1
|
Wang Y, Glick J, Deshpande T, DeRose K, Saraf S, Sachdeva N, Jiang K, Chen Z, Kovachy T. Robust Quantum Control via Multipath Interference for Thousandfold Phase Amplification in a Resonant Atom Interferometer. PHYSICAL REVIEW LETTERS 2024; 133:243403. [PMID: 39750362 DOI: 10.1103/physrevlett.133.243403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Accepted: 10/31/2024] [Indexed: 01/04/2025]
Abstract
We introduce a novel technique for enhancing the robustness of light-pulse atom interferometers against the pulse infidelities that typically limit their sensitivities. The technique uses quantum optimal control to favorably harness the multipath interference of the stray trajectories produced by imperfect atom-optics operations. We apply this method to a resonant atom interferometer and achieve thousandfold phase amplification, representing a 50-fold improvement over the performance observed without optimized control. Moreover, we find that spurious interference can arise from the interplay of spontaneous emission and many-pulse sequences and demonstrate optimization strategies to mitigate this effect. Given the ubiquity of spontaneous emission in quantum systems, these results may be valuable for improving the performance of a diverse array of quantum sensors. We anticipate our findings will significantly benefit the performance of matter-wave interferometers for a variety of applications, including dark matter, dark energy, and gravitational wave detection.
Collapse
Affiliation(s)
| | | | | | | | | | - Natasha Sachdeva
- Department of Physics and Astronomy and Center for Fundamental Physics, Northwestern University, Evanston, Illinois 60208, USA
- Q-CTRL, Quantum Applications and Algorithms Division, Santa Monica, California 90401, USA
| | | | | | | |
Collapse
|
2
|
Rodzinka T, Dionis E, Calmels L, Beldjoudi S, Béguin A, Guéry-Odelin D, Allard B, Sugny D, Gauguet A. Optimal Floquet state engineering for large scale atom interferometers. Nat Commun 2024; 15:10281. [PMID: 39604366 PMCID: PMC11603057 DOI: 10.1038/s41467-024-54539-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
The effective control of atomic coherence with cold atoms has made atom interferometry an essential tool for quantum sensors and precision measurements. The performance of these interferometers is closely related to the operation of large wave packet separations. We present here a novel approach for atomic beam splitters based on the stroboscopic stabilization of quantum states in an accelerated optical lattice. The corresponding Floquet state is generated by optimal control protocols. In this way, we demonstrate an unprecedented Large Momentum Transfer (LMT) interferometer, with a momentum separation of 600 photon recoils (600 ℏk) between its two arms. Each LMT beam splitter is realized in a remarkably short time (2 ms) and is highly robust against the initial velocity dispersion of the wave packet and lattice depth fluctuations. Our study shows that Floquet engineering is a promising tool for exploring new frontiers in quantum physics at large scales, with applications in quantum sensing and testing fundamental physics.
Collapse
Affiliation(s)
- T Rodzinka
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, UniversitéToulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062, Toulouse, France
| | - E Dionis
- Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Université de Bourgogne, BP 47870, F-21078, Dijon, France
| | - L Calmels
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, UniversitéToulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062, Toulouse, France
| | - S Beldjoudi
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, UniversitéToulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062, Toulouse, France
| | - A Béguin
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, UniversitéToulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062, Toulouse, France
| | - D Guéry-Odelin
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, UniversitéToulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062, Toulouse, France
| | - B Allard
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, UniversitéToulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062, Toulouse, France
| | - D Sugny
- Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Université de Bourgogne, BP 47870, F-21078, Dijon, France
| | - A Gauguet
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, UniversitéToulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062, Toulouse, France.
| |
Collapse
|
3
|
Sabulsky DO, Junca J, Zou X, Bertoldi A, Prevedelli M, Beaufils Q, Geiger R, Landragin A, Bouyer P, Canuel B. Multiphoton Atom Interferometry via Cavity-Enhanced Bragg Diffraction. PHYSICAL REVIEW LETTERS 2024; 132:213601. [PMID: 38856273 DOI: 10.1103/physrevlett.132.213601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/29/2024] [Accepted: 04/16/2024] [Indexed: 06/11/2024]
Abstract
We present a novel atom interferometer configuration that combines large momentum transfer with the enhancement of an optical resonator for the purpose of measuring gravitational strain in the horizontal directions. Using Bragg diffraction and taking advantage of the optical gain provided by the resonator, we achieve momentum transfer up to 8ℏk with mW level optical power in a cm-sized resonating waist. Importantly, our experiment uses an original resonator design that allows for a large resonating beam waist and eliminates the need to trap atoms in cavity modes. We demonstrate inertial sensitivity in the horizontal direction by measuring the change in tilt of our resonator. This result paves the way for future hybrid atom or optical gravitational wave detectors. Furthermore, the versatility of our method extends to a wide range of measurement geometries and atomic sources, opening up new avenues for the realization of highly sensitive inertial atom sensors.
Collapse
Affiliation(s)
- D O Sabulsky
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, rue F. Mitterrand, F-33400 Talence, France
| | - J Junca
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, rue F. Mitterrand, F-33400 Talence, France
| | - X Zou
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, rue F. Mitterrand, F-33400 Talence, France
| | - A Bertoldi
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, rue F. Mitterrand, F-33400 Talence, France
| | - M Prevedelli
- Dipartimento di Fisica e Astronomia, Università di Bologna, Via Berti-Pichat 6/2, I-40126 Bologna, Italy
| | - Q Beaufils
- LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61 avenue de l'Observatoire, F-75014 Paris, France
| | - R Geiger
- LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61 avenue de l'Observatoire, F-75014 Paris, France
| | - A Landragin
- LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61 avenue de l'Observatoire, F-75014 Paris, France
| | - P Bouyer
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, rue F. Mitterrand, F-33400 Talence, France
| | - B Canuel
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, rue F. Mitterrand, F-33400 Talence, France
| |
Collapse
|
4
|
Béguin A, Rodzinka T, Calmels L, Allard B, Gauguet A. Atom Interferometry with Coherent Enhancement of Bragg Pulse Sequences. PHYSICAL REVIEW LETTERS 2023; 131:143401. [PMID: 37862657 DOI: 10.1103/physrevlett.131.143401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 10/22/2023]
Abstract
We report here on the realization of light-pulse atom interferometers with large-momentum-transfer atom optics based on a sequence of Bragg transitions. We demonstrate momentum splitting up to 200 photon recoils in an ultracold atom interferometer. We highlight a new mechanism of destructive interference of the losses leading to a sizable efficiency enhancement of the beam splitters. We perform a comprehensive study of parasitic interferometers due to the inherent multiport feature of the quasi-Bragg pulses. Finally, we experimentally verify the phase shift enhancement and characterize the interferometer visibility loss.
Collapse
Affiliation(s)
- A Béguin
- Laboratoire Collisions Agrégats Réactivité, UMR 5589, FERMI, UT3, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062 Toulouse CEDEX 09, France
| | - T Rodzinka
- Laboratoire Collisions Agrégats Réactivité, UMR 5589, FERMI, UT3, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062 Toulouse CEDEX 09, France
| | - L Calmels
- Laboratoire Collisions Agrégats Réactivité, UMR 5589, FERMI, UT3, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062 Toulouse CEDEX 09, France
| | - B Allard
- Laboratoire Collisions Agrégats Réactivité, UMR 5589, FERMI, UT3, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062 Toulouse CEDEX 09, France
| | - A Gauguet
- Laboratoire Collisions Agrégats Réactivité, UMR 5589, FERMI, UT3, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062 Toulouse CEDEX 09, France
| |
Collapse
|
5
|
Salvi L, Cacciapuoti L, Tino GM, Rosi G. Atom Interferometry with Rb Blue Transitions. PHYSICAL REVIEW LETTERS 2023; 131:103401. [PMID: 37739366 DOI: 10.1103/physrevlett.131.103401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/19/2023] [Accepted: 07/19/2023] [Indexed: 09/24/2023]
Abstract
We demonstrate a novel scheme for Raman-pulse and Bragg-pulse atom interferometry based on the 5S-6P blue transitions of ^{87}Rb that provides an increase by a factor ∼2 of the interferometer phase due to accelerations with respect to the commonly used infrared transition at 780 nm. A narrow-linewidth laser system generating more than 1 W of light in the 420-422 nm range was developed for this purpose. Used as a cold-atom gravity gradiometer, our Raman interferometer attains a stability to differential acceleration measurements of 1×10^{-8} g at 1 s and 2×10^{-10} g after 2000 s of integration time. When operated on first-order Bragg transitions, the interferometer shows a stability of 6×10^{-8} g at 1 s, averaging to 1×10^{-9} g after 2000 s of integration time. The instrument sensitivity, currently limited by the noise due to spontaneous emission, can be further improved by increasing the laser power and the detuning from the atomic resonance. The present scheme is attractive for high-precision experiments as, in particular, for the determination of the Newtonian gravitational constant.
Collapse
Affiliation(s)
- L Salvi
- Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
| | - L Cacciapuoti
- European Space Agency, Keplerlaan 1, 2201 AZ Noordwijk, Netherlands
| | - G M Tino
- Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
| | - G Rosi
- Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
6
|
Wald S, Diorico F, Hosten O. Analog stabilization of an electro-optic I/Q modulator with an auxiliary modulation tone. APPLIED OPTICS 2023; 62:1-7. [PMID: 36606842 DOI: 10.1364/ao.474118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Proper operation of electro-optic I/Q modulators relies on precise adjustment and control of the relative phase biases between the modulator's internal interferometer arms. We present an all-analog phase bias locking scheme where error signals are obtained from the beat between the optical carrier and optical tones generated by an auxiliary 2 MHz R F tone to lock the phases of all three involved interferometers for operation up to 10 GHz. With the developed method, we demonstrate an I/Q modulator in carrier-suppressed single-sideband mode, where the suppressed carrier and sideband are locked at optical power levels <-27d B relative to the transmitted sideband. We describe a simple analytical model for calculating the error signals and detail the implementation of the electronic circuitry for the implementation of the method.
Collapse
|
7
|
Wilkason T, Nantel M, Rudolph J, Jiang Y, Garber BE, Swan H, Carman SP, Abe M, Hogan JM. Atom Interferometry with Floquet Atom Optics. PHYSICAL REVIEW LETTERS 2022; 129:183202. [PMID: 36374679 DOI: 10.1103/physrevlett.129.183202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Floquet engineering offers a compelling approach for designing the time evolution of periodically driven systems. We implement a periodic atom-light coupling to realize Floquet atom optics on the strontium ^{1}S_{0}-^{3}P_{1} transition. These atom optics reach pulse efficiencies above 99.4% over a wide range of frequency offsets between light and atomic resonance, even under strong driving where this detuning is on the order of the Rabi frequency. Moreover, we use Floquet atom optics to compensate for differential Doppler shifts in large momentum transfer atom interferometers and achieve state-of-the-art momentum separation in excess of 400 ℏk. This technique can be applied to any two-level system at arbitrary coupling strength, with broad application in coherent quantum control.
Collapse
Affiliation(s)
- Thomas Wilkason
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Megan Nantel
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Jan Rudolph
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Yijun Jiang
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Benjamin E Garber
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Hunter Swan
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Samuel P Carman
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Mahiro Abe
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Jason M Hogan
- Department of Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
8
|
Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 2022; 610:472-477. [PMID: 36261551 PMCID: PMC9581775 DOI: 10.1038/s41586-022-05197-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
An ensemble of atoms can operate as a quantum sensor by placing atoms in a superposition of two different states. Upon measurement of the sensor, each atom is individually projected into one of the two states. Creating quantum correlations between the atoms, that is entangling them, could lead to resolutions surpassing the standard quantum limit1–3 set by projections of individual atoms. Large amounts of entanglement4–6 involving the internal degrees of freedom of laser-cooled atomic ensembles4–16 have been generated in collective cavity quantum-electrodynamics systems, in which many atoms simultaneously interact with a single optical cavity mode. Here we report a matter-wave interferometer in a cavity quantum-electrodynamics system of 700 atoms that are entangled in their external degrees of freedom. In our system, each individual atom falls freely under gravity and simultaneously traverses two paths through space while entangled with the other atoms. We demonstrate both quantum non-demolition measurements and cavity-mediated spin interactions for generating squeezed momentum states with directly observed sensitivity \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3\,.\,{4}_{-0.9}^{+1.1}$$\end{document}3.4−0.9+1.1 dB and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2\,.\,{5}_{-0.6}^{+0.6}$$\end{document}2.5−0.6+0.6 dB below the standard quantum limit, respectively. We successfully inject an entangled state into a Mach–Zehnder light-pulse interferometer with directly observed sensitivity \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1\,.\,{7}_{-0.5}^{+0.5}$$\end{document}1.7−0.5+0.5 dB below the standard quantum limit. The combination of particle delocalization and entanglement in our approach may influence developments of enhanced inertial sensors17,18, searches for new physics, particles and fields19–23, future advanced gravitational wave detectors24,25 and accessing beyond mean-field quantum many-body physics26–30. A matter-wave interferometer is demonstrated with an interferometric phase noise below the standard quantum limit, combining two core concepts of quantum mechanics, that a particle can simultaneously be in two places at once and entanglement between distinct particles.
Collapse
|
9
|
Anders F, Idel A, Feldmann P, Bondarenko D, Loriani S, Lange K, Peise J, Gersemann M, Meyer-Hoppe B, Abend S, Gaaloul N, Schubert C, Schlippert D, Santos L, Rasel E, Klempt C. Momentum Entanglement for Atom Interferometry. PHYSICAL REVIEW LETTERS 2021; 127:140402. [PMID: 34652182 DOI: 10.1103/physrevlett.127.140402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Compared to light interferometers, the flux in cold-atom interferometers is low and the associated shot noise is large. Sensitivities beyond these limitations require the preparation of entangled atoms in different momentum modes. Here, we demonstrate a source of entangled atoms that is compatible with state-of-the-art interferometers. Entanglement is transferred from the spin degree of freedom of a Bose-Einstein condensate to well-separated momentum modes, witnessed by a squeezing parameter of -3.1(8) dB. Entanglement-enhanced atom interferometers promise unprecedented sensitivities for quantum gradiometers or gravitational wave detectors.
Collapse
Affiliation(s)
- F Anders
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - A Idel
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - P Feldmann
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany
| | - D Bondarenko
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany
| | - S Loriani
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - K Lange
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - J Peise
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - M Gersemann
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - B Meyer-Hoppe
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - S Abend
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - N Gaaloul
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - C Schubert
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
- Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Satellitengeodäsie und Inertialsensorik, c/o Leibniz, Universität Hannover, DLR-SI, Callinstraße 36, 30167 Hannover, Germany
| | - D Schlippert
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - L Santos
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany
| | - E Rasel
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - C Klempt
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
- Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Satellitengeodäsie und Inertialsensorik, c/o Leibniz, Universität Hannover, DLR-SI, Callinstraße 36, 30167 Hannover, Germany
| |
Collapse
|
10
|
Bertoldi A, Feng CH, Naik DS, Canuel B, Bouyer P, Prevedelli M. Fast Control of Atom-Light Interaction in a Narrow Linewidth Cavity. PHYSICAL REVIEW LETTERS 2021; 127:013202. [PMID: 34270276 DOI: 10.1103/physrevlett.127.013202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/03/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
We propose a method to exploit high-finesse optical resonators for light-assisted coherent manipulation of atomic ensembles, overcoming the limit imposed by the finite response time of the cavity. The key element of our scheme is to rapidly switch the interaction between the atoms and the cavity field with an auxiliary control process as, for example, the light shift induced by an optical beam. The scheme is applicable to other atomic species, both in trapped and free fall configurations, and can be adopted to control the internal and/or external atomic degrees of freedom. Our method will open new possibilities in cavity-aided atom interferometry and in the preparation of highly nonclassical atomic states.
Collapse
Affiliation(s)
- A Bertoldi
- Université Bordeaux, CNRS, IOGS, LP2N, UMR 5298, F-33400 Talence, France
| | - C-H Feng
- Université Bordeaux, CNRS, IOGS, LP2N, UMR 5298, F-33400 Talence, France
| | - D S Naik
- Université Bordeaux, CNRS, IOGS, LP2N, UMR 5298, F-33400 Talence, France
| | - B Canuel
- Université Bordeaux, CNRS, IOGS, LP2N, UMR 5298, F-33400 Talence, France
| | - P Bouyer
- Université Bordeaux, CNRS, IOGS, LP2N, UMR 5298, F-33400 Talence, France
| | - M Prevedelli
- Dipartimento di Fisica e Astronomia, Università di Bologna, Via Berti-Pichat 6/2, I-40126 Bologna, Italy
| |
Collapse
|
11
|
Abstract
Inertial sensors based on cold atoms have great potential for navigation, geodesy, or fundamental physics. Similar to the Sagnac effect, their sensitivity increases with the space-time area enclosed by the interferometer. Here, we introduce twin-lattice atom interferometry exploiting Bose-Einstein condensates of rubidium-87. Our method provides symmetric momentum transfer and large areas offering a perspective for future palm-sized sensor heads with sensitivities on par with present meter-scale Sagnac devices. Our theoretical model of the impact of beam splitters on the spatial coherence is highly instrumental for designing future sensors. Atom interferometers can be useful for precision measurement of fundamental constants and sensors of different type. Here the authors demonstrate a compact twin-lattice atom interferometry exploiting Bose-Einstein condensates (BECs) of 87 Rb atoms.
Collapse
|
12
|
He Y, Ji L, Wang Y, Qiu L, Zhao J, Ma Y, Huang X, Wu S, Chang DE. Geometric Control of Collective Spontaneous Emission. PHYSICAL REVIEW LETTERS 2020; 125:213602. [PMID: 33275003 DOI: 10.1103/physrevlett.125.213602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Dipole spin-wave states of atomic ensembles with wave vector k(ω) mismatched from the dispersion relation of light are difficult to access by far-field excitation but may support rich phenomena beyond the traditional phase-matched scenario in quantum optics. We propose and demonstrate an optical technique to efficiently access these states. In particular, subnanosecond laser pulses shaped by a home-developed wideband modulation method are applied to shift the spin wave in k space with state-dependent geometric phase patterning, in an error-resilient fashion and on timescales much faster than spontaneous emission. We verify this control through the redirection, switch off, and recall of collectively enhanced emission from a ^{87}Rb gas with ∼75% single-step efficiency. Our work represents a first step toward efficient control of electric dipole spin waves for studying many-body dissipative dynamics of excited gases, as well as for numerous quantum optical applications.
Collapse
Affiliation(s)
- Yizun He
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Lingjing Ji
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Yuzhuo Wang
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Liyang Qiu
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Jian Zhao
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Yudi Ma
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Xing Huang
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Saijun Wu
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Darrick E Chang
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain and ICREA-Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain
| |
Collapse
|
13
|
Long X, Yu SS, Jayich AM, Campbell WC. Suppressed Spontaneous Emission for Coherent Momentum Transfer. PHYSICAL REVIEW LETTERS 2019; 123:033603. [PMID: 31386443 DOI: 10.1103/physrevlett.123.033603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 06/10/2023]
Abstract
Strong optical forces with minimal spontaneous emission are desired for molecular deceleration and atom interferometry applications. We report experimental benchmarking of such a stimulated optical force driven by ultrafast laser pulses. We apply this technique to accelerate atoms, demonstrating up to an average of 19ℏk momentum transfers per spontaneous emission event. This represents more than an order of magnitude improvement in suppression of spontaneous emission compared to radiative scattering forces. For molecular beam slowing, this technique is capable of delivering a many-fold increase in the achievable time-averaged force to significantly reduce both the slowing distance and detrimental losses to dark vibrational states.
Collapse
Affiliation(s)
- Xueping Long
- University of California Los Angeles, Los Angeles, California 90095, USA
| | - Scarlett S Yu
- University of California Los Angeles, Los Angeles, California 90095, USA
| | - Andrew M Jayich
- University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Wesley C Campbell
- University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
14
|
Barrett B, Cheiney P, Battelier B, Napolitano F, Bouyer P. Multidimensional Atom Optics and Interferometry. PHYSICAL REVIEW LETTERS 2019; 122:043604. [PMID: 30768283 DOI: 10.1103/physrevlett.122.043604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Indexed: 06/09/2023]
Abstract
We propose new multidimensional atom optics that can create coherent superpositions of atomic wave packets along three spatial directions. These tools can be used to generate light-pulse atom interferometers that are simultaneously sensitive to the three components of acceleration and rotation, and we discuss how to isolate these inertial components in a single experimental shot. We also present a new type of atomic gyroscope that is insensitive to parasitic accelerations and initial velocities. The ability to measure the full acceleration and rotation vectors with a compact, high-precision, low-bias inertial sensor could strongly impact the fields of inertial navigation, gravity gradiometry, and gyroscopy.
Collapse
Affiliation(s)
- B Barrett
- iXblue, 34 rue de la Croix de Fer, 78105 Saint-Germain-en-Laye, France
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - P Cheiney
- iXblue, 34 rue de la Croix de Fer, 78105 Saint-Germain-en-Laye, France
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - B Battelier
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - F Napolitano
- iXblue, 34 rue de la Croix de Fer, 78105 Saint-Germain-en-Laye, France
| | - P Bouyer
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| |
Collapse
|