1
|
Mattingly HH. Coarse-graining bacterial diffusion in disordered media to surface states. Proc Natl Acad Sci U S A 2025; 122:e2407313122. [PMID: 40117317 PMCID: PMC11962488 DOI: 10.1073/pnas.2407313122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Bacterial motility in spatially structured environments impacts a variety of natural and engineering processes. Constructing models to predict, control, and design bacterial motility for these processes remains challenging because bacteria and active swimmers have complex interactions with surfaces and because the precise environment geometry is unknown. Here, we present a method for deriving bacterial diffusion coefficients in disordered media in terms of cell and environmental parameters. The approach abstracts the dynamics in the full geometry to "surface states," which encode how cells interact with surfaces in the environment. Then, a long-time diffusion equation can be derived analytically from the state model. Applying this method to a run-and-tumble particle in a 2D Lorentz gas environment provides analytical predictions that show good agreement with particle simulations. Like past studies, we observe that the diffusivity depends nonmonotonically on the cell's run length. Using the analytical expressions, we derive the optimal run length, revealing an intuitive dependence on environmental length scales. Furthermore, we find that rescaling length and time by the average distance and time between trap events collapses all of the diffusivities onto a single curve, which we derive analytically. Thus, our approach extracts interpretable, macroscopic diffusive behavior from complex microscopic dynamics, and provides tools and intuitions for understanding bacterial diffusion in disordered media.
Collapse
Affiliation(s)
- Henry H. Mattingly
- Center for Computational Biology, Flatiron Institute, New York City, NY10010
| |
Collapse
|
2
|
Li MY, Zheng N, Li YW. Migration of an active particle in mixtures of rigid and flexible rings. Phys Rev E 2025; 111:035412. [PMID: 40247538 DOI: 10.1103/physreve.111.035412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/07/2025] [Indexed: 04/19/2025]
Abstract
The migration of active particles in slowly moving, crowded, and heterogeneous media is fundamental to various biological processes and technological applications. In this study, we numerically investigate the dynamics of a single active particle in a multicomponent medium composed of mixtures of rigid and flexible rings. We observe a nonmonotonic dependence of diffusivity on the relative fraction of rigid to flexible rings, leading to the identification of an optimal composition for enhanced diffusion. This long-time nonmonotonic diffusion, resulting from the different responses of the active particle to rigid and flexible rings, is coupled with transient short-time trapping. The probability distribution of trapping durations is well described by the herein-proposed extended entropic-trap model. We further theoretically establish a universal relationship between particle activity and the optimal rigid-to-flexible ring ratio for diffusion, which aligns closely with our numerical results.
Collapse
Affiliation(s)
- Meng-Yuan Li
- Beijing Institute of Technology, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing 100081, China
| | - Ning Zheng
- Beijing Institute of Technology, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing 100081, China
| | - Yan-Wei Li
- Beijing Institute of Technology, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing 100081, China
| |
Collapse
|
3
|
Goswami K, Cherstvy AG, Godec A, Metzler R. Anomalous diffusion of active Brownian particles in responsive elastic gels: Nonergodicity, non-Gaussianity, and distributions of trapping times. Phys Rev E 2024; 110:044609. [PMID: 39562954 DOI: 10.1103/physreve.110.044609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/24/2024] [Indexed: 11/21/2024]
Abstract
Understanding actual transport mechanisms of self-propelled particles (SPPs) in complex elastic gels-such as in the cell cytoplasm, in in vitro networks of chromatin or of F-actin fibers, or in mucus gels-has far-reaching consequences. Implications beyond biology/biophysics are in engineering and medicine, with a particular focus on microrheology and on targeted drug delivery. Here, we examine via extensive computer simulations the dynamics of SPPs in deformable gellike structures responsive to thermal fluctuations. We treat tracer particles comparable to and larger than the mesh size of the gel. We observe distinct trapping events of active tracers at relatively short times, leading to subdiffusion; it is followed by an escape from meshwork-induced traps due to the flexibility of the network, resulting in superdiffusion. We thus find crossovers between different transport regimes. We also find pronounced nonergodicity in the dynamics of SPPs and non-Gaussianity at intermediate times. The distributions of trapping times of the tracers escaping from "cages" in our quasiperiodic gel often reveal the existence of two distinct timescales in the dynamics. At high activity of the tracers these timescales become comparable. Furthermore, we find that the mean waiting time exhibits a power-law dependence on the activity of SPPs (in terms of their Péclet number). Our results additionally showcase both exponential and nonexponential trapping events at high activities. Extensions of this setup are possible, with the factors such as anisotropy of the particles, different topologies of the gel network, and various interactions between the particles (also of a nonlocal nature) to be considered.
Collapse
|
4
|
Jin C, Sengupta A. Microbes in porous environments: from active interactions to emergent feedback. Biophys Rev 2024; 16:173-188. [PMID: 38737203 PMCID: PMC11078916 DOI: 10.1007/s12551-024-01185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Microbes thrive in diverse porous environments-from soil and riverbeds to human lungs and cancer tissues-spanning multiple scales and conditions. Short- to long-term fluctuations in local factors induce spatio-temporal heterogeneities, often leading to physiologically stressful settings. How microbes respond and adapt to such biophysical constraints is an active field of research where considerable insight has been gained over the last decades. With a focus on bacteria, here we review recent advances in self-organization and dispersal in inorganic and organic porous settings, highlighting the role of active interactions and feedback that mediates microbial survival and fitness. We discuss open questions and opportunities for using integrative approaches to advance our understanding of the biophysical strategies which microbes employ at various scales to make porous settings habitable.
Collapse
Affiliation(s)
- Chenyu Jin
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162 A, Avenue de la Faïencerie, Luxembourg City, L-1511 Luxembourg
| | - Anupam Sengupta
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162 A, Avenue de la Faïencerie, Luxembourg City, L-1511 Luxembourg
- Institute for Advanced Studies, University of Luxembourg, 2 Avenue de l’Université, Esch-sur-Alzette, L-4365 Luxembourg
| |
Collapse
|
5
|
Bassu G, Laurati M, Fratini E. Transition from active motion to anomalous diffusion for Bacillus subtilis confined in hydrogel matrices. Colloids Surf B Biointerfaces 2024; 236:113797. [PMID: 38431996 DOI: 10.1016/j.colsurfb.2024.113797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/06/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024]
Abstract
We investigate the motility of B. subtilis under different degrees of confinement induced by transparent porous hydrogels. The dynamical behavior of the bacteria at short times is linked to characteristic parameters describing the hydrogel porosity. Mean squared displacements (MSDs) reveal that the run-and-tumble dynamics of unconfined B. subtilis progressively turns into sub-diffusive motion with increasing confinement. Correspondingly, the median instantaneous velocity of bacteria decreases and becomes more narrowly distributed, while the reorientation rate increases and reaches a plateau value. Analyzing single-trajectories, we show that the average dynamical behavior is the result of complex displacements, in which active, diffusive and sub-diffusive segments coexist. For small and moderate confinements, the number of active segments reduces, while the diffusive and sub-diffusive segments increase. The alternation of sub-diffusion, diffusion and active motion along the same trajectory can be described as a hopping ad trapping motion, in which hopping events correspond to displacements with an instantaneous velocity exceeding the corresponding mean value along a trajectory. Different from previous observations, escape from local trapping occurs for B. subtilis through active runs but also diffusion. Interestingly, the contribution of diffusion is maximum at intermediate confinements. At sufficiently long times transport coefficients estimated from the experimental MSDs under different degrees of confinement can be reproduced using a recently proposed hopping and trapping model. Finally, we propose a quantitative relationship linking the median velocity of confined and unconfined bacteria through the characteristic confinement length of the hydrogel matrix. Our work provides new insights for the bacterial motility in complex media that mimic natural environments and are relevant to important problems like sterilization, water purification, biofilm formation, membrane permeation and bacteria separation.
Collapse
Affiliation(s)
- Gavino Bassu
- Department of Chemistry "Ugo Schiff", Via della Lastruccia 3, Sesto Fiorentino 50019, Italy; Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)), Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Marco Laurati
- Department of Chemistry "Ugo Schiff", Via della Lastruccia 3, Sesto Fiorentino 50019, Italy; Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)), Via della Lastruccia 3, Sesto Fiorentino 50019, Italy.
| | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff", Via della Lastruccia 3, Sesto Fiorentino 50019, Italy; Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)), Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| |
Collapse
|
6
|
Chakraborty T, Pradhan P. Time-dependent properties of run-and-tumble particles. II. Current fluctuations. Phys Rev E 2024; 109:044135. [PMID: 38755901 DOI: 10.1103/physreve.109.044135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/19/2024] [Indexed: 05/18/2024]
Abstract
We investigate steady-state current fluctuations in two models of hardcore run-and-tumble particles (RTPs) on a periodic one-dimensional lattice of L sites, for arbitrary tumbling rate γ=τ_{p}^{-1} and density ρ; model I consists of standard hardcore RTPs, while model II is an analytically tractable variant of model I, called a long-ranged lattice gas (LLG). We show that, in the limit of L large, the fluctuation of cumulative current Q_{i}(T,L) across the ith bond in a time interval T≫1/D grows first subdiffusively and then diffusively (linearly) with T: 〈Q_{i}^{2}〉∼T^{α} with α=1/2 for 1/D≪T≪L^{2}/D and α=1 for T≫L^{2}/D, where D(ρ,γ) is the collective- or bulk-diffusion coefficient; at small times T≪1/D, exponent α depends on the details. Remarkably, regardless of the model details, the scaled bond-current fluctuations D〈Q_{i}^{2}(T,L)〉/2χL≡W(y) as a function of scaled variable y=DT/L^{2} collapse onto a universal scaling curve W(y), where χ(ρ,γ) is the collective particle mobility. In the limit of small density and tumbling rate, ρ,γ→0, with ψ=ρ/γ fixed, there exists a scaling law: The scaled mobility γ^{a}χ(ρ,γ)/χ^{(0)}≡H(ψ) as a function of ψ collapses onto a scaling curve H(ψ), where a=1 and 2 in models I and II, respectively, and χ^{(0)} is the mobility in the limiting case of a symmetric simple exclusion process; notably, the scaling function H(ψ) is model dependent. For model II (LLG), we calculate exactly, within a truncation scheme, both the scaling functions, W(y) and H(ψ). We also calculate spatial correlation functions for the current and compare our theory with simulation results of model I; for both models, the correlation functions decay exponentially, with correlation length ξ∼τ_{p}^{1/2} diverging with persistence time τ_{p}≫1. Overall, our theory is in excellent agreement with simulations and complements the prior findings [T. Chakraborty and P. Pradhan, Phys. Rev. E 109, 024124 (2024)1539-375510.1103/PhysRevE.109.024124].
Collapse
Affiliation(s)
- Tanmoy Chakraborty
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Punyabrata Pradhan
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
7
|
Cruz JM, Díaz-Hernández O, Castañeda-Jonapá A, Morales-Padrón G, Estudillo A, Salgado-García R. Active chiral dynamics and boundary accumulation phenomenon in confined camphor particles. SOFT MATTER 2024; 20:1199-1209. [PMID: 38226731 DOI: 10.1039/d3sm01407j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
In this work, we perform experimental and numerical investigations on the dynamics of camphor-infused discs, well-established as active particles in their behavior. Our analysis focuses on examining the individual dynamics of these discs within a confined circular domain, revealing that they exhibit characteristics akin to active chiral particles. To characterize this behavior effectively, we introduce a methodology for estimating key model parameter values from our experiments, including linear velocity, angular velocity, and angular noise intensity. To validate our findings, we compare our experimental results with numerical simulations of the model. Our results demonstrate a striking phenomenon associated with camphor-infused discs: a pronounced accumulation of particles along the boundary. This intriguing observation suggests the occurrence of an attractive interaction between the active particles and the boundary, resulting in a kind of adsorption effect. The latter results in the confinement of the camphor disc along the Petri dish wall, which we refer to as sliding dynamics. We empirically determine the velocity of the particle along the Petri dish wall as well as its fluctuations, properties whose behavior notably deviates from the bulk dynamics.
Collapse
Affiliation(s)
- José-Manuel Cruz
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Orlando Díaz-Hernández
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Andrés Castañeda-Jonapá
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Gustavo Morales-Padrón
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Alberto Estudillo
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Raúl Salgado-García
- Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Colonia Chamilpa, 62209, Cuernavaca Morelos, Mexico.
| |
Collapse
|
8
|
Chakraborty T, Pradhan P. Time-dependent properties of run-and-tumble particles: Density relaxation. Phys Rev E 2024; 109:024124. [PMID: 38491605 DOI: 10.1103/physreve.109.024124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/03/2024] [Indexed: 03/18/2024]
Abstract
We characterize collective diffusion of hardcore run-and-tumble particles (RTPs) by explicitly calculating the bulk-diffusion coefficient D(ρ,γ) for arbitrary density ρ and tumbling rate γ, in systems on a d-dimensional periodic lattice. We study two minimal models of RTPs: Model I is the standard version of hardcore RTPs introduced in [Phys. Rev. E 89, 012706 (2014)10.1103/PhysRevE.89.012706], whereas model II is a long-ranged lattice gas (LLG) with hardcore exclusion, an analytically tractable variant of model I. We calculate the bulk-diffusion coefficient analytically for model II and numerically for model I through an efficient Monte Carlo algorithm; notably, both models have qualitatively similar features. In the strong-persistence limit γ→0 (i.e., dimensionless ratio r_{0}γ/v→0), with v and r_{0} being the self-propulsion speed and particle diameter, respectively, the fascinating interplay between persistence and interaction is quantified in terms of two length scales: (i) persistence length l_{p}=v/γ and (ii) a "mean free path," being a measure of the average empty stretch or gap size in the hopping direction. We find that the bulk-diffusion coefficient varies as a power law in a wide range of density: D∝ρ^{-α}, with exponent α gradually crossing over from α=2 at high densities to α=0 at low densities. As a result, the density relaxation is governed by a nonlinear diffusion equation with anomalous spatiotemporal scaling. In the thermodynamic limit, we show that the bulk-diffusion coefficient-for ρ,γ→0 with ρ/γ fixed-has a scaling form D(ρ,γ)=D^{(0)}F(ρav/γ), where a∼r_{0}^{d-1} is particle cross section and D^{(0)} is proportional to the diffusion coefficient of noninteracting particles; the scaling function F(ψ) is calculated analytically for model II (LLG) and numerically for model I. Our arguments are independent of dimensions and microscopic details.
Collapse
Affiliation(s)
- Tanmoy Chakraborty
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Punyabrata Pradhan
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
9
|
Saintillan D. Dispersion of run-and-tumble microswimmers through disordered media. Phys Rev E 2023; 108:064608. [PMID: 38243487 DOI: 10.1103/physreve.108.064608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/20/2023] [Indexed: 01/21/2024]
Abstract
Understanding the transport properties of microorganisms and self-propelled particles in porous media has important implications for human health as well as microbial ecology. In free space, most microswimmers perform diffusive random walks as a result of the interplay of self-propulsion and orientation decorrelation mechanisms such as run-and-tumble dynamics or rotational diffusion. In an unstructured porous medium, collisions with the microstructure result in a decrease in the effective spatial diffusivity of the particles from its free-space value. Here, we analyze this problem for a simple model system consisting of noninteracting point particles performing run-and-tumble dynamics through a two-dimensional disordered medium composed of a random distribution of circular obstacles, in the absence of Brownian diffusion or hydrodynamic interactions. The particles are assumed to collide with the obstacles as hard spheres and subsequently slide on the obstacle surface with no frictional resistance while maintaining their orientation, until they either escape or tumble. We show that the variations in the long-time diffusivity can be described by a universal dimensionless hindrance function f(ϕ,Pe) of the obstacle area fraction ϕ and Péclet number Pe, or ratio of the swimmer run length to the obstacle size. We analytically derive an asymptotic expression for the hindrance function valid for dilute media (Peϕ≪1), and its extension to denser media is obtained using stochastic simulations. As we explain, the model is also easily generalized to describe dispersion in three dimensions.
Collapse
Affiliation(s)
- David Saintillan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
10
|
Lohrmann C, Holm C. Optimal motility strategies for self-propelled agents to explore porous media. Phys Rev E 2023; 108:054401. [PMID: 38115480 DOI: 10.1103/physreve.108.054401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/12/2023] [Indexed: 12/21/2023]
Abstract
Microrobots for, e.g., biomedical applications, need to be equipped with motility strategies that enable them to navigate through complex environments. Inspired by biological microorganisms we re-create motility patterns such as run-and-reverse, run-and-tumble, or run-reverse-flick applied to active rodlike particles in silico. We investigate their capability to efficiently explore disordered porous environments with various porosities and mean pore sizes ranging down to the scale of the active particle. By calculating the effective diffusivity for the different patterns, we can predict the optimal one for each porous sample geometry. We find that providing the agent with very basic sensing and decision-making capabilities yields a motility pattern outperforming the biologically inspired patterns for all investigated porous samples.
Collapse
Affiliation(s)
- Christoph Lohrmann
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
11
|
Alston H, Parry AO, Voituriez R, Bertrand T. Intermittent attractive interactions lead to microphase separation in nonmotile active matter. Phys Rev E 2022; 106:034603. [PMID: 36266896 DOI: 10.1103/physreve.106.034603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Nonmotile active matter exhibits a wide range of nonequilibrium collective phenomena yet examples are crucially lacking in the literature. We present a microscopic model inspired by the bacteria Neisseria meningitidis in which diffusive agents feel intermittent attractive forces. Through a formal coarse-graining procedure, we show that this truly scalar model of active matter exhibits the time-reversal-symmetry breaking terms defining the Active Model B+ class. In particular, we confirm the presence of microphase separation by solving the kinetic equations numerically. We show that the switching rate controlling the interactions provides a regulation mechanism tuning the typical cluster size, e.g., in populations of bacteria interacting via type IV pili.
Collapse
Affiliation(s)
- Henry Alston
- Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2BZ, United Kingdom
| | - Andrew O Parry
- Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2BZ, United Kingdom
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 CNRS/UPMC, 4 Place Jussieu, 75255 Paris Cedex, France
- Laboratoire Jean Perrin, UMR 8237 CNRS/UPMC, 4 Place Jussieu, 75255 Paris Cedex, France
| | - Thibault Bertrand
- Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2BZ, United Kingdom
| |
Collapse
|
12
|
Li W, Li L, Shi Q, Yang M, Zheng N. Chiral separation of rotating robots through obstacle arrays. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Irani E, Mokhtari Z, Zippelius A. Dynamics of Bacteria Scanning a Porous Environment. PHYSICAL REVIEW LETTERS 2022; 128:144501. [PMID: 35476466 DOI: 10.1103/physrevlett.128.144501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
It has recently been reported that bacteria, such as Escherichia coli Bhattacharjee and Datta, Nat. Commun. 10, 2075 (2019).NCAOBW2041-172310.1038/s41467-019-10115-1 and Pseudomonas putida Alirezaeizanjani et al., Sci. Adv. 6, eaaz6153 (2020).SACDAF2375-254810.1126/sciadv.aaz6153, perform distinct modes of motion when placed in porous media as compared to dilute regions or free space. This has led us to suggest an efficient strategy for active particles in a disordered environment: reorientations are suppressed in locally dilute regions and intensified in locally dense ones. Thereby the local geometry determines the optimal path of the active agent and substantially accelerates the dynamics for up to 2 orders of magnitude. We observe a nonmonotonic behavior of the diffusion coefficient in dependence on the tumbling rate and identify a localization transition, either by increasing the density of obstacles or by decreasing the reorientation rate.
Collapse
Affiliation(s)
- Ehsan Irani
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), The Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Zahra Mokhtari
- Freie Universität Berlin, Department of Mathematics and Computer Science, Institute of Mathematics, Arnimallee 9, 14195 Berlin, Germany
| | - Annette Zippelius
- Georg-August-Universität Göttingen, Institut für Theoretische Physik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
14
|
Rizkallah P, Sarracino A, Bénichou O, Illien P. Microscopic Theory for the Diffusion of an Active Particle in a Crowded Environment. PHYSICAL REVIEW LETTERS 2022; 128:038001. [PMID: 35119883 DOI: 10.1103/physrevlett.128.038001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
We calculate the diffusion coefficient of an active tracer in a schematic crowded environment, represented as a lattice gas of passive particles with hardcore interactions. Starting from the master equation of the problem, we put forward a closure approximation that goes beyond trivial mean field and provides the diffusion coefficient for an arbitrary density of crowders in the system. We show that our approximation is accurate for a very wide range of parameters, and that it correctly captures numerous nonequilibrium effects, which are the signature of the activity in the system. In addition to the determination of the diffusion coefficient of the tracer, our approach allows us to characterize the perturbation of the environment induced by the displacement of the active tracer. Finally, we consider the asymptotic regimes of low and high densities, in which the expression of the diffusion coefficient of the tracer becomes explicit, and which we argue to be exact.
Collapse
Affiliation(s)
- Pierre Rizkallah
- Sorbonne Université, CNRS, Laboratoire de Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Alessandro Sarracino
- Dipartimento di Ingegneria, Università della Campania "Luigi Vanvitelli", 81031 Aversa (CE), Italy
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Laboratoire de Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
15
|
Kurzthaler C, Mandal S, Bhattacharjee T, Löwen H, Datta SS, Stone HA. A geometric criterion for the optimal spreading of active polymers in porous media. Nat Commun 2021; 12:7088. [PMID: 34873164 PMCID: PMC8648790 DOI: 10.1038/s41467-021-26942-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/21/2021] [Indexed: 11/26/2022] Open
Abstract
Efficient navigation through disordered, porous environments poses a major challenge for swimming microorganisms and future synthetic cargo-carriers. We perform Brownian dynamics simulations of active stiff polymers undergoing run-reverse dynamics, and so mimic bacterial swimming, in porous media. In accord with experiments of Escherichia coli, the polymer dynamics are characterized by trapping phases interrupted by directed hopping motion through the pores. Our findings show that the spreading of active agents in porous media can be optimized by tuning their run lengths, which we rationalize using a coarse-grained model. More significantly, we discover a geometric criterion for the optimal spreading, which emerges when their run lengths are comparable to the longest straight path available in the porous medium. Our criterion unifies results for porous media with disparate pore sizes and shapes and for run-and-tumble polymers. It thus provides a fundamental principle for optimal transport of active agents in densely-packed biological and environmental settings.
Collapse
Affiliation(s)
- Christina Kurzthaler
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA.
| | - Suvendu Mandal
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany.
- Institut für Physik der kondensierten Materie, Technische Universität Darmstadt, 64289, Darmstadt, Germany.
| | - Tapomoy Bhattacharjee
- The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
16
|
Casiulis M, Hexner D, Levine D. Self-propulsion and self-navigation: Activity is a precursor to jamming. Phys Rev E 2021; 104:064614. [PMID: 35030902 DOI: 10.1103/physreve.104.064614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Traffic jams are an everyday hindrance to transport and typically arise when many vehicles have the same or a similar destination. We show, however, that even when uniformly distributed in space and uncorrelated, targets have a crucial effect on transport. At modest densities an instability arises leading to jams with emergent correlations between the targets. By considering limiting cases of the dynamics which map onto active Brownian particles, we argue that motility induced phase separation is the precursor to jams. That is, jams are MIPS seeds that undergo an extra instability due to target accumulation. This provides a quantitative prediction of the onset density for jamming, and suggests how jamming might be delayed or prevented. We study the transition between jammed and flowing phase, and find that transport is most efficient on the cusp of jamming.
Collapse
Affiliation(s)
| | - Daniel Hexner
- Department of Mechanical Engineering, Technion-IIT, 32000 Haifa, Israel
| | - Dov Levine
- Department of Physics, Technion-IIT, 32000 Haifa, Israel
| |
Collapse
|
17
|
Zhang B, Tan F, Zhao N. Polymer looping kinetics in active heterogeneous environments. SOFT MATTER 2021; 17:10334-10349. [PMID: 34734953 DOI: 10.1039/d1sm01259b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A typical biological environment is usually featured by crowding and heterogeneity, leading to complex reaction kinetics of the immersed macromolecules. In the present work, we adopt Langevin dynamics simulations to systematically investigate polymer looping kinetics in active heterogeneous media crowded with a mixture of mobile active particles and immobile obstacles. For comparison, a parallel study is also performed in the passive heterogeneous media. We explicitly analyze the change of looping time and looping probability with the variation of obstacle ratio, volume fraction and crowder size. We reveal the novel phenomena of inhibition-facilitation transition of the looping rate induced by heterogeneity, crowdedness and activity. In addition, our results demonstrate a very non-trivial crowder size effect on the looping kinetics. The underlying mechanism is rationalized by the interplay of polymer diffusion, conformational change and looping free-energy barrier. The competing effect arising from active particles and obstacles on structural and dynamical properties of the polymer yields a consistent scenario for our observations. Lastly, the non-exponential kinetics of the looping process is also analyzed. We find that both activity and crowding can strengthen the heterogeneity degree of the looping kinetics.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Fei Tan
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
18
|
Forgács P, Libál A, Reichhardt C, Reichhardt CJO. Active matter shepherding and clustering in inhomogeneous environments. Phys Rev E 2021; 104:044613. [PMID: 34781504 DOI: 10.1103/physreve.104.044613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/08/2021] [Indexed: 11/07/2022]
Abstract
We consider a mixture of active and passive run-and-tumble disks in an inhomogeneous environment where only half of the sample contains quenched disorder or pinning. The disks are initialized in a fully mixed state of uniform density. We identify several distinct dynamical phases as a function of motor force and pinning density. At high pinning densities and high motor forces, there is a two-step process initiated by a rapid accumulation of both active and passive disks in the pinned region, which produces a large density gradient in the system. This is followed by a slower species phase separation process where the inactive disks are shepherded by the active disks into the pin-free region, forming a nonclustered fluid and producing a more uniform density with species phase separation. For higher pinning densities and low motor forces, the dynamics becomes very slow and the system maintains a strong density gradient. For weaker pinning and large motor forces, a floating clustered state appears, and the time-averaged density of the system is uniform. We illustrate the appearance of these phases in a dynamic phase diagram.
Collapse
Affiliation(s)
- P Forgács
- Mathematics and Computer Science Department, Babeş-Bolya University, Cluj 400084, Romania
| | - A Libál
- Mathematics and Computer Science Department, Babeş-Bolya University, Cluj 400084, Romania
| | - C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
19
|
Reichhardt C, Reichhardt CJO. Clogging, dynamics, and reentrant fluid for active matter on periodic substrates. Phys Rev E 2021; 103:062603. [PMID: 34271652 DOI: 10.1103/physreve.103.062603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
We examine the collective states of run-and-tumble active matter disks driven over a periodic obstacle array. When the drive is applied along a symmetry direction of the array, we find a clog-free uniform liquid state for low activity, while at higher activity, the density becomes increasingly heterogeneous and an active clogged state emerges in which the mobility is strongly reduced. For driving along nonsymmetry or incommensurate directions, there are two different clogging behaviors consisting of a drive-dependent clogged state in the low activity thermal limit and a drive-independent clogged state at high activity. These regimes are separated by a uniform flowing liquid at intermediate activity. There is a critical activity level above which the thermal clogged state does not occur, as well as an optimal activity level that maximizes the disk mobility. Thermal clogged states are dependent on the driving direction while active clogged states are not. In the low activity regime, diluting the obstacles produces a monotonic increase in the mobility; however, for large activities, the mobility is more robust against obstacle dilution. We also examine the velocity-force curves for driving along nonsymmetry directions and find that they are linear when the activity is low or intermediate but become nonlinear at high activity and show behavior similar to that found for the plastic depinning of solids. At higher drives, the active clustering is lost. For low activity, we also find a reentrant fluid phase, where the system transitions from a high mobility fluid at low drives to a clogged state at higher drives and then back into another fluid phase at very high drives. We map the regions in which the thermally clogged, partially clogged, active uniform fluid, clustered fluid, active clogged, and directionally locked states occur as a function of disk density, drift force, and activity.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
20
|
Shaebani MR, Jose R, Santen L, Stankevicins L, Lautenschläger F. Persistence-Speed Coupling Enhances the Search Efficiency of Migrating Immune Cells. PHYSICAL REVIEW LETTERS 2020; 125:268102. [PMID: 33449749 DOI: 10.1103/physrevlett.125.268102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Migration of immune cells within the human body allows them to fulfill their main function of detecting pathogens. We present experimental evidence showing the optimality of the search strategy of these cells, which is of crucial importance to achieve an efficient immune response. We find that the speed and directional persistence of migrating dendritic cells in our in vitro experiments are highly correlated, which enables them to reduce their search time. We introduce theoretically a new class of random search optimization problems by minimizing the mean first-passage time (MFPT) with respect to the strength of the coupling between influential parameters. We derive an analytical expression for the MFPT in a confined geometry and verify that the correlated motion enhances the search efficiency if the mean persistence length is sufficiently shorter than the confinement size. Our correlated search optimization approach provides an efficient searching recipe and predictive power in a broad range of correlated stochastic processes.
Collapse
Affiliation(s)
- M Reza Shaebani
- Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Robin Jose
- Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Ludger Santen
- Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | | | - Franziska Lautenschläger
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
21
|
Breoni D, Schmiedeberg M, Löwen H. Active Brownian and inertial particles in disordered environments: Short-time expansion of the mean-square displacement. Phys Rev E 2020; 102:062604. [PMID: 33465967 DOI: 10.1103/physreve.102.062604] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
We consider an active Brownian particle moving in a disordered two-dimensional energy or motility landscape. The averaged mean-square displacement (MSD) of the particle is calculated analytically within a systematic short-time expansion. As a result, for overdamped particles, both an external random force field and disorder in the self-propulsion speed induce ballistic behavior adding to the ballistic regime of an active particle with sharp self-propulsion speed. Spatial correlations in the force and motility landscape contribute only to the cubic and higher-order powers in time for the MSD. Finally, for inertial particles two superballistic regimes are found where the scaling exponent of the MSD with time is α=3 and α=4. We confirm our theoretical predictions by computer simulations. Moreover, they are verifiable in experiments on self-propelled colloids in random environments.
Collapse
Affiliation(s)
- Davide Breoni
- Institut für Theoretische Physik II: Weiche Materie, Heinrich Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Michael Schmiedeberg
- Institut für Theoretische Physik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
22
|
Reichhardt C, Reichhardt CJO. Directional locking effects for active matter particles coupled to a periodic substrate. Phys Rev E 2020; 102:042616. [PMID: 33212736 DOI: 10.1103/physreve.102.042616] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Directional locking occurs when a particle moving over a periodic substrate becomes constrained to travel along certain substrate symmetry directions. Such locking effects arise for colloids and superconducting vortices moving over ordered substrates when the direction of the external drive is varied. Here we study the directional locking of run-and-tumble active matter particles interacting with a periodic array of obstacles. In the absence of an external biasing force, we find that the active particle motion locks to various symmetry directions of the substrate when the run time between tumbles is large. The number of possible locking directions depends on the array density and on the relative sizes of the particles and the obstacles. For a square array of large obstacles, the active particle only locks to the x, y, and 45^{∘} directions, while for smaller obstacles, the number of locking angles increases. Each locking angle satisfies θ=arctan(p/q), where p and q are integers, and the angle of motion can be measured using the ratio of the velocities or the velocity distributions in the x and y directions. When a biasing driving force is applied, the directional locking behavior is affected by the ratio of the self-propulsion force to the biasing force. For large biasing, the behavior resembles that found for directional locking in passive systems. For large obstacles under biased driving, a trapping behavior occurs that is nonmonotonic as a function of increasing run length or increasing self-propulsion force, and the trapping diminishes when the run length is sufficiently large.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
23
|
Mandal S, Kurzthaler C, Franosch T, Löwen H. Crowding-Enhanced Diffusion: An Exact Theory for Highly Entangled Self-Propelled Stiff Filaments. PHYSICAL REVIEW LETTERS 2020; 125:138002. [PMID: 33034497 DOI: 10.1103/physrevlett.125.138002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/14/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
We study a strongly interacting crowded system of self-propelled stiff filaments by event-driven Brownian dynamics simulations and an analytical theory to elucidate the intricate interplay of crowding and self-propulsion. We find a remarkable increase of the effective diffusivity upon increasing the filament number density by more than one order of magnitude. This counterintuitive "crowded is faster" behavior can be rationalized by extending the concept of a confining tube pioneered by Doi and Edwards for highly entangled, crowded, passive to active systems. We predict a scaling theory for the effective diffusivity as a function of the Péclet number and the filament number density. Subsequently, we show that an exact expression derived for a single self-propelled filament with motility parameters as input can predict the nontrivial spatiotemporal dynamics over the entire range of length and timescales. In particular, our theory captures short-time diffusion, directed swimming motion at intermediate times, and the transition to complete orientational relaxation at long times.
Collapse
Affiliation(s)
- Suvendu Mandal
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Christina Kurzthaler
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
24
|
Schakenraad K, Ravazzano L, Sarkar N, Wondergem JAJ, Merks RMH, Giomi L. Topotaxis of active Brownian particles. Phys Rev E 2020; 101:032602. [PMID: 32289917 DOI: 10.1103/physreve.101.032602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/26/2020] [Indexed: 06/11/2023]
Abstract
Recent experimental studies have demonstrated that cellular motion can be directed by topographical gradients, such as those resulting from spatial variations in the features of a micropatterned substrate. This phenomenon, known as topotaxis, has been extensively studied for topographical gradients at the subcellular scale, but can also occur in the presence of a spatially varying density of cell-sized features. Such a large-scale topotaxis has recently been observed in highly motile cells that persistently crawl within an array of obstacles with smoothly varying lattice spacing. We introduce a toy model of large-scale topotaxis, based on active Brownian particles. Using numerical simulations and analytical arguments, we demonstrate that topographical gradients introduce a spatial modulation of the particles' persistence, leading to directed motion toward regions of higher persistence. Our results demonstrate that persistent motion alone is sufficient to drive large-scale topotaxis and could serve as a starting point for more detailed studies on self-propelled particles and cells.
Collapse
Affiliation(s)
- Koen Schakenraad
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
- Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
| | - Linda Ravazzano
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133 Milano, Italy
| | - Niladri Sarkar
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| | - Joeri A J Wondergem
- Kamerlingh Onnes-Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Roeland M H Merks
- Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Luca Giomi
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| |
Collapse
|
25
|
Wysocki A, Rieger H. Capillary Action in Scalar Active Matter. PHYSICAL REVIEW LETTERS 2020; 124:048001. [PMID: 32058737 DOI: 10.1103/physrevlett.124.048001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 06/10/2023]
Abstract
We study the capacity of active matter to rise in thin tubes against gravity and other related phenomena like wetting of vertical plates and spontaneous imbibition, where a wetting liquid is drawn into a porous medium. This capillary action or capillarity is well known in classical fluids and originates from attractive interactions between the liquid molecules and the container walls, and from the attraction of the liquid molecules among each other. We observe capillarity in a minimal model for scalar active matter with purely repulsive interactions, where an effective attraction emerges due to slowdown during collisions between active particles and between active particles and walls. Simulations indicate that the capillary rise in thin tubes is approximately proportional to the active sedimentation length λ and that the wetting height of a vertical plate grows superlinear with λ. In a disordered porous medium the imbibition height scales as ⟨h⟩∝λϕ_{m}, where ϕ_{m} is its packing fraction. These predictions are highly relevant for suspensions of sedimenting active colloids or motile bacteria in a porous medium under the influence of a constant force field.
Collapse
Affiliation(s)
- Adam Wysocki
- Department of Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken 66123, Germany
| | - Heiko Rieger
- Department of Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken 66123, Germany
| |
Collapse
|
26
|
Makarchuk S, Braz VC, Araújo NAM, Ciric L, Volpe G. Enhanced propagation of motile bacteria on surfaces due to forward scattering. Nat Commun 2019; 10:4110. [PMID: 31511558 PMCID: PMC6739365 DOI: 10.1038/s41467-019-12010-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022] Open
Abstract
How motile bacteria move near a surface is a problem of fundamental biophysical interest and is key to the emergence of several phenomena of biological, ecological and medical relevance, including biofilm formation. Solid boundaries can strongly influence a cell's propulsion mechanism, thus leading many flagellated bacteria to describe long circular trajectories stably entrapped by the surface. Experimental studies on near-surface bacterial motility have, however, neglected the fact that real environments have typical microstructures varying on the scale of the cells' motion. Here, we show that micro-obstacles influence the propagation of peritrichously flagellated bacteria on a flat surface in a non-monotonic way. Instead of hindering it, an optimal, relatively low obstacle density can significantly enhance cells' propagation on surfaces due to individual forward-scattering events. This finding provides insight on the emerging dynamics of chiral active matter in complex environments and inspires possible routes to control microbial ecology in natural habitats.
Collapse
Affiliation(s)
- Stanislaw Makarchuk
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Vasco C Braz
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
| | - Nuno A M Araújo
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
| | - Lena Ciric
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Giorgio Volpe
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
27
|
Mokhtari Z, Zippelius A. Dynamics of Active Filaments in Porous Media. PHYSICAL REVIEW LETTERS 2019; 123:028001. [PMID: 31386530 DOI: 10.1103/physrevlett.123.028001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Indexed: 06/10/2023]
Abstract
The motion of active polymers in a two-dimensional porous medium is shown to depend critically on flexibility, activity, and degree of polymerization. For a given Péclet number, we observe a transition from localization to diffusion as the stiffness of the chains is increased. Whereas stiff chains move almost unhindered through the porous medium, flexible ones spiral and get stuck. Their motion can be accounted for by the model of a continuous time random walk with a renewal process corresponding to unspiraling. The waiting time distribution is shown to develop heavy tails for decreasing stiffness, resulting in subdiffusive and ultimately caged behavior.
Collapse
Affiliation(s)
- Zahra Mokhtari
- Institute for Theoretical Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Annette Zippelius
- Institute for Theoretical Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
28
|
Ai BQ, Meng FH, He YL, Zhang XM. Flow and clogging of particles in shaking random obstacles. SOFT MATTER 2019; 15:3443-3450. [PMID: 30942807 DOI: 10.1039/c9sm00144a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transport of three types of particles (passive particles, active particles, and polar particles) is investigated in a random obstacle array in the presence of a dc drift force. The obstacles are static or synchronously shake along the given direction. When the obstacles are static, the average velocity is a peaked function of the dc drift force (negative differential mobility) for low particle density, while the average velocity monotonically increases with the dc drift force (positive differential mobility) for high particle density. Under the same conditions, passive particles are most likely to pass through the obstacles, while polar particles are easily trapped by the obstacles. The polar alignment can strongly reduce the overall mobility of particles. When the obstacles shake along the given direction, the optimal shaking frequency or amplitude can maximize the average velocity. It is more effective to reduce clogging for the transverse shaking than that for the longitudinal shaking.
Collapse
Affiliation(s)
- Bao-Quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.
| | | | | | | |
Collapse
|
29
|
Chatterjee R, Segall N, Merrigan C, Ramola K, Chakraborty B, Shokef Y. Motion of active tracer in a lattice gas with cross-shaped particles. J Chem Phys 2019; 150:144508. [DOI: 10.1063/1.5085769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Rakesh Chatterjee
- School of Mechanical Engineering and Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nimrod Segall
- School of Mechanical Engineering and Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Carl Merrigan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Kabir Ramola
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Bulbul Chakraborty
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Yair Shokef
- School of Mechanical Engineering and Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
30
|
Brun-Cosme-Bruny M, Bertin E, Coasne B, Peyla P, Rafaï S. Effective diffusivity of microswimmers in a crowded environment. J Chem Phys 2019; 150:104901. [DOI: 10.1063/1.5081507] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
| | - Eric Bertin
- University of Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - Benoît Coasne
- University of Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - Philippe Peyla
- University of Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - Salima Rafaï
- University of Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| |
Collapse
|
31
|
Jakuszeit T, Croze OA, Bell S. Diffusion of active particles in a complex environment: Role of surface scattering. Phys Rev E 2019; 99:012610. [PMID: 30780271 DOI: 10.1103/physreve.99.012610] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 11/07/2022]
Abstract
Experiments have shown that self-propelled particles can slide along the surface of a circular obstacle without becoming trapped over long times. Using simulations and theory, we study the impact of boundary conditions on the diffusive transport of active particles in an obstacle lattice. We find that particle dynamics with sliding boundary conditions result in large diffusivities even at high obstacle density, unlike classical specular reflection. These dynamics are very well described by a model based on run-and-tumble particles with microscopically derived reorientation functions arising from obstacle-induced tumbles. This model, however, fails to describe fine structure in the diffusivity at high obstacle density predicted by simulations for pusherlike collisions. Using a simple deterministic model, we show that this structure results from particles being guided by the lattice. Our results thus show how nonclassical surface scattering introduces a dependence on the lattice geometry at high densities. We discuss implications for the study of bacteria in complex environments.
Collapse
Affiliation(s)
- Theresa Jakuszeit
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Ottavio A Croze
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Samuel Bell
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
32
|
Reichhardt C, Thibault J, Papanikolaou S, Reichhardt CJO. Laning and clustering transitions in driven binary active matter systems. Phys Rev E 2018; 98:022603. [PMID: 30253470 DOI: 10.1103/physreve.98.022603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 06/08/2023]
Abstract
It is well known that a binary system of nonactive disks that experience driving in opposite directions exhibits jammed, phase separated, disordered, and laning states. In active matter systems, such as a crowd of pedestrians, driving in opposite directions is common and relevant, especially in conditions which are characterized by high pedestrian density and emergency. In such cases, the transition from laning to disordered states may be associated with the onset of a panic state. We simulate a laning system containing active disks that obey run-and-tumble dynamics, and we measure the drift mobility and structure as a function of run length, disk density, and drift force. The activity of each disk can be quantified based on the correlation timescale of the velocity vector. We find that in some cases, increasing the activity can increase the system mobility by breaking up jammed configurations; however, an activity level that is too high can reduce the mobility by increasing the probability of disk-disk collisions. In the laning state, the increase of activity induces a sharp transition to a disordered strongly fluctuating state with reduced mobility. We identify a novel drive-induced clustered laning state that remains stable even at densities below the activity-induced clustering transition of the undriven system. We map out the dynamic phase diagrams highlighting transitions between the different phases as a function of activity, drive, and density.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J Thibault
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Department of Mechanical and Aerospace Engineering, Western Virginia University, Morgantown, West Virginia 26506, USA
| | - S Papanikolaou
- Department of Mechanical and Aerospace Engineering, Western Virginia University, Morgantown, West Virginia 26506, USA
- Department of Physics, Western Virginia University, Morgantown, West Virginia 26506, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
33
|
Cecconi F, Puglisi A, Sarracino A, Vulpiani A. Anomalous mobility of a driven active particle in a steady laminar flow. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:264002. [PMID: 29762125 DOI: 10.1088/1361-648x/aac4f0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We study, via extensive numerical simulations, the force-velocity curve of an active particle advected by a steady laminar flow, in the nonlinear response regime. Our model for an active particle relies on a colored noise term that mimics its persistent motion over a time scale [Formula: see text]. We find that the active particle dynamics shows non-trivial effects, such as negative differential and absolute mobility (NDM and ANM, respectively). We explore the space of the model parameters and compare the observed behaviors with those obtained for a passive particle ([Formula: see text]) advected by the same laminar flow. Our results show that the phenomena of NDM and ANM are quite robust with respect to the details of the considered noise: in particular for finite [Formula: see text] a more complex force-velocity relation can be observed.
Collapse
Affiliation(s)
- F Cecconi
- CNR-ISC and Dipartimento di Fisica, Sapienza Università di Roma, p.le A. Moro 2, 00185 Roma, Italy
| | | | | | | |
Collapse
|
34
|
Reichhardt C, Reichhardt CJO. Clogging and depinning of ballistic active matter systems in disordered media. Phys Rev E 2018; 97:052613. [PMID: 29906960 DOI: 10.1103/physreve.97.052613] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 06/08/2023]
Abstract
We numerically examine ballistic active disks driven through a random obstacle array. Formation of a pinned or clogged state occurs at much lower obstacle densities for the active disks than for passive disks. As a function of obstacle density, we identify several distinct phases including a depinned fluctuating cluster state, a pinned single-cluster or jammed state, a pinned multicluster state, a pinned gel state, and a pinned disordered state. At lower active disk densities, a drifting uniform liquid forms in the absence of obstacles, but when even a small number of obstacles are introduced, the disks organize into a pinned phase-separated cluster state in which clusters nucleate around the obstacles, similar to a wetting phenomenon. We examine how the depinning threshold changes as a function of disk or obstacle density and find a crossover from a collectively pinned cluster state to a disordered plastic depinning transition as a function of increasing obstacle density. We compare this to the behavior of nonballistic active particles and show that as we vary the activity from completely passive to completely ballistic, a clogged phase-separated state appears in both the active and passive limits, while for intermediate activity, a readily flowing liquid state appears and there is an optimal activity level that maximizes the flux through the sample.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|