1
|
Kamani KM, Shim YH, Griebler J, Narayanan S, Zhang Q, Leheny RL, Harden JL, Deptula A, Espinosa-Marzal RM, Rogers SA. Linking structural and rheological memory in disordered soft materials. SOFT MATTER 2025; 21:750-759. [PMID: 39791209 DOI: 10.1039/d4sm00953c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Linking the macroscopic flow properties and nanoscopic structure is a fundamental challenge to understanding, predicting, and designing disordered soft materials. Under small stresses, these materials are soft solids, while larger loads can lead to yielding and the acquisition of plastic strain, which adds complexity to the task. In this work, we connect the transient structure and rheological memory of a colloidal gel under cyclic shearing across a range of amplitudes via a generalized memory function using rheo-X-ray photon correlation spectroscopy (rheo-XPCS). Our rheo-XPCS data show that the nanometer scale aggregate-level structure recorrelates whenever the change in recoverable strain over some interval is zero. The macroscopic recoverable strain is therefore a measure of the nano-scale structural memory. We further show that yielding in disordered colloidal materials is strongly heterogeneous and that memories of prior deformation can exist even after the material has been subjected to flow.
Collapse
Affiliation(s)
- Krutarth M Kamani
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| | - Yul Hui Shim
- School of Chemical and Materials Engineering, The University of Suwon, Hwaseong-si, Gyeonggi-do, 18323, Republic of Korea
| | - James Griebler
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Qingteng Zhang
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| | - James L Harden
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Alexander Deptula
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Illinois, USA, 61801
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Illinois, USA, 61801
| | - Simon A Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| |
Collapse
|
2
|
Riechers B, Das A, Dufresne E, Derlet PM, Maaß R. Intermittent cluster dynamics and temporal fractional diffusion in a bulk metallic glass. Nat Commun 2024; 15:6595. [PMID: 39097585 PMCID: PMC11298002 DOI: 10.1038/s41467-024-50758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024] Open
Abstract
Glassy solids evolve towards lower-energy structural states by physical aging. This can be characterized by structural relaxation times, the assessment of which is essential for understanding the glass' time-dependent property changes. Conducted over short times, a continuous increase of relaxation times with time is seen, suggesting a time-dependent dissipative transport mechanism. By focusing on micro-structural rearrangements at the atomic-scale, we demonstrate the emergence of sub-diffusive anomalous transport and therefore temporal fractional diffusion in a metallic glass, which we track via coherent x-ray scattering conducted over more than 300,000 s. At the longest probed decorrelation times, a transition from classical stretched exponential to a power-law behavior occurs, which in concert with atomistic simulations reveals collective and intermittent atomic motion. Our observations give a physical basis for classical stretched exponential relaxation behavior, uncover a new power-law governed collective transport regime for metallic glasses at long and practically relevant time-scales, and demonstrate a rich and highly non-monotonous aging response in a glassy solid, thereby challenging the common framework of homogeneous aging and atomic scale diffusion.
Collapse
Affiliation(s)
- Birte Riechers
- Federal Institute of Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Amlan Das
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cornell High Energy Synchrotron Source, Cornell University, 161 Synchrotron Drive, Ithaca, NY, 14850, USA
| | - Eric Dufresne
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Peter M Derlet
- Condensed Matter Theory Group, Paul-Scherrer-Institute, CH-5232, Villingen PSI, Switzerland.
| | - Robert Maaß
- Federal Institute of Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany.
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Materials Engineering, Technical University of Munich, 85748, Garchingen, Germany.
| |
Collapse
|
3
|
Zhang X, Lou H, Ruta B, Chushkin Y, Zontone F, Li S, Xu D, Liang T, Zeng Z, Mao HK, Zeng Q. Pressure-induced nonmonotonic cross-over of steady relaxation dynamics in a metallic glass. Proc Natl Acad Sci U S A 2023; 120:e2302281120. [PMID: 37276419 PMCID: PMC10268294 DOI: 10.1073/pnas.2302281120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/14/2023] [Indexed: 06/07/2023] Open
Abstract
Relaxation dynamics, as a key to understand glass formation and glassy properties, remains an elusive and challenging issue in condensed matter physics. In this work, in situ high-pressure synchrotron high-energy X-ray photon correlation spectroscopy has been developed to probe the atomic-scale relaxation dynamics of a cerium-based metallic glass during compression. Although the sample density continuously increases, the collective atomic motion initially slows down as generally expected and then counterintuitively accelerates with further compression (density increase), showing an unusual nonmonotonic pressure-induced steady relaxation dynamics cross-over at ~3 GPa. Furthermore, by combining in situ high-pressure synchrotron X-ray diffraction, the relaxation dynamics anomaly is evidenced to closely correlate with the dramatic changes in local atomic structures during compression, rather than monotonically scaling with either sample density or overall stress level. These findings could provide insight into relaxation dynamics and their relationship with local atomic structures of glasses.
Collapse
Affiliation(s)
- Xin Zhang
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
| | - Hongbo Lou
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
| | - Beatrice Ruta
- Université Lyon, Université Claude Bernard Lyon 1, Centre national de la recherche scientifique, Institut Lumière Matière, Campus LyonTech–La Doua, LyonF-69622, France
| | - Yuriy Chushkin
- European Synchrotron Radiation Facility-The European Synchrotron, GrenobleCS 40220, 38043, France
| | - Federico Zontone
- European Synchrotron Radiation Facility-The European Synchrotron, GrenobleCS 40220, 38043, France
| | - Shubin Li
- Université Lyon, Université Claude Bernard Lyon 1, Centre national de la recherche scientifique, Institut Lumière Matière, Campus LyonTech–La Doua, LyonF-69622, France
| | - Dazhe Xu
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
| | - Tao Liang
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
| | - Zhidan Zeng
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
| | - Ho-kwang Mao
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
- Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments, Shanghai Advanced Research in Physical Sciences, Shanghai201203, China
| | - Qiaoshi Zeng
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
- Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments, Shanghai Advanced Research in Physical Sciences, Shanghai201203, China
| |
Collapse
|
4
|
Douglass IM, Dyre JC. Distance-as-time in physical aging. Phys Rev E 2022; 106:054615. [PMID: 36559484 DOI: 10.1103/physreve.106.054615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
Although it has been known for half a century that the physical aging of glasses in experiments is described well by a linear thermal-history convolution integral over the so-called material time, the microscopic definition and interpretation of the material time remains a mystery. We propose that the material-time increase over a given time interval reflects the distance traveled by the system's particles. Different possible distance measures are discussed, starting from the standard mean-square displacement and its inherent-state version that excludes the vibrational contribution. The viewpoint adopted, which is inspired by and closely related to pioneering works of Cugliandolo and Kurchan from the 1990s, implies a "geometric reversibility" and a "unique-triangle property" characterizing the system's path in configuration space during aging. Both of these properties are inherited from equilibrium, and they are here confirmed by computer simulations of an aging binary Lennard-Jones system. Our simulations moreover show that the slow particles control the material time. This motivates a "dynamic-rigidity-percolation" picture of physical aging. The numerical data show that the material time is dominated by the slowest particles' inherent mean-square displacement, which is conveniently quantified by the inherent harmonic mean-square displacement. This distance measure collapses data for potential-energy aging well in the sense that the normalized relaxation functions following different temperature jumps are almost the same function of the material time. Finally, the standard Tool-Narayanaswamy linear material-time convolution-integral description of physical aging is derived from the assumption that when time is replaced by distance in the above sense, an aging system is described by the same expression as that of linear-response theory.
Collapse
Affiliation(s)
- Ian M Douglass
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
5
|
Rodriguez-Tinoco C, Gonzalez-Silveira M, Ramos MA, Rodriguez-Viejo J. Ultrastable glasses: new perspectives for an old problem. LA RIVISTA DEL NUOVO CIMENTO 2022; 45:325-406. [DOI: 10.1007/s40766-022-00029-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2025]
Abstract
AbstractUltrastable glasses (mostly prepared from the vapor phase under optimized deposition conditions) represent a unique class of materials with low enthalpies and high kinetic stabilities. These highly stable and dense glasses show unique physicochemical properties, such as high thermal stability, improved mechanical properties or anomalous transitions into the supercooled liquid, offering unprecedented opportunities to understand many aspects of the glassy state. Their improved properties with respect to liquid-cooled glasses also open new prospects to their use in applications where liquid-cooled glasses failed or where not considered as usable materials. In this review article we summarize the state of the art of vapor-deposited (and other) ultrastable glasses with a focus on the mechanism of equilibration, the transformation to the liquid state and the low temperature properties. The review contains information on organic, metallic, polymeric and chalcogenide glasses and an updated list with relevant properties of all materials known today to form a stable glass.
Collapse
|
6
|
Luo Q, Zhang Z, Li D, Luo P, Wang W, Shen B. Nanoscale-to-Mesoscale Heterogeneity and Percolating Favored Clusters Govern Ultrastability of Metallic Glasses. NANO LETTERS 2022; 22:2867-2873. [PMID: 35298183 DOI: 10.1021/acs.nanolett.1c05039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Comprehending and controlling the stability of glasses is one of the most challenging issues in glass science. Here we explore the microscopic origin of the ultrastability of a Cu-Zr-Al metallic glass (MG). It is revealed that the ultrastable window (0.7-0.8 Tg) of MGs correlates with the enhanced degree of nanoscale-to-mesoscale structural/mechanical heterogeneity and the connection of stability-favored clusters. On one side, the increased fraction of stability-favored clusters promotes the formation of a stable percolating network through a critical percolation transition, which is essential to form ultrastable MG. On the other side, the enhanced heterogeneity arising from an increased distribution in local clusters may promote synergistically a more efficient and frustrated packing of amorphous structure, contributing to the ultrastability. The present work sheds new light on the stability of MGs and provides a step toward next-generation MGs with superior stability and performances.
Collapse
Affiliation(s)
- Qiang Luo
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Zhengguo Zhang
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Donghui Li
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Peng Luo
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Weihua Wang
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Baolong Shen
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| |
Collapse
|
7
|
Riechers B, Roed LA, Mehri S, Ingebrigtsen TS, Hecksher T, Dyre JC, Niss K. Predicting nonlinear physical aging of glasses from equilibrium relaxation via the material time. SCIENCE ADVANCES 2022; 8:eabl9809. [PMID: 35294250 PMCID: PMC8926348 DOI: 10.1126/sciadv.abl9809] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The noncrystalline glassy state of matter plays a role in virtually all fields of materials science and offers complementary properties to those of the crystalline counterpart. The caveat of the glassy state is that it is out of equilibrium and therefore exhibits physical aging, i.e., material properties change over time. For half a century, the physical aging of glasses has been known to be described well by the material-time concept, although the existence of a material time has never been directly validated. We do this here by successfully predicting the aging of the molecular glass 4-vinyl-1,3-dioxolan-2-one from its linear relaxation behavior. This establishes the defining property of the material time. Via the fluctuation-dissipation theorem, our results imply that physical aging can be predicted from thermal-equilibrium fluctuation data, which is confirmed by computer simulations of a binary liquid mixture.
Collapse
|
8
|
Pal S, Mehta N, Mikla V, Horvat A, Minkovich V, Dahshan A. Response to “Comment on ‘Insights into the physical aging in chalcogenide glasses: A case study of a first-generation As2Se3 binary glass’” [Coord. Chem. Rev. 442 (2021) 213992]. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Pal SK, Mehta N, Mikla V, Horvat A, Minkovich V, Dahshan A. Insights into the physical aging in chalcogenide glasses: A case study of a first-generation As2Se3 binary glass. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Luo P, Zhu F, Lv YM, Lu Z, Shen LQ, Zhao R, Sun YT, Vaughan GBM, di Michiel M, Ruta B, Bai HY, Wang WH. Microscopic Structural Evolution during Ultrastable Metallic Glass Formation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40098-40105. [PMID: 34375527 DOI: 10.1021/acsami.1c10716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
By decreasing the rate of physical vapor deposition, ZrCuAl metallic glasses with improved stability and mechanical performances can be formed, while the microscopic structural mechanisms remain unclear. Here, with scanning transmission electron microscopy and high-energy synchrotron X-ray diffraction, we found that the metallic glass deposited at a higher rate exhibits a heterogeneous structure with compositional fluctuations at a distance of a few nanometers, which gradually disappear on decreasing the deposition rate; eventually, a homogeneous structure is developed approaching ultrastability. This microscopic structural evolution suggests the existence of the following two dynamical processes during ultrastable metallic glass formation: a faster diffusion process driven by the kinetic energy of the depositing atoms, which results in nanoscale compositional fluctuations, and a slower collective relaxation process that eliminates the compositional and structural heterogeneity, equilibrates the deposited atoms, and strengthens the local atomic connectivity.
Collapse
Affiliation(s)
- Peng Luo
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fan Zhu
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Yu-Miao Lv
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen Lu
- World Premier International Research Centers Initiative (WPI), Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Lai-Quan Shen
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Zhao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi-Tao Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Gavin B M Vaughan
- ESRF-The European Synchrotron, CS 40220, Grenoble 38043 Cedex 9, France
| | - Marco di Michiel
- ESRF-The European Synchrotron, CS 40220, Grenoble 38043 Cedex 9, France
| | - Beatrice Ruta
- ESRF-The European Synchrotron, CS 40220, Grenoble 38043 Cedex 9, France
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne 69622, France
| | - Hai-Yang Bai
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Hua Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Plumley R, Sun Y, Teitelbaum S, Song S, Sato T, Chollet M, Nelson S, Wang N, Sun P, Robert A, Fuoss P, Sutton M, Zhu D. Speckle correlation as a monitor of X-ray free-electron laser induced crystal lattice deformation. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1470-1476. [PMID: 33147171 DOI: 10.1107/s1600577520011509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
X-ray free-electron lasers (X-FELs) present new opportunities to study ultrafast lattice dynamics in complex materials. While the unprecedented source brilliance enables high fidelity measurement of structural dynamics, it also raises experimental challenges related to the understanding and control of beam-induced irreversible structural changes in samples that can ultimately impact the interpretation of experimental results. This is also important for designing reliable high performance X-ray optical components. In this work, X-FEL beam-induced lattice alterations are investigated by measuring the shot-to-shot evolution of near-Bragg coherent scattering from a single crystalline germanium sample. It is shown that X-ray photon correlation analysis of sequential speckle patterns measurements can be used to monitor the nature and extent of lattice rearrangements. Abrupt, irreversible changes are observed following intermittent high-fluence monochromatic X-ray pulses, thus revealing the existence of a threshold response to X-FEL pulse intensity.
Collapse
Affiliation(s)
- Rajan Plumley
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Yanwen Sun
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Samuel Teitelbaum
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Sanghoon Song
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Takahiro Sato
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Matthieu Chollet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Silke Nelson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Nan Wang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Peihao Sun
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Aymeric Robert
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Paul Fuoss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mark Sutton
- Physics Department, McGill University, 845 Sherbrooke St W, Montréal, Quebec, Canada H3A 0G4
| | - Diling Zhu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
12
|
Emergence of anomalous dynamics in soft matter probed at the European XFEL. Proc Natl Acad Sci U S A 2020; 117:24110-24116. [PMID: 32934145 DOI: 10.1073/pnas.2003337117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamics and kinetics in soft matter physics, biology, and nanoscience frequently occur on fast (sub)microsecond but not ultrafast timescales which are difficult to probe experimentally. The European X-ray Free-Electron Laser (European XFEL), a megahertz hard X-ray Free-Electron Laser source, enables such experiments via taking series of diffraction patterns at repetition rates of up to 4.5 MHz. Here, we demonstrate X-ray photon correlation spectroscopy (XPCS) with submicrosecond time resolution of soft matter samples at the European XFEL. We show that the XFEL driven by a superconducting accelerator provides unprecedented beam stability within a pulse train. We performed microsecond sequential XPCS experiments probing equilibrium and nonequilibrium diffusion dynamics in water. We find nonlinear heating on microsecond timescales with dynamics beyond hot Brownian motion and superheated water states persisting up to 100 μs at high fluences. At short times up to 20 μs we observe that the dynamics do not obey the Stokes-Einstein predictions.
Collapse
|
13
|
Vinod S, Camp PJ, Philip J. Observation of soft glassy behavior in a magnetic colloid exposed to an external magnetic field. SOFT MATTER 2020; 16:7126-7136. [PMID: 32661528 DOI: 10.1039/d0sm00830c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We provide the first experimental evidence for soft glassy behavior in a sterically stabilized magnetic colloid (ferrofluid) of relatively low volume fraction (φ = 0.037) when a uniform magnetic field is applied at a sufficiently high rate (fast quench). Fast magnetic-field quenches favor structural arrest of field-induced aggregates, owing to insufficient time to settle into lower energy states, thereby pushing the system to a frustrated metastable configuration like a repulsive glass. Brownian dynamics simulations are used to show that the polydisperse ferrofluid (as in experiments) forms thick ropes aligned along the field direction, while a monodisperse ferrofluid does not. The simulations show that there is practically no ordering of the thin, monodisperse chains, while the thick, polydisperse ropes show positional ordering with a typical center-center separation between the particles in different ropes of about 0.39 μm. As a consequence of structural arrest, the ferrofluid exhibits aging with broken time-translational invariance, a hallmark of glassy dynamics. The superposition of strain and creep compliance curves obtained from rheological measurements at different waiting times in the effective time domain corroborates the soft glassy behavior when exposed to a magnetic field applied at a fast ramp rate.
Collapse
Affiliation(s)
- Sithara Vinod
- Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam 603 102, India.
| | | | | |
Collapse
|
14
|
Dziuba T, Luo Y, Samwer K. Local mechanical properties of an ultrastable metallic glass. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:345101. [PMID: 32303018 DOI: 10.1088/1361-648x/ab8aa2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Recently, ultrastable glasses gained growing attention due to the revelation of the mechanism leading towards the understanding of glasses and glass transition in general. We report the adaptation of vapor deposition techniques to create ultrastable amorphous phases of Cu50Zr50with different mechanical properties. Investigations using atomic force acoustic microscopy reveal a connection between an enhanced elastic modulus, its low potential energy and its homogeneity throughout the sample. Here, higher stability is always accompanied by high homogeneity. We relate the preparation conditions to the resulting mechanical properties, potentially opening a path to systematically engineer ultrastability in metallic glasses. Furthermore, we give a qualitative explanation for our results in the framework of the potential energy landscape, providing insights to the origin of ultrastability in metallic glasses in general.
Collapse
Affiliation(s)
- Thomas Dziuba
- I. Physikalisches Institut, Georg-August-University Göttingen, D-370077 Göttingen, Germany
| | - Yuansu Luo
- I. Physikalisches Institut, Georg-August-University Göttingen, D-370077 Göttingen, Germany
| | - Konrad Samwer
- I. Physikalisches Institut, Georg-August-University Göttingen, D-370077 Göttingen, Germany
| |
Collapse
|
15
|
Narayanan T, Konovalov O. Synchrotron Scattering Methods for Nanomaterials and Soft Matter Research. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E752. [PMID: 32041363 PMCID: PMC7040635 DOI: 10.3390/ma13030752] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
This article aims to provide an overview of broad range of applications of synchrotron scattering methods in the investigation of nanoscale materials. These scattering techniques allow the elucidation of the structure and dynamics of nanomaterials from sub-nm to micron size scales and down to sub-millisecond time ranges both in bulk and at interfaces. A major advantage of scattering methods is that they provide the ensemble averaged information under in situ and operando conditions. As a result, they are complementary to various imaging techniques which reveal more local information. Scattering methods are particularly suitable for probing buried structures that are difficult to image. Although, many qualitative features can be directly extracted from scattering data, derivation of detailed structural and dynamical information requires quantitative modeling. The fourth-generation synchrotron sources open new possibilities for investigating these complex systems by exploiting the enhanced brightness and coherence properties of X-rays.
Collapse
|
16
|
Nguyen HA, Liao C, Wallum A, Lyding J, Gruebele M. Multi-scale dynamics at the glassy silica surface. J Chem Phys 2019; 151:174502. [PMID: 31703525 DOI: 10.1063/1.5123228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Silica-based glass is a household name, providing insulation for windows to microelectronics. The debate over the types of motions thought to occur in or on SiO2 glass well below the glass transition temperature continues. Here, we form glassy silica films by oxidizing the Si(100) surface (from 0.5 to 1.5 nm thick, to allow tunneling). We then employ scanning tunneling microscopy in situ to image and classify these motions at room temperature on a millisecond to hour time scale and 50-pm to 5-nm length scale. We observe two phenomena on different time scales. Within minutes, compact clusters with an average diameter of several SiO2 glass-forming units (GFUs) hop between a few (mostly two) configurations, hop cooperatively (facilitation), and merge into larger clusters (aging) or split into smaller clusters (rejuvenation). Within seconds, Si-O-Si bridges connect two GFUs within a single cluster flip, providing a vibrational fine structure to the energy landscape. We assign the vibrational fine structure using electronic structure calculations. Calculations also show that our measured barrier height for whole cluster hopping at the glass surface (configurational dynamics) is consistent with the configurational entropy predicted by thermodynamic models of the glass transition and that the vibrational entropy for GFU flipping and configurational entropy for cluster hopping are comparable (on a per GFU basis).
Collapse
Affiliation(s)
- Huy A Nguyen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Can Liao
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Alison Wallum
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - J Lyding
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - M Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
17
|
Das A, Derlet PM, Liu C, Dufresne EM, Maaß R. Stress breaks universal aging behavior in a metallic glass. Nat Commun 2019; 10:5006. [PMID: 31676748 PMCID: PMC6825140 DOI: 10.1038/s41467-019-12892-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/03/2019] [Indexed: 11/20/2022] Open
Abstract
Numerous disordered materials display a monotonous slowing down in their internal dynamics with age. In the case of metallic glasses, this general behavior across different temperatures and alloys has been used to establish an empirical universal superposition principle of time, waiting time, and temperature. Here we demonstrate that the application of a mechanical stress within the elastic regime breaks this universality. Using in-situ x-ray photon correlation spectroscopy (XPCS) experiments, we show that strong fluctuations between slow and fast structural dynamics exist, and that these generally exhibit larger relaxation times than in the unstressed case. On average, relaxation times increase with stress magnitude, and even preloading times of several days do not exhaust the structural dynamics under load. A model Lennard-Jones glass under shear deformation replicates many of the features revealed with XPCS, indicating that local and heterogeneous microplastic events can cause the strongly non-monotonous spectrum of relaxation times. Thermal annealing of metallic glasses is known to cause a universal increase of the relaxation time with sample age. Here, however, the authors show how a mechanical stress disrupts this universal response, leading to highly non-monotonous structural dynamics with time.
Collapse
Affiliation(s)
- Amlan Das
- Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Peter M Derlet
- Condensed Matter Theory Group, Paul Scherrer Institute, Villigen, PSI, 5232, Switzerland
| | - Chaoyang Liu
- Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Eric M Dufresne
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Robert Maaß
- Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| |
Collapse
|