-D+1)]}.
Collapse
Affiliation(s)
- Tomotaka Kuwahara
- Mathematical Science Team, RIKEN Center for Advanced Intelligence Project (AIP), 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Interdisciplinary Theoretical & Mathematical Sciences Program (iTHEMS) RIKEN 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keiji Saito
- Department of Physics, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
17
|
Link V, Strunz WT. Dynamical Phase Transitions in Dissipative Quantum Dynamics with Quantum Optical Realization. PHYSICAL REVIEW LETTERS 2020; 125:143602. [PMID: 33064500 DOI: 10.1103/physrevlett.125.143602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
We study dynamical phase transitions (DPT) in the driven and damped Dicke model, realizable for example by a driven atomic ensemble collectively coupled to a damped cavity mode. These DPTs are characterized by nonanalyticities of certain observables, primarily the overlap of time evolved and initial state. Even though the dynamics is dissipative, this phenomenon occurs for a wide range of parameters and no fine-tuning is required. Focusing on the state of the "atoms" in the limit of a bad cavity, we are able to asymptotically evaluate an exact path integral representation of the relevant overlaps. The DPTs then arise by minimization of a certain action function, which is related to the large deviation theory of a classical stochastic process. Finally, we present a scheme which allows a measurement of the DPT in a cavity-QED setup.
Collapse
Affiliation(s)
- Valentin Link
- Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Walter T Strunz
- Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
18
|
Kaplan HB, Guo L, Tan WL, De A, Marquardt F, Pagano G, Monroe C. Many-Body Dephasing in a Trapped-Ion Quantum Simulator. PHYSICAL REVIEW LETTERS 2020; 125:120605. [PMID: 33016720 DOI: 10.1103/physrevlett.125.120605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
How a closed interacting quantum many-body system relaxes and dephases as a function of time is a fundamental question in thermodynamic and statistical physics. In this Letter, we analyze and observe the persistent temporal fluctuations after a quantum quench of a tunable long-range interacting transverse-field Ising Hamiltonian realized with a trapped-ion quantum simulator. We measure the temporal fluctuations in the average magnetization of a finite-size system of spin-1/2 particles. We experiment in a regime where the properties of the system are closely related to the integrable Hamiltonian with global spin-spin coupling, which enables analytical predictions for the long-time nonintegrable dynamics. The analytical expression for the temporal fluctuations predicts the exponential suppression of temporal fluctuations with increasing system size. Our measurement data is consistent with our theory predicting the regime of many-body dephasing.
Collapse
Affiliation(s)
- Harvey B Kaplan
- Joint Quantum Institute, Department of Physics and Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA
| | - Lingzhen Guo
- Max Planck Institute for the Science of Light, Staudtstrasse 2, 91058 Erlangen, Germany
| | - Wen Lin Tan
- Joint Quantum Institute, Department of Physics and Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA
| | - Arinjoy De
- Joint Quantum Institute, Department of Physics and Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA
| | - Florian Marquardt
- Max Planck Institute for the Science of Light, Staudtstrasse 2, 91058 Erlangen, Germany
- Physics Department, University of Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Guido Pagano
- Joint Quantum Institute, Department of Physics and Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Christopher Monroe
- Joint Quantum Institute, Department of Physics and Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
19
|
Wang Q. Performance of quantum heat engines under the influence of long-range interactions. Phys Rev E 2020; 102:012138. [PMID: 32794960 DOI: 10.1103/physreve.102.012138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/29/2020] [Indexed: 11/07/2022]
Abstract
We examine a quantum heat engine with an interacting many-body working medium consisting of the long-range Kitaev chain to explore the role of long-range interactions in the performance of the quantum engine. By analytically studying two types of thermodynamic cycles, namely, the Otto cycle and Stirling cycle, we demonstrate that the work output and efficiency of a long-range interacting heat engine can be boosted by the long-range interactions, in comparison to the short-range counterpart. We further show that in the Otto cycle there exists an optimal condition for which the maximum enhancement in work output and efficiency can be achieved simultaneously by the long-range interactions. But, for the Stirling cycle, the condition which can give the maximum enhancement in work output does not lead to the maximum enhancement in efficiency. We also investigate how the parameter regimes under which the engine performance is enhanced by the long-range interactions evolve with a decrease in the range of interactions.
Collapse
Affiliation(s)
- Qian Wang
- Department of Physics, Zhejiang Normal University, Jinhua 321004, China and CAMTP-Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska 3, SI-2000 Maribor, Slovenia
| |
Collapse
|
20
|
Titum P, Maghrebi MF. Nonequilibrium Criticality in Quench Dynamics of Long-Range Spin Models. PHYSICAL REVIEW LETTERS 2020; 125:040602. [PMID: 32794797 DOI: 10.1103/physrevlett.125.040602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/07/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Long-range interacting spin systems are ubiquitous in physics and exhibit a variety of ground-state disorder-to-order phase transitions. We consider a prototype of infinite-range interacting models known as the Lipkin-Meshkov-Glick model describing the collective interaction of N spins and investigate the dynamical properties of fluctuations and correlations after a sudden quench of the Hamiltonian. Specifically, we focus on critical quenches, where the initial state and/or the postquench Hamiltonian are critical. Depending on the type of quench, we identify three distinct behaviors where both the short-time dynamics and the stationary state at long times are effectively thermal, quantum, and genuinely nonequilibrium, characterized by distinct universality classes and static and dynamical critical exponents. These behaviors can be identified by an infrared effective temperature that is finite, zero, and infinite (the latter scaling with the system size as N^{1/3}), respectively. The quench dynamics is studied through a combination of exact numerics and analytical calculations utilizing the nonequilibrium Keldysh field theory. Our results are amenable to realization in experiments with trapped-ion experiments where long-range interactions naturally arise.
Collapse
Affiliation(s)
- Paraj Titum
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723, USA
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Mohammad F Maghrebi
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
21
|
Nie X, Wei BB, Chen X, Zhang Z, Zhao X, Qiu C, Tian Y, Ji Y, Xin T, Lu D, Li J. Experimental Observation of Equilibrium and Dynamical Quantum Phase Transitions via Out-of-Time-Ordered Correlators. PHYSICAL REVIEW LETTERS 2020; 124:250601. [PMID: 32639775 DOI: 10.1103/physrevlett.124.250601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The out-of-time-ordered correlators (OTOC), a fundamental concept for quantifying quantum information scrambling, has recently been suggested to be an order parameter to dynamically detect both equilibrium quantum phase transitions (EQPTs) and dynamical quantum phase transitions (DQPTs). Here we report the first experimental observation of EQPTs and DQPTs in a quantum spin chain via quench dynamics of OTOC on a nuclear magnetic resonance quantum simulator. We observe that the quench dynamics of the OTOC can unambiguously detect the DQPTs and the equilibrium critical point, while conventional order parameters such as the longitudinal magnetization can not. Moreover, we investigate the two-body correlations throughout the quench dynamics, and find that OTOC can extract the equilibrium critical point with higher accuracy and is more robust to decoherence than that of two-body correlation. Our experiment paves a way for experimentally investigating DQPTs through OTOCs and for studying the EQPTs through the nonequilibrium quantum quench dynamics with quantum simulators.
Collapse
Affiliation(s)
- Xinfang Nie
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Bo-Bo Wei
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Xi Chen
- CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ze Zhang
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiuzhu Zhao
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chudan Qiu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Tian
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunlan Ji
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tao Xin
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dawei Lu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Li
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
22
|
Xu K, Sun ZH, Liu W, Zhang YR, Li H, Dong H, Ren W, Zhang P, Nori F, Zheng D, Fan H, Wang H. Probing dynamical phase transitions with a superconducting quantum simulator. SCIENCE ADVANCES 2020; 6:eaba4935. [PMID: 32596458 PMCID: PMC7299620 DOI: 10.1126/sciadv.aba4935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Nonequilibrium quantum many-body systems, which are difficult to study via classical computation, have attracted wide interest. Quantum simulation can provide insights into these problems. Here, using a programmable quantum simulator with 16 all-to-all connected superconducting qubits, we investigate the dynamical phase transition in the Lipkin-Meshkov-Glick model with a quenched transverse field. Clear signatures of dynamical phase transitions, merging different concepts of dynamical criticality, are observed by measuring the nonequilibrium order parameter, nonlocal correlations, and the Loschmidt echo. Moreover, near the dynamical critical point, we obtain a spin squeezing of -7.0 ± 0.8 dB, showing multipartite entanglement, useful for measurements with precision fivefold beyond the standard quantum limit. On the basis of the capability of entangling qubits simultaneously and the accurate single-shot readout of multiqubit states, this superconducting quantum simulator can be used to study other problems in nonequilibrium quantum many-body systems, such as thermalization, many-body localization, and emergent phenomena in periodically driven systems.
Collapse
Affiliation(s)
- Kai Xu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zheng-Hang Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wuxin Liu
- Interdisciplinary Centre for Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yu-Ran Zhang
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Hekang Li
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Interdisciplinary Centre for Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Hang Dong
- Interdisciplinary Centre for Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Wenhui Ren
- Interdisciplinary Centre for Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Pengfei Zhang
- Interdisciplinary Centre for Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Physics Department, University of Michigan, Ann Arbor, MI 48109-1040, USA
| | - Dongning Zheng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- CAS Centre for Excellence in Topological Quantum Computation, School of Physical Sciences, UCAS, Beijing 100190, China
| | - Heng Fan
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- CAS Centre for Excellence in Topological Quantum Computation, School of Physical Sciences, UCAS, Beijing 100190, China
| | - H. Wang
- Interdisciplinary Centre for Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
23
|
Exploring dynamical phase transitions with cold atoms in an optical cavity. Nature 2020; 580:602-607. [DOI: 10.1038/s41586-020-2224-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/10/2020] [Indexed: 11/09/2022]
|
24
|
Tian T, Yang HX, Qiu LY, Liang HY, Yang YB, Xu Y, Duan LM. Observation of Dynamical Quantum Phase Transitions with Correspondence in an Excited State Phase Diagram. PHYSICAL REVIEW LETTERS 2020; 124:043001. [PMID: 32058743 DOI: 10.1103/physrevlett.124.043001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Dynamical quantum phase transitions are closely related to equilibrium quantum phase transitions for ground states. Here, we report an experimental observation of a dynamical quantum phase transition in a spinor condensate with correspondence in an excited state phase diagram, instead of the ground state one. We observe that the quench dynamics exhibits a nonanalytical change with respect to a parameter in the final Hamiltonian in the absence of a corresponding phase transition for the ground state there. We make a connection between this singular point and a phase transition point for the highest energy level in a subspace with zero spin magnetization of a Hamiltonian. We further show the existence of dynamical phase transitions for finite magnetization corresponding to the phase transition of the highest energy level in the subspace with the same magnetization. Our results open a door for using dynamical phase transitions as a tool to probe physics at higher energy eigenlevels of many-body Hamiltonians.
Collapse
Affiliation(s)
- T Tian
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - H-X Yang
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - L-Y Qiu
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - H-Y Liang
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - Y-B Yang
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - Y Xu
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - L-M Duan
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
25
|
Saha M, Purkayastha A, Maiti SK. More current with less particles due to power-law hopping. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:025303. [PMID: 31519006 DOI: 10.1088/1361-648x/ab4494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We reveal interesting universal transport behavior of ordered one-dimensional fermionic systems with power-law hopping. We restrict ourselves to the case where the power-law decay exponent [Formula: see text], so that the thermodynamic limit is well-defined. We explore the quantum phase-diagram of the non-interacting model in terms of the zero temperature Drude weight, which can be analytically calculated. Most interestingly, we reveal that for [Formula: see text], there is a phase where the zero temperature Drude weight diverges as filling fraction goes to zero. Thus, in this regime, counter intuitively, reducing number of particles increases transport and is maximum for a sub-extensive number of particles. Being a statement about zero-filling, this transport behavior is immune to adding number conserving interaction terms. We have explicitly checked this using two different interacting systems. We propose that measurement of persistent current due to a flux through a mesoscopic ring with power-law hopping will give an experimental signature of this phase. In persistent current, the signature of this phase survives up to a finite temperature for a finite system. At higher temperatures, a crossover is seen. The maximum persistent current shows a power-law decay at high temperatures. This is in contrast with short ranged systems, where the persistent current decays exponentially with temperature.
Collapse
Affiliation(s)
- Madhumita Saha
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata-700 108, India
| | | | | |
Collapse
|
26
|
Titum P, Iosue JT, Garrison JR, Gorshkov AV, Gong ZX. Probing Ground-State Phase Transitions through Quench Dynamics. PHYSICAL REVIEW LETTERS 2019; 123:115701. [PMID: 31573251 PMCID: PMC11670880 DOI: 10.1103/physrevlett.123.115701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Indexed: 06/10/2023]
Abstract
The study of quantum phase transitions requires the preparation of a many-body system near its ground state, a challenging task for many experimental systems. The measurement of quench dynamics, on the other hand, is now a routine practice in most cold atom platforms. Here we show that quintessential ingredients of quantum phase transitions can be probed directly with quench dynamics in integrable and nearly integrable systems. As a paradigmatic example, we study global quench dynamics in a transverse-field Ising model with either short-range or long-range interactions. When the model is integrable, we discover a new dynamical critical point with a nonanalytic signature in the short-range correlators. The location of the dynamical critical point matches that of the quantum critical point and can be identified using a finite-time scaling method. We extend this scaling picture to systems near integrability and demonstrate the continued existence of a dynamical critical point detectable at prethermal timescales. We quantify the difference in the locations of the dynamical and quantum critical points away from (but near) integrability. Thus, we demonstrate that this method can be used to approximately locate the quantum critical point near integrability. The scaling method is also relevant to experiments with finite time and system size, and our predictions are testable in near-term experiments with trapped ions and Rydberg atoms.
Collapse
Affiliation(s)
- Paraj Titum
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Joseph T. Iosue
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - James R. Garrison
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Alexey V. Gorshkov
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Zhe-Xuan Gong
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
| |
Collapse
|
27
|
Wei KX, Peng P, Shtanko O, Marvian I, Lloyd S, Ramanathan C, Cappellaro P. Emergent Prethermalization Signatures in Out-of-Time Ordered Correlations. PHYSICAL REVIEW LETTERS 2019; 123:090605. [PMID: 31524464 DOI: 10.1103/physrevlett.123.090605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 06/10/2023]
Abstract
How a many-body quantum system thermalizes-or fails to do so-under its own interaction is a fundamental yet elusive concept. Here we demonstrate nuclear magnetic resonance observation of the emergence of prethermalization by measuring out-of-time ordered correlations. We exploit Hamiltonian engineering techniques to tune the strength of spin-spin interactions and of a transverse magnetic field in a spin chain system, as well as to invert the Hamiltonian sign to reveal out-of-time ordered correlations. At large fields, we observe an emergent conserved quantity due to prethermalization, which can be revealed by an early saturation of correlations. Our experiment not only demonstrates a new protocol to measure out-of-time ordered correlations, but also provides new insights in the study of quantum thermodynamics.
Collapse
Affiliation(s)
- Ken Xuan Wei
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Pai Peng
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Oles Shtanko
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Iman Marvian
- Departments of Physics & Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Seth Lloyd
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Paola Cappellaro
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
28
|
Smale S, He P, Olsen BA, Jackson KG, Sharum H, Trotzky S, Marino J, Rey AM, Thywissen JH. Observation of a transition between dynamical phases in a quantum degenerate Fermi gas. SCIENCE ADVANCES 2019; 5:eaax1568. [PMID: 31667348 PMCID: PMC6802963 DOI: 10.1126/sciadv.aax1568] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/26/2019] [Indexed: 05/26/2023]
Abstract
A proposed paradigm for out-of-equilibrium quantum systems is that an analog of quantum phase transitions exists between parameter regimes of qualitatively distinct time-dependent behavior. Here, we present evidence of such a transition between dynamical phases in a cold-atom quantum simulator of the collective Heisenberg model. Our simulator encodes spin in the hyperfine states of ultracold fermionic potassium. Atoms are pinned in a network of single-particle modes, whose spatial extent emulates the long-range interactions of traditional quantum magnets. We find that below a critical interaction strength, magnetization of an initially polarized fermionic gas decays quickly, while above the transition point, the magnetization becomes long-lived because of an energy gap that protects against dephasing by the inhomogeneous axial field. Our quantum simulation reveals a nonequilibrium transition predicted to exist but not yet directly observed in quenched s-wave superconductors.
Collapse
Affiliation(s)
- Scott Smale
- Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, Ontario M5S 1A7, Canada
| | - Peiru He
- JILA, National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309, USA
| | - Ben A. Olsen
- Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, Ontario M5S 1A7, Canada
| | - Kenneth G. Jackson
- Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, Ontario M5S 1A7, Canada
| | - Haille Sharum
- Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, Ontario M5S 1A7, Canada
| | - Stefan Trotzky
- Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, Ontario M5S 1A7, Canada
| | - Jamir Marino
- JILA, National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309, USA
| | - Ana Maria Rey
- JILA, National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309, USA
| | - Joseph H. Thywissen
- Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, Ontario M5S 1A7, Canada
| |
Collapse
|
29
|
Feldmeier J, Pollmann F, Knap M. Emergent Glassy Dynamics in a Quantum Dimer Model. PHYSICAL REVIEW LETTERS 2019; 123:040601. [PMID: 31491242 DOI: 10.1103/physrevlett.123.040601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/27/2019] [Indexed: 06/10/2023]
Abstract
We consider the quench dynamics of a two-dimensional quantum dimer model and determine the role of its kinematic constraints. We interpret the nonequilibrium dynamics in terms of the underlying equilibrium phase transitions consisting of a Berezinskii-Kosterlitz-Thouless (BKT) transition between a columnar ordered valence bond solid (VBS) and a valence bond liquid (VBL), as well as a first-order transition between a staggered VBS and the VBL. We find that quenches from a columnar VBS are ergodic and both order parameters and spatial correlations quickly relax to their thermal equilibrium. By contrast, the staggered side of the first-order transition does not display thermalization on numerically accessible timescales. Based on the model's kinematic constraints, we uncover a mechanism of relaxation that rests on emergent, highly detuned multidefect processes in a staggered background, which gives rise to slow, glassy dynamics at low temperatures even in the thermodynamic limit.
Collapse
Affiliation(s)
- Johannes Feldmeier
- Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany and Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
| | - Frank Pollmann
- Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany and Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
| | - Michael Knap
- Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany and Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
| |
Collapse
|
30
|
Huang YP, Banerjee D, Heyl M. Dynamical Quantum Phase Transitions in U(1) Quantum Link Models. PHYSICAL REVIEW LETTERS 2019; 122:250401. [PMID: 31347880 DOI: 10.1103/physrevlett.122.250401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/15/2019] [Indexed: 06/10/2023]
Abstract
Quantum link models (QLMs) are extensions of Wilson-type lattice gauge theories which realize exact gauge invariance with finite-dimensional Hilbert spaces. QLMs not only reproduce standard features of Wilson lattice gauge theories in equilibrium, but can also host new phenomena such as crystalline confined phases. The local constraints due to gauge invariance also provide kinetic restrictions that can influence substantially the real-time dynamics in these systems. We aim to characterize the nonequilibrium evolution in lattice gauge theories through the lens of dynamical quantum phase transitions, which provide general principles for real-time dynamics in quantum many-body systems. Specifically, we study quantum quenches for two representative cases, U(1) QLMs in (1+1)D and (2+1)D, for initial conditions exhibiting long-range order. Finally, we discuss the connection to the high-energy perspective and the experimental feasibility to observe the discussed phenomena in recent quantum simulator settings such as trapped ions, ultracold atoms, and Rydberg atoms.
Collapse
Affiliation(s)
- Yi-Ping Huang
- Max-Planck-Institut fur Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Debasish Banerjee
- Max-Planck-Institut fur Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Markus Heyl
- Max-Planck-Institut fur Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| |
Collapse
|
31
|
Li B, Gao C, Xianlong G, Wang P. Critical behavior of the order parameter at the nonequilibrium phase transition of the Ising model. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:075801. [PMID: 30524084 DOI: 10.1088/1361-648x/aaf6cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
After a quench of transverse field, the asymptotic long-time state of the Ising model displays a transition from a ferromagnetic phase to a paramagnetic phase as the post-quench field strength increases, which is revealed by the vanishing of the order parameter defined as the averaged magnetization over time. We estimate the critical behavior of the magnetization at this nonequilibrium phase transition by using the mean-field approximation. In the vicinity of the critical field, the magnetization vanishes as the inverse of a logarithmic function, which is significantly distinguished from the critical behavior of order parameter at the corresponding equilibrium phase transition, i.e. a power-law function.
Collapse
Affiliation(s)
- Bin Li
- Department of Physics, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | | | | | | |
Collapse
|
32
|
|
33
|
Defenu N, Enss T, Kastner M, Morigi G. Dynamical Critical Scaling of Long-Range Interacting Quantum Magnets. PHYSICAL REVIEW LETTERS 2018; 121:240403. [PMID: 30608754 DOI: 10.1103/physrevlett.121.240403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 06/09/2023]
Abstract
Slow quenches of the magnetic field across the paramagnetic-ferromagnetic phase transition of spin systems produce heat. In systems with short-range interactions the heat exhibits universal power-law scaling as a function of the quench rate, known as Kibble-Zurek scaling. In this work we analyze slow quenches of the magnetic field in the Lipkin-Meshkov-Glick (LMG) model, which describes fully connected quantum spins. We analytically determine the quantum contribution to the residual heat as a function of the quench rate δ by means of a Holstein-Primakoff expansion about the mean-field value. Unlike in the case of short-range interactions, scaling laws in the LMG model are only found for a ramp starting or ending at the critical point. If instead the ramp is symmetric, as in the typical Kibble-Zurek scenario, then the number of excitations exhibits a crossover behavior as a function of δ and tends to a constant in the thermodynamic limit. Previous, and seemingly contradictory, theoretical studies are identified as specific limits of this dynamics. Our results can be tested on several experimental platforms, including quantum gases and trapped ions.
Collapse
Affiliation(s)
- Nicolò Defenu
- Institut für Theoretische Physik, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Tilman Enss
- Institut für Theoretische Physik, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Michael Kastner
- Institute of Theoretical Physics, Department of Physics, University of Stellenbosch, Stellenbosch 7600, South Africa
- National Institute for Theoretical Physics (NITheP), Stellenbosch 7600, South Africa
| | - Giovanna Morigi
- Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany
| |
Collapse
|
34
|
Lang J, Frank B, Halimeh JC. Dynamical Quantum Phase Transitions: A Geometric Picture. PHYSICAL REVIEW LETTERS 2018; 121:130603. [PMID: 30312040 DOI: 10.1103/physrevlett.121.130603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/01/2018] [Indexed: 06/08/2023]
Abstract
The Loschmidt echo is a purely quantum-mechanical quantity whose determination for large quantum many-body systems requires an exceptionally precise knowledge of all eigenstates and eigenenergies. One might therefore be tempted to dismiss the applicability of any approximations to the underlying time evolution as hopeless. However, using the fully connected transverse-field Ising model as an example, we show that this indeed is not the case and that a simple semiclassical approximation to systems well described by mean-field theory is, in fact, in good quantitative agreement with the exact quantum-mechanical calculation. Beyond the potential to capture the entire dynamical phase diagram of these models, the method presented here also allows for an intuitive geometric interpretation of the fidelity return rate at any temperature, thereby connecting the order parameter dynamics and the Loschmidt echo in a common framework. Videos of the postquench dynamics provided in Supplemental Material visualize this new point of view.
Collapse
Affiliation(s)
- Johannes Lang
- Physik Department, Technische Universität München, 85747 Garching, Germany
| | - Bernhard Frank
- Physik Department, Technische Universität München, 85747 Garching, Germany
| | - Jad C Halimeh
- Physik Department, Technische Universität München, 85747 Garching, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| |
Collapse
|
35
|
Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 2018; 551:601-604. [PMID: 29189781 DOI: 10.1038/nature24654] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/20/2017] [Indexed: 12/23/2022]
Abstract
A quantum simulator is a type of quantum computer that controls the interactions between quantum bits (or qubits) in a way that can be mapped to certain quantum many-body problems. As it becomes possible to exert more control over larger numbers of qubits, such simulators will be able to tackle a wider range of problems, such as materials design and molecular modelling, with the ultimate limit being a universal quantum computer that can solve general classes of hard problems. Here we use a quantum simulator composed of up to 53 qubits to study non-equilibrium dynamics in the transverse-field Ising model with long-range interactions. We observe a dynamical phase transition after a sudden change of the Hamiltonian, in a regime in which conventional statistical mechanics does not apply. The qubits are represented by the spins of trapped ions, which can be prepared in various initial pure states. We apply a global long-range Ising interaction with controllable strength and range, and measure each individual qubit with an efficiency of nearly 99 per cent. Such high efficiency means that arbitrary many-body correlations between qubits can be measured in a single shot, enabling the dynamical phase transition to be probed directly and revealing computationally intractable features that rely on the long-range interactions and high connectivity between qubits.
Collapse
|