1
|
Zheng G, Zhu Y, Mozaffari S, Mao N, Chen KW, Jenkins K, Zhang D, Chan A, Arachchige HWS, Madhogaria RP, Cothrine M, Meier WR, Zhang Y, Mandrus D, Li L. Quantum oscillations evidence for topological bands in kagome metal ScV 6Sn 6. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:215501. [PMID: 38335546 DOI: 10.1088/1361-648x/ad2803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
Metals with kagome lattice provide bulk materials to host both the flat-band and Dirac electronic dispersions. A new family of kagome metals is recently discovered inAV6Sn6. The Dirac electronic structures of this material needs more experimental evidence to confirm. In the manuscript, we investigate this problem by resolving the quantum oscillations in both electrical transport and magnetization in ScV6Sn6. The revealed orbits are consistent with the electronic band structure models. Furthermore, the Berry phase of a dominating orbit is revealed to be aroundπ, providing direct evidence for the topological band structure, which is consistent with calculations. Our results demonstrate a rich physics and shed light on the correlated topological ground state of this kagome metal.
Collapse
Affiliation(s)
- Guoxin Zheng
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Yuan Zhu
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Shirin Mozaffari
- Materials Science and Engineering Department, University of Tennessee Knoxville, Knoxville, TN 37996, United States of America
| | - Ning Mao
- Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany
| | - Kuan-Wen Chen
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Kaila Jenkins
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Dechen Zhang
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Aaron Chan
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Hasitha W Suriya Arachchige
- Materials Science and Engineering Department, University of Tennessee Knoxville, Knoxville, TN 37996, United States of America
| | - Richa P Madhogaria
- Materials Science and Engineering Department, University of Tennessee Knoxville, Knoxville, TN 37996, United States of America
| | - Matthew Cothrine
- Materials Science and Engineering Department, University of Tennessee Knoxville, Knoxville, TN 37996, United States of America
| | - William R Meier
- Materials Science and Engineering Department, University of Tennessee Knoxville, Knoxville, TN 37996, United States of America
| | - Yang Zhang
- Department of Physics and Astronomy, University of Tennessee Knoxville, Knoxville, TN 37996, United States of America
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, United States of America
| | - David Mandrus
- Materials Science and Engineering Department, University of Tennessee Knoxville, Knoxville, TN 37996, United States of America
- Department of Physics and Astronomy, University of Tennessee Knoxville, Knoxville, TN 37996, United States of America
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Lu Li
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
2
|
Kong XP, Jiang T, Gao J, Shi X, Shao J, Yuan Y, Qiu HJ, Zhao W. Development of a Ni-Doped VAl 3 Topological Semimetal with a Significantly Enhanced HER Catalytic Performance. J Phys Chem Lett 2021; 12:3740-3748. [PMID: 33844544 DOI: 10.1021/acs.jpclett.1c00238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Topological materials with robust topological surface states appear to be well-suited as electrochemical catalysts. However, few studies have been published on the development of non-noble metal topological catalysts, most likely because the topological properties tend to be attributed to the s and p orbital electrons, while transition-metal catalysis mainly involves d orbital electrons. Herein, we proposed a topological semimetallic (TSM) compound, VAl3, with a surface state consisting mainly of d orbital electrons, as an electrocatalyst for the hydrogen evolution reaction (HER). Density functional theory (DFT) calculations showed that the surface state electrons enhanced the adsorption of H atoms. Moreover, the transfer of surface state electrons between the surface and adsorbed H atoms was optimized through nickel doping. We experimentally prepared single-crystals VAl3 and V0.75Ni0.25Al3 alloys. Electrochemical analysis showed that not only did V0.75Ni0.25Al3 outperform VAl3 but also it was among the best non-noble metal topological HER electrocatalysts currently available.
Collapse
Affiliation(s)
- Xiang-Peng Kong
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Tao Jiang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - JiaoJiao Gao
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Xianbiao Shi
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Jian Shao
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Yunhuan Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Hua-Jun Qiu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - WeiWei Zhao
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
3
|
Abstract
Understanding the relation between crystal structure and electronic properties is crucial for designing new quantum materials with desired functionality. So far, controlling a chemical bond is less considered as an effective way to manipulate the topological electrons. In this paper, we show that the V–Al bond acts as a shield for protecting the topological electrons in Dirac semimetal VAl3. The Dirac electrons remain intact in the V1−xTixAl3 solid solutions, even after a substantial part of V atoms have been replaced. A Lifshitz transition from Dirac semimetal to trivial metal occurs as long as the V–Al bond is completely broken. Our finding highlights a rational approach for designing new quantum materials via controlling their chemical bond. Topological electrons in semimetals are usually vulnerable to chemical doping and environment change, which restricts their potential application in future electronic devices. In this paper, we report that the type-II Dirac semimetal VAl3 hosts exceptional, robust topological electrons which can tolerate extreme change of chemical composition. The Dirac electrons remain intact, even after a substantial part of V atoms have been replaced in the V1−xTixAl3 solid solutions. This Dirac semimetal state ends at x=0.35, where a Lifshitz transition to p-type trivial metal occurs. The V–Al bond is completely broken in this transition as long as the bonding orbitals are fully depopulated by the holes donated from Ti substitution. In other words, the Dirac electrons in VAl3 are protected by the V–Al bond, whose molecular orbital is their bonding gravity center. Our understanding on the interrelations among electron count, chemical bond, and electronic properties in topological semimetals suggests a rational approach to search robust, chemical-bond-protected topological materials.
Collapse
|
4
|
Wu X, Li X, Zhang RY, Xiang X, Tian J, Huang Y, Wang S, Hou B, Chan CT, Wen W. Deterministic Scheme for Two-Dimensional Type-II Dirac Points and Experimental Realization in Acoustics. PHYSICAL REVIEW LETTERS 2020; 124:075501. [PMID: 32142315 DOI: 10.1103/physrevlett.124.075501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Low-energy electrons near Dirac/Weyl nodal points mimic massless relativistic fermions. However, as they are not constrained by Lorentz invariance, they can exhibit tipped-over type-II Dirac/Weyl cones that provide highly anisotropic physical properties and responses, creating unique possibilities. Recently, they have been observed in several quantum and classical systems. Yet, there is still no simple and deterministic strategy to realize them since their nodal points are accidental degeneracies, unlike symmetry-guaranteed type-I counterparts. Here, we propose a band-folding scheme for constructing type-II Dirac points, and we use a tight-binding analysis to unveil its generality and deterministic nature. Through realizations in acoustics, type-II Dirac points are experimentally visualized and investigated using near-field mappings. As a direct effect of tipped-over Dirac cones, strongly tilted kink states originating from their valley-Hall properties are also observed. This deterministic scheme could serve as a platform for further investigations of intriguing physics associated with various strongly Lorentz-violating nodal points.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xin Li
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Ruo-Yang Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiao Xiang
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Jingxuan Tian
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
| | - Yingzhou Huang
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Shuxia Wang
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Bo Hou
- School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Laboratory of Modern Optical Technologies of Ministry of Education & Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Suzhou 215006, China
| | - C T Chan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Chemey AT, Celis-Barros C, Huang K, Sperling JM, Windorff CJ, Baumbach RE, Graf DE, Páez-Hernández D, Ruf M, Hobart DE, Albrecht-Schmitt TE. Electronic, Magnetic, and Theoretical Characterization of (NH4)4UF8, a Simple Molecular Uranium(IV) Fluoride. Inorg Chem 2018; 58:637-647. [DOI: 10.1021/acs.inorgchem.8b02800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alexander T. Chemey
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Kevin Huang
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph M. Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Cory J. Windorff
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Ryan E. Baumbach
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States
- Department of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - David E. Graf
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States
| | - Dayán Páez-Hernández
- Centro de Nanociencias Aplicadas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Republica 275, Santiago, Chile
| | - Michael Ruf
- Bruker AXS, 5465 East Cheryl Parkway, Madison, Wisconsin 53711, United States
| | - David E. Hobart
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Thomas E. Albrecht-Schmitt
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|