1
|
Zampronio V, Mendoza-Coto A, Macrì T, Cinti F. Exploring Quantum Phases of Dipolar Gases through Quasicrystalline Confinement. PHYSICAL REVIEW LETTERS 2024; 133:196001. [PMID: 39576902 DOI: 10.1103/physrevlett.133.196001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/30/2024] [Indexed: 11/24/2024]
Abstract
The effects of frustration on extended supersolid states is a largely unexplored subject in the realm of cold-atom systems. In this work, we explore the impact of quasicrystalline lattices on the supersolid phases of dipolar bosons. Our findings reveal that weak quasicrystalline lattices can induce a variety of modulated phases, merging the inherent solid pattern with a quasiperiodic decoration induced by the external potential. As the lattice becomes stronger, we observe a superquasicrystal phase and a Bose glass phase. Our results, supported by a detailed discussion on experimental feasibility using dysprosium atoms and quasicrystalline optical lattice potentials, open a new avenue in the exploration of long-range interacting quantum systems in aperiodic environments. We provide a solid foundation for future experimental investigations, potentially confirming our theoretical predictions and contributing profoundly to the field of quantum gases in complex external potentials.
Collapse
Affiliation(s)
| | | | | | - Fabio Cinti
- Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019 Sesto Fiorentino (FI), Italy
- INFN, Sezione di Firenze, I-50019 Sesto Fiorentino (FI), Italy
- Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| |
Collapse
|
2
|
Fraxanet J, Dauphin A, Lewenstein M, Barbiero L, González-Cuadra D. Higher-Order Topological Peierls Insulator in a Two-Dimensional Atom-Cavity System. PHYSICAL REVIEW LETTERS 2023; 131:263001. [PMID: 38215379 DOI: 10.1103/physrevlett.131.263001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024]
Abstract
In this work, we investigate a two-dimensional system of ultracold bosonic atoms inside an optical cavity, and show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state. The latter corresponds to a 2D Peierls transition, generalizing the spontaneous bond dimerization driven by phonon-electron interactions in the 1D Su-Schrieffer-Heeger (SSH) model. Here the bosonic nature of the atoms plays a crucial role to generate the phase, as similar generalizations with fermionic matter do not lead to a plaquette structure. Similar to the SSH model, we show how this pattern opens a nontrivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states, that we characterize by means of a many-body topological invariant and through its entanglement structure. Finally, we demonstrate how this higher-order topological Peierls insulator can be readily prepared in atomic experiments through adiabatic protocols. Our work thus shows how atomic quantum simulators can be harnessed to investigate novel strongly correlated topological phenomena beyond those observed in natural materials.
Collapse
Affiliation(s)
- Joana Fraxanet
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Alexandre Dauphin
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Maciej Lewenstein
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA, Passeig de Lluís Companys 23, ES-08010 Barcelona, Spain
| | - Luca Barbiero
- Institute for Condensed Matter Physics and Complex Systems, DISAT, Politecnico di Torino, I-10129 Torino, Italy
| | - Daniel González-Cuadra
- Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Argüello-Luengo J, González-Tudela A, González-Cuadra D. Tuning Long-Range Fermion-Mediated Interactions in Cold-Atom Quantum Simulators. PHYSICAL REVIEW LETTERS 2022; 129:083401. [PMID: 36053702 DOI: 10.1103/physrevlett.129.083401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior. Fermionic atoms in ultracold atomic mixtures can act as mediators, giving rise to long-range Ruderman-Kittel-Kasuya-Yosida-type interactions characterized by the dimensionality and density of the fermionic gas. Here, we propose several tuning knobs, accessible in current experimental platforms, that allow one to further control the range and shape of the mediated interactions, extending the existing quantum simulation toolbox. In particular, we include an additional optical lattice for the fermionic mediator, as well as anisotropic traps to change its dimensionality in a continuous manner. This allows us to interpolate between power-law and exponential decays, introducing an effective cutoff for the interaction range, as well as to tune the relative interaction strengths at different distances. Finally, we show how our approach allows one to investigate frustrated regimes that were not previously accessible, where symmetry-protected topological phases as well as chiral spin liquids emerge.
Collapse
Affiliation(s)
- Javier Argüello-Luengo
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Avinguda Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain
| | | | - Daniel González-Cuadra
- Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Knörzer J, Shi T, Demler E, Cirac JI. Spin-Holstein Models in Trapped-Ion Systems. PHYSICAL REVIEW LETTERS 2022; 128:120404. [PMID: 35394310 DOI: 10.1103/physrevlett.128.120404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/29/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
In this work, we highlight how trapped-ion quantum systems can be used to study generalized Holstein models, and benchmark expensive numerical calculations. We study a particular spin-Holstein model that can be implemented with arrays of ions confined by individual microtraps, and that is closely related to the Holstein model of condensed matter physics, used to describe electron-phonon interactions. In contrast to earlier proposals, we focus on simulating many-electron systems and inspect the competition between charge-density wave order, fermion pairing, and phase separation. In our numerical study, we employ a combination of complementary approaches, based on non-Gaussian variational ansatz states and matrix product states, respectively. We demonstrate that this hybrid approach outperforms standard density-matrix renormalization group calculations.
Collapse
Affiliation(s)
- J Knörzer
- Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Straße 1, D-85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, D-80799 München, Germany
| | - T Shi
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - E Demler
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - J I Cirac
- Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Straße 1, D-85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, D-80799 München, Germany
| |
Collapse
|
5
|
Aidelsburger M, Barbiero L, Bermudez A, Chanda T, Dauphin A, González-Cuadra D, Grzybowski PR, Hands S, Jendrzejewski F, Jünemann J, Juzeliūnas G, Kasper V, Piga A, Ran SJ, Rizzi M, Sierra G, Tagliacozzo L, Tirrito E, Zache TV, Zakrzewski J, Zohar E, Lewenstein M. Cold atoms meet lattice gauge theory. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210064. [PMID: 34923836 PMCID: PMC8685612 DOI: 10.1098/rsta.2021.0064] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/23/2021] [Indexed: 05/17/2023]
Abstract
The central idea of this review is to consider quantum field theory models relevant for particle physics and replace the fermionic matter in these models by a bosonic one. This is mostly motivated by the fact that bosons are more 'accessible' and easier to manipulate for experimentalists, but this 'substitution' also leads to new physics and novel phenomena. It allows us to gain new information about among other things confinement and the dynamics of the deconfinement transition. We will thus consider bosons in dynamical lattices corresponding to the bosonic Schwinger or [Formula: see text] Bose-Hubbard models. Another central idea of this review concerns atomic simulators of paradigmatic models of particle physics theory such as the Creutz-Hubbard ladder, or Gross-Neveu-Wilson and Wilson-Hubbard models. This article is not a general review of the rapidly growing field-it reviews activities related to quantum simulations for lattice field theories performed by the Quantum Optics Theory group at ICFO and their collaborators from 19 institutions all over the world. Finally, we will briefly describe our efforts to design experimentally friendly simulators of these and other models relevant for particle physics. This article is part of the theme issue 'Quantum technologies in particle physics'.
Collapse
Affiliation(s)
- Monika Aidelsburger
- Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich 80799, Germany
- Munich Center for Quantum Science and Technology (MCQST), München 80799, Germany
| | - Luca Barbiero
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
- Institute for Condensed Matter Physics and Complex Systems, DISAT, Politecnico di Torino, I-10129 Torino, Italy
| | - Alejandro Bermudez
- Departamento de Física Teorica, Universidad Complutense, Madrid 28040, Spain
| | - Titas Chanda
- Institute of Theoretical Physics, Jagiellonian University in Kraków, Kraków 30-348, Poland
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
| | - Alexandre Dauphin
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Daniel González-Cuadra
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Przemysław R. Grzybowski
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Simon Hands
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea SA28PP, UK
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Fred Jendrzejewski
- Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg 69120, Germany
| | - Johannes Jünemann
- Institut für Physik, Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Gediminas Juzeliūnas
- Institute of Theoretical Physics and Astronomy, Vilnius University, Vilnius 10257, Lithuania
| | - Valentin Kasper
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Angelo Piga
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
- Departament of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Catalonia, Spain
| | - Shi-Ju Ran
- Department of Physics, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Matteo Rizzi
- Forschungszentrum Jülich GmbH, Institute of Quantum Control, Peter Grünberg Institut (PGI-8), Jülich 52425, Germany
- Institute for Theoretical Physics, University of Cologne, Köln 50937, Germany
| | - Germán Sierra
- Instituto de Física Teórica, UAM/CSIC, Universidad Autònoma de Madrid, Madrid, Spain
| | - Luca Tagliacozzo
- Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Barcelona, Catalonia 08028, Spain
| | - Emanuele Tirrito
- International School for Advanced Studies (SISSA), Trieste 34136, Italy
| | - Torsten V. Zache
- Center for Quantum Physics, University of Innsbruck, Innsbruck 6020, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck 6020, Austria
| | - Jakub Zakrzewski
- Institute of Theoretical Physics, Jagiellonian University in Kraków, Kraków 30-348, Poland
| | - Erez Zohar
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Maciej Lewenstein
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
- ICREA, Passeig Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
6
|
Bhattacharya U, Grass T, Bachtold A, Lewenstein M, Pistolesi F. Phonon-Induced Pairing in Quantum Dot Quantum Simulator. NANO LETTERS 2021; 21:9661-9667. [PMID: 34757742 PMCID: PMC8631338 DOI: 10.1021/acs.nanolett.1c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Quantum simulations can provide new insights into the physics of strongly correlated electronic systems. A well-studied system, but still open in many regards, is the Hubbard-Holstein Hamiltonian, where electronic repulsion is in competition with attraction generated by the electron-phonon coupling. In this context, we study the behavior of four quantum dots in a suspended carbon nanotube and coupled to its flexural degrees of freedom. The system is described by a Hamiltonian of the Hubbard-Holstein class, where electrons on different sites interact with the same phonon. We find that the system presents a transition from the Mott insulating state to a polaronic state, with the appearance of pairing correlations and the breaking of the translational symmetry. These findings will motivate further theoretical and experimental efforts to employ nanoelectromechanical systems to simulate strongly correlated systems with electron-phonon interactions.
Collapse
Affiliation(s)
- Utso Bhattacharya
- ICFO-Institut
de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, Castelldefels, Barcelona 08860, Spain
- Max-Planck-Institut
für Quantenoptik, D-85748 Garching, Germany
| | - Tobias Grass
- ICFO-Institut
de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Adrian Bachtold
- ICFO-Institut
de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Maciej Lewenstein
- ICFO-Institut
de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, Castelldefels, Barcelona 08860, Spain
- ICREA, Pg. Lluis Companys
23, 08010 Barcelona, Spain
| | - Fabio Pistolesi
- Univ.
Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| |
Collapse
|
7
|
Abstract
Quantized sound waves-phonons-govern the elastic response of crystalline materials, and also play an integral part in determining their thermodynamic properties and electrical response (for example, by binding electrons into superconducting Cooper pairs)1-3. The physics of lattice phonons and elasticity is absent in simulators of quantum solids constructed of neutral atoms in periodic light potentials: unlike real solids, traditional optical lattices are silent because they are infinitely stiff4. Optical-lattice realizations of crystals therefore lack some of the central dynamical degrees of freedom that determine the low-temperature properties of real materials. Here, we create an optical lattice with phonon modes using a Bose-Einstein condensate (BEC) coupled to a confocal optical resonator. Playing the role of an active quantum gas microscope, the multimode cavity QED system both images the phonons and induces the crystallization that supports phonons via short-range, photon-mediated atom-atom interactions. Dynamical susceptibility measurements reveal the phonon dispersion relation, showing that these collective excitations exhibit a sound speed dependent on the BEC-photon coupling strength. Our results pave the way for exploring the rich physics of elasticity in quantum solids, ranging from quantum melting transitions5 to exotic 'fractonic' topological defects6 in the quantum regime.
Collapse
|
8
|
González-Cuadra D, Dauphin A, Grzybowski PR, Lewenstein M, Bermudez A. Dynamical Solitons and Boson Fractionalization in Cold-Atom Topological Insulators. PHYSICAL REVIEW LETTERS 2020; 125:265301. [PMID: 33449765 DOI: 10.1103/physrevlett.125.265301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 11/24/2020] [Indexed: 05/28/2023]
Abstract
We study the Z_{2} Bose-Hubbard model, a chain of interacting bosons the tunneling of which is dressed by a dynamical Z_{2} field. The interplay between spontaneous symmetry breaking (SSB) and topological symmetry protection gives rise to interesting fractional topological phenomena when the system is doped to certain incommensurate fillings. In particular, we hereby show how topological defects in the Z_{2} field can appear in the ground state, connecting different SSB sectors. These defects are dynamical and can travel through the lattice carrying both a topological charge and a fractional particle number. In the hardcore limit, this phenomenon can be understood through a bulk-defect correspondence. Using a pumping argument, we show that it survives also for finite interactions, demonstrating how boson fractionalization induced by topological defects can occur in strongly correlated bosonic systems. Our results indicate the possibility of observing this phenomenon, which appears for fermionic matter in solid-state and high-energy physics, using ultracold atomic systems.
Collapse
Affiliation(s)
- D González-Cuadra
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Avinguda Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain
| | - A Dauphin
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Avinguda Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain
| | - P R Grzybowski
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - M Lewenstein
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Avinguda Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain
- ICREA, Lluis Companys 23, 08010 Barcelona, Spain
| | - A Bermudez
- Departamento de Física Teórica, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
9
|
Rylands C, Guo Y, Lev BL, Keeling J, Galitski V. Photon-Mediated Peierls Transition of a 1D Gas in a Multimode Optical Cavity. PHYSICAL REVIEW LETTERS 2020; 125:010404. [PMID: 32678647 DOI: 10.1103/physrevlett.125.010404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
The Peierls instability toward a charge density wave is a canonical example of phonon-driven strongly correlated physics and is intimately related to topological quantum matter and exotic superconductivity. We propose a method for realizing an analogous photon-mediated Peierls transition, using a system of one-dimensional tubes of interacting Bose or Fermi atoms trapped inside a multimode confocal cavity. Pumping the cavity transversely engineers a cavity-mediated metal-to-insulator transition in the atomic system. For strongly interacting bosons in the Tonks-Girardeau limit, this transition can be understood (through fermionization) as being the Peierls instability. We extend the calculation to finite values of the interaction strength and derive analytic expressions for both the cavity field and mass gap. They display nontrivial power law dependence on the dimensionless matter-light coupling.
Collapse
Affiliation(s)
- Colin Rylands
- Joint Quantum Institute and Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742, USA
| | - Yudan Guo
- Department of Physics, Stanford University, Stanford, California 94305, USA
- E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Benjamin L Lev
- Department of Physics, Stanford University, Stanford, California 94305, USA
- E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Jonathan Keeling
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Victor Galitski
- Joint Quantum Institute and Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
10
|
Chanda T, Zakrzewski J, Lewenstein M, Tagliacozzo L. Confinement and Lack of Thermalization after Quenches in the Bosonic Schwinger Model. PHYSICAL REVIEW LETTERS 2020; 124:180602. [PMID: 32441946 DOI: 10.1103/physrevlett.124.180602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/09/2020] [Accepted: 03/31/2020] [Indexed: 05/28/2023]
Abstract
We excite the vacuum of a relativistic theory of bosons coupled to a U(1) gauge field in 1+1 dimensions (bosonic Schwinger model) out of equilibrium by creating a spatially separated particle-antiparticle pair connected by a string of electric field. During the evolution, we observe a strong confinement of bosons witnessed by the bending of their light cone, reminiscent of what has been observed for the Ising model [Nat. Phys. 13, 246 (2017)NPAHAX1745-247310.1038/nphys3934]. As a consequence, for the timescales we are able to simulate, the system evades thermalization and generates exotic asymptotic states. These states are made of two disjoint regions, an external deconfined region that seems to thermalize, and an inner core that reveals an area-law saturation of the entanglement entropy.
Collapse
Affiliation(s)
- Titas Chanda
- Instytut Fizyki Teoretycznej, Uniwersytet Jagielloński, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Jakub Zakrzewski
- Instytut Fizyki Teoretycznej, Uniwersytet Jagielloński, Łojasiewicza 11, 30-348 Kraków, Poland
- Mark Kac Complex Systems Research Center, Jagiellonian University in Krakow, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Maciej Lewenstein
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain
- ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Luca Tagliacozzo
- Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
- Department de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Elben A, Yu J, Zhu G, Hafezi M, Pollmann F, Zoller P, Vermersch B. Many-body topological invariants from randomized measurements in synthetic quantum matter. SCIENCE ADVANCES 2020; 6:eaaz3666. [PMID: 32300654 PMCID: PMC7148113 DOI: 10.1126/sciadv.aaz3666] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/09/2020] [Indexed: 06/11/2023]
Abstract
Many-body topological invariants, as quantized highly nonlocal correlators of the many-body wave function, are at the heart of the theoretical description of many-body topological quantum phases, including symmetry-protected and symmetry-enriched topological phases. Here, we propose and analyze a universal toolbox of measurement protocols to reveal many-body topological invariants of phases with global symmetries, which can be implemented in state-of-the-art experiments with synthetic quantum systems, such as Rydberg atoms, trapped ions, and superconducting circuits. The protocol is based on extracting the many-body topological invariants from statistical correlations of randomized measurements, implemented with local random unitary operations followed by site-resolved projective measurements. We illustrate the technique and its application in the context of the complete classification of bosonic symmetry-protected topological phases in one dimension, considering in particular the extended Su-Schrieffer-Heeger spin model, as realized with Rydberg tweezer arrays.
Collapse
Affiliation(s)
- Andreas Elben
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
| | - Jinlong Yu
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
| | - Guanyu Zhu
- Joint Quantum Institute, NIST/University of Maryland, College Park, MD 20740, USA
| | - Mohammad Hafezi
- Joint Quantum Institute, NIST/University of Maryland, College Park, MD 20740, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Frank Pollmann
- Department of Physics, Technical University of Munich, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology, Schellingstr. 4, D-80799 München, Germany
| | - Peter Zoller
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
| | - Benoît Vermersch
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Univ. Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France
| |
Collapse
|
12
|
Barbiero L, Schweizer C, Aidelsburger M, Demler E, Goldman N, Grusdt F. Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to ℤ 2 lattice gauge theories. SCIENCE ADVANCES 2019; 5:eaav7444. [PMID: 31646173 PMCID: PMC6788866 DOI: 10.1126/sciadv.aav7444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/18/2019] [Indexed: 05/16/2023]
Abstract
From the standard model of particle physics to strongly correlated electrons, various physical settings are formulated in terms of matter coupled to gauge fields. Quantum simulations based on ultracold atoms in optical lattices provide a promising avenue to study these complex systems and unravel the underlying many-body physics. Here, we demonstrate how quantized dynamical gauge fields can be created in mixtures of ultracold atoms in optical lattices, using a combination of coherent lattice modulation with strong interactions. Specifically, we propose implementation of ℤ2 lattice gauge theories coupled to matter, reminiscent of theories previously introduced in high-temperature superconductivity. We discuss a range of settings from zero-dimensional toy models to ladders featuring transitions in the gauge sector to extended two-dimensional systems. Mastering lattice gauge theories in optical lattices constitutes a new route toward the realization of strongly correlated systems, with properties dictated by an interplay of dynamical matter and gauge fields.
Collapse
Affiliation(s)
- Luca Barbiero
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, CP 231, Campus Plaine, B-1050 Brussels, Belgium
| | - Christian Schweizer
- Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstr. 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München Germany
| | - Monika Aidelsburger
- Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstr. 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München Germany
| | - Eugene Demler
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Nathan Goldman
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, CP 231, Campus Plaine, B-1050 Brussels, Belgium
| | - Fabian Grusdt
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München Germany
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
13
|
Cangemi LM, Mishchenko AS, Nagaosa N, Cataudella V, De Filippis G. Topological Quantum Transition Driven by Charge-Phonon Coupling in the Haldane Chern Insulator. PHYSICAL REVIEW LETTERS 2019; 123:046401. [PMID: 31491257 DOI: 10.1103/physrevlett.123.046401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/16/2019] [Indexed: 06/10/2023]
Abstract
In condensed matter physics many features can be understood in terms of their topological properties. Here we report evidence of a topological quantum transition driven by the charge-phonon coupling in the spinless Haldane model on a honeycomb lattice, a well-known prototypical model of the Chern insulator. Starting from parameters describing the topological phase in the bare Haldane model, we show that increasing the strength of the charge lattice coupling drives the system towards a trivial insulator. The average number of fermions in the Dirac point, characterized by the lowest gap, exhibits a finite discontinuity at the transition point and can be used as a direct indicator of the topological quantum transition. Numerical simulations show, also, that the renormalized phonon propagator exhibits a two peak structure across the quantum transition, whereas, in the absence of the mass term in the bare Haldane model, there is indication of a complete softening of the effective vibrational mode, signaling a charge density wave instability.
Collapse
Affiliation(s)
- L M Cangemi
- SPIN-CNR and Dip. di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
| | - A S Mishchenko
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- NRC "Kurchatov Institute", 123182 Moscow, Russia
| | - N Nagaosa
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Applied Physics and Quantum-Phase Electronics Center, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - V Cataudella
- SPIN-CNR and Dip. di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
| | - G De Filippis
- SPIN-CNR and Dip. di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
| |
Collapse
|
14
|
González-Cuadra D, Bermudez A, Grzybowski PR, Lewenstein M, Dauphin A. Intertwined topological phases induced by emergent symmetry protection. Nat Commun 2019; 10:2694. [PMID: 31217460 PMCID: PMC6584657 DOI: 10.1038/s41467-019-10796-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/29/2019] [Indexed: 11/12/2022] Open
Abstract
The dual role played by symmetry in many-body physics manifests itself through two fundamental mechanisms: spontaneous symmetry breaking and topological symmetry protection. These two concepts, ubiquitous in both condensed matter and high energy physics, have been applied successfully in the last decades to unravel a plethora of complex phenomena. Their interplay, however, remains largely unexplored. Here we report how, in the presence of strong correlations, symmetry protection emerges from a set of configurations enforced by another broken symmetry. This mechanism spawns different intertwined topological phases, where topological properties coexist with long-range order. Such a singular interplay gives rise to interesting static and dynamical effects, including interaction-induced topological phase transitions constrained by symmetry breaking, as well as a self-adjusted fractional pumping. This work paves the way for further exploration of exotic topological features in strongly-correlated quantum systems.
Collapse
Affiliation(s)
- Daniel González-Cuadra
- ICFO-Institut de Ciències Fotòniques, Av. Carl Friedrich Gauss 3, 08860, Barcelona, Spain.
| | - Alejandro Bermudez
- Departamento de Física Teórica, Universidad Complutense, 28040, Madrid, Spain
| | - Przemysław R Grzybowski
- ICFO-Institut de Ciències Fotòniques, Av. Carl Friedrich Gauss 3, 08860, Barcelona, Spain
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland
| | - Maciej Lewenstein
- ICFO-Institut de Ciències Fotòniques, Av. Carl Friedrich Gauss 3, 08860, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Lluis Companys 23, 08010, Barcelona, Spain
| | - Alexandre Dauphin
- ICFO-Institut de Ciències Fotòniques, Av. Carl Friedrich Gauss 3, 08860, Barcelona, Spain.
| |
Collapse
|