1
|
Zhao LX, Fan YG, Zhang X, Li C, Cheng XY, Guo F, Wang ZY. Graphdiyne biomaterials: from characterization to properties and applications. J Nanobiotechnology 2025; 23:169. [PMID: 40038692 DOI: 10.1186/s12951-025-03227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
Graphdiyne (GDY), the sole synthetic carbon allotrope with sp-hybridized carbon atoms, has been extensively researched that benefit from its pore structure, fully conjugated surfaces, wide band gaps, and more reactive C≡C bonds. In addition to the intrinsic features of GDY, engineering at the nanoscale, including metal/transition metal ion modification, chemical elemental doping, and other biomolecular modifications, endowed GDY with a broader functionality. This has led to its involvement in biomedical applications, including enzyme catalysis, molecular assays, targeted drug delivery, antitumor, and sensors. These promising research developments have been made possible by the rational design and critical characterization of GDY biomaterials. In contrast to other research areas, GDY biomaterials research has led to the development of characterization techniques and methods with specific patterns and some innovations based on the integration of materials science and biology, which are crucial for the biomedical applications of GDY. The objective of this review is to provide a comprehensive overview of the biomedical applications of GDY and the characterization techniques and methods that are essential in this process. Additionally, a general strategy for the biomedical research of GDY will be proposed, which will be of limited help to researchers in the field of GDY or nanomedicine.
Collapse
Affiliation(s)
- Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Xue Zhang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Chan Li
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Xue-Yan Cheng
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Feng Guo
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China.
| |
Collapse
|
2
|
Macrì V, Mercurio A, Nori F, Savasta S, Sánchez Muñoz C. Spontaneous Scattering of Raman Photons from Cavity-QED Systems in the Ultrastrong Coupling Regime. PHYSICAL REVIEW LETTERS 2022; 129:273602. [PMID: 36638299 DOI: 10.1103/physrevlett.129.273602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
We show that spontaneous Raman scattering of incident radiation can be observed in cavity-QED systems without external enhancement or coupling to any vibrational degree of freedom. Raman scattering processes can be evidenced as resonances in the emission spectrum, which become clearly visible as the cavity-QED system approaches the ultrastrong coupling regime. We provide a quantum mechanical description of the effect, and show that ultrastrong light-matter coupling is a necessary condition for the observation of Raman scattering. This effect, and its strong sensitivity to the system parameters, opens new avenues for the characterization of cavity QED setups and the generation of quantum states of light.
Collapse
Affiliation(s)
- Vincenzo Macrì
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
| | - Alberto Mercurio
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, I-98166 Messina, Italy
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Quantum Computing Center, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | - Salvatore Savasta
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, I-98166 Messina, Italy
| | - Carlos Sánchez Muñoz
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
3
|
Zhan Y, Sun S. Deterministic Generation of Loss-Tolerant Photonic Cluster States with a Single Quantum Emitter. PHYSICAL REVIEW LETTERS 2020; 125:223601. [PMID: 33315435 DOI: 10.1103/physrevlett.125.223601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
A photonic cluster state with a tree-type entanglement structure constitutes an efficient resource for quantum error correction of photon loss. But the generation of a tree cluster state with an arbitrary size is notoriously difficult. Here, we propose a protocol to deterministically generate photonic tree states of arbitrary size by using only a single quantum emitter. Photonic entanglement is established through both emission and rescattering from the same emitter, enabling fast and resource-efficient entanglement generation. The same protocol can also be extended to generate more general tree-type entangled states.
Collapse
Affiliation(s)
- Yuan Zhan
- JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Shuo Sun
- JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
4
|
Pauls A, Lekavicius I, Wang H. Coupling silicon vacancy centers in a thin diamond membrane to a silica optical microresonator. OPTICS EXPRESS 2020; 28:27300-27307. [PMID: 32988026 DOI: 10.1364/oe.399331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
We report the development of a composite cavity QED system, in which silicon vacancy centers in a diamond membrane as thin as 100 nm couple to optical whispering gallery modes (WGMs) of a silica microsphere with a diameter of order 50 µm. The membrane induces a linewidth broadening of 3 MHz for equatorial and off-resonant WGMs, while the overall linewidth of the composite system remains below 40 MHz. Photoluminescence experiments in the cavity QED setting demonstrate the efficient coupling of optical emissions from silicon vacancy centers into the WGMs. Additional analysis indicates that the composite system can be used to achieve the good cavity limit in cavity QED, enabling an experimental platform for applications such as state transfer between spins and photons.
Collapse
|
5
|
Rugar AE, Lu H, Dory C, Sun S, McQuade PJ, Shen ZX, Melosh NA, Vučković J. Generation of Tin-Vacancy Centers in Diamond via Shallow Ion Implantation and Subsequent Diamond Overgrowth. NANO LETTERS 2020; 20:1614-1619. [PMID: 32031821 DOI: 10.1021/acs.nanolett.9b04495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Group IV color centers in diamond have garnered great interest for their potential as optically active solid-state spin qubits. The future utilization of such emitters requires the development of precise site-controlled emitter generation techniques that are compatible with high-quality nanophotonic devices. This task is more challenging for color centers with large group IV impurity atoms, which are otherwise promising because of their predicted long spin coherence times without a dilution refrigerator. For example, when applied to the negatively charged tin-vacancy (SnV-) center, conventional site-controlled color center generation methods either damage the diamond surface or yield bulk spectra with unexplained features. Here we demonstrate a novel method to generate site-controlled SnV- centers with clean bulk spectra. We shallowly implant Sn ions through a thin implantation mask and subsequently grow a layer of diamond via chemical vapor deposition. This method can be extended to other color centers and integrated with quantum nanophotonic device fabrication.
Collapse
Affiliation(s)
| | | | | | | | - Patrick J McQuade
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Zhi-Xun Shen
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Nicholas A Melosh
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | |
Collapse
|
6
|
Bradac C, Gao W, Forneris J, Trusheim ME, Aharonovich I. Quantum nanophotonics with group IV defects in diamond. Nat Commun 2019; 10:5625. [PMID: 31819050 PMCID: PMC6901484 DOI: 10.1038/s41467-019-13332-w] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Diamond photonics is an ever-growing field of research driven by the prospects of harnessing diamond and its colour centres as suitable hardware for solid-state quantum applications. The last two decades have seen the field shaped by the nitrogen-vacancy (NV) centre with both breakthrough fundamental physics demonstrations and practical realizations. Recently however, an entire suite of other diamond defects has emerged-group IV colour centres-namely the Si-, Ge-, Sn- and Pb-vacancies. In this perspective, we highlight the leading techniques for engineering and characterizing these diamond defects, discuss the current state-of-the-art group IV-based devices and provide an outlook of the future directions the field is taking towards the realisation of solid-state quantum photonics with diamond.
Collapse
Affiliation(s)
- Carlo Bradac
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology, Sydney, NSW, 2007, Australia.
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jacopo Forneris
- Istituto Nazionale di Fisica Nucleare (INFN) and Physics Department, Università degli Studi di Torino, Torino, 10125, Italy
| | - Matthew E Trusheim
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology, Sydney, NSW, 2007, Australia
| |
Collapse
|
7
|
Shams-Ansari A, Latawiec P, Okawachi Y, Venkataraman V, Yu M, Desiatov B, Atikian H, Harris GL, Picqué N, Gaeta AL, Lončar M. Supercontinuum generation in angle-etched diamond waveguides. OPTICS LETTERS 2019; 44:4056-4059. [PMID: 31415546 DOI: 10.1364/ol.44.004056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
We experimentally demonstrate on-chip supercontinuum generation in the visible region in angle-etched diamond waveguides. We measure an output spectrum spanning 670-920 nm in a 5-mm-long waveguide using 100-fs pulses with 187 pJ of incident pulse energy. Our fabrication technique, combined with diamond's broad transparency window, offers a potential route toward broadband supercontinuum generation in the UV domain.
Collapse
|
8
|
Abstract
Diamond hosts optically active color centers with great promise in quantum computation, networking, and sensing. Realization of such applications is contingent upon the integration of color centers into photonic circuits. However, current diamond quantum optics experiments are restricted to single devices and few quantum emitters because fabrication constraints limit device functionalities, thus precluding color center integrated photonic circuits. In this work, we utilize inverse design methods to overcome constraints of cutting-edge diamond nanofabrication methods and fabricate compact and robust diamond devices with unique specifications. Our design method leverages advanced optimization techniques to search the full parameter space for fabricable device designs. We experimentally demonstrate inverse-designed photonic free-space interfaces as well as their scalable integration with two vastly different devices: classical photonic crystal cavities and inverse-designed waveguide-splitters. The multi-device integration capability and performance of our inverse-designed diamond platform represents a critical advancement toward integrated diamond quantum optical circuits. Current diamond quantum optics experiments are restricted to single devices and few quantum emitters due to fabrication constraints. Here, the authors utilize inverse design to overcome constraints of diamond nanofabrication methods and fabricate compact and robust diamond devices with unique specifications.
Collapse
|