1
|
Park Y, Hamada I, Hammud A, Kumagai T, Wolf M, Shiotari A. Atomic-precision control of plasmon-induced single-molecule switching in a metal-semiconductor nanojunction. Nat Commun 2024; 15:6709. [PMID: 39112448 PMCID: PMC11306799 DOI: 10.1038/s41467-024-51000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Atomic-scale control of photochemistry facilitates extreme miniaturisation of optoelectronic devices. Localised surface plasmons, which provide strong confinement and enhancement of electromagnetic fields at the nanoscale, secure a route to achieve sub-nanoscale reaction control. Such local plasmon-induced photochemistry has been realised only in metallic structures so far. Here we demonstrate controlled plasmon-induced single-molecule switching of peryleneanhydride on a silicon surface. Using a plasmon-resonant tip in low-temperature scanning tunnelling microscopy, we can selectively induce the dissociation of the O-Si bonds between the molecule and surface, resulting in reversible switching between two configurations within the nanojunction. The switching rate can be controlled by changing the tip height with 0.1-Å precision. Furthermore, the plasmon-induced reactivity can be modified by chemical substitution within the molecule, suggesting the importance of atomic-level design for plasmon-driven optoelectronic devices. Thus, metal-single-molecule-semiconductor junctions may serve as a prominent controllable platform beyond conventional nano-optoelectronics.
Collapse
Affiliation(s)
- Youngwook Park
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany.
| | - Ikutaro Hamada
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Adnan Hammud
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Takashi Kumagai
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Martin Wolf
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Akitoshi Shiotari
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany.
| |
Collapse
|
2
|
Marinakis S, Cockrell C, Trachenko K, Headen TF, Soper AK. Microscopic Structure of Liquid Nitric Oxide. J Phys Chem B 2022; 126:9860-9870. [PMID: 36399601 PMCID: PMC9720726 DOI: 10.1021/acs.jpcb.2c05384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The microscopic structure of nitric oxide is investigated using neutron scattering experiments. The measurements are performed at various temperatures between 120 and 144 K and at pressures between 1.1 and 9 bar. Using the technique of empirical potential structure refinement (EPSR), our results show that the dimer is the main form, around 80%, of nitric oxide in the liquid phase at 120 K, but the degree of dissociation to monomers increases with increasing temperature. The reported degree of dissociation of dimers, and its trend with increasing temperature, is consistent with earlier measurements and studies. It is also shown that nonplanar dimers are not inconsistent with the diffraction data and that the possibility of nitric oxide molecules forming longer oligomers, consisting of bonded nitrogen atoms along the backbone, cannot be ruled out in the liquid. A molecular dynamics simulation is used to compare the present EPSR simulations with an earlier proposed intermolecular potential for the liquid.
Collapse
Affiliation(s)
- Sarantos Marinakis
- Department
of Chemistry, University of Patras, PatrasGR-26504, Greece,School
of Health, Sport and Bioscience, University
of East London, Stratford Campus, Water Lane, LondonE15 4LZ, U.K.
| | - Cillian Cockrell
- School
of Physics and Astronomy, Queen Mary University
of London, Mile End Road, LondonE1 4NS, U.K.
| | - Kostya Trachenko
- School
of Physics and Astronomy, Queen Mary University
of London, Mile End Road, LondonE1 4NS, U.K.
| | - Thomas F. Headen
- ISIS
Facility, STFC-UKRI Rutherford Appleton
Laboratory, Harwell Campus, Didcot, OxonOX11 0QX, U.K.
| | - Alan K. Soper
- ISIS
Facility, STFC-UKRI Rutherford Appleton
Laboratory, Harwell Campus, Didcot, OxonOX11 0QX, U.K.,
| |
Collapse
|
3
|
Sitathani K, Jenkins SJ, Temprano I. Partial reduction of NO to N 2O on Cu{311}: role of intermediate N 2O 2. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reflection absorption infrared spectroscopy (RAIRS) and first-principles density functional theory (DFT) combine to suggest a pathway for NOx reduction on Cu{311} involving a flat-lying N2O2 intermediate.
Collapse
Affiliation(s)
- Krit Sitathani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Stephen J. Jenkins
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Israel Temprano
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Ishii A, Shiotari A, Sugimoto Y. Mechanically induced single-molecule helicity switching of graphene-nanoribbon-fused helicene on Au(111). Chem Sci 2021; 12:13301-13306. [PMID: 34777748 PMCID: PMC8528025 DOI: 10.1039/d1sc03976h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Helicene is a functional material with chirality caused by its characteristic helical geometry. The inversion of its helicity by external stimuli is a challenging task in the advanced control of the molecular chirality. This study fabricated a novel helical molecule, specifically a pentahelicene-analogue twisted aromatic hydrocarbon fused with a graphene nanoribbon, via on-surface synthesis using multiple precursors. Noncontact atomic force microscopy imaging with high spatial resolution confirmed the helicity of the reaction products. The helicity was geometrically converted by pushing a CO-terminated tip into the twisted framework, which is the first demonstration of helicity switching at the single-molecule scale.
Collapse
Affiliation(s)
- Ayumu Ishii
- Department of Advanced Materials Science, The University of Tokyo 5-1-5 Kashiwanoha 277-8561 Kashiwa Japan +81 4 7536 4058 +81 4 7536 3997
| | - Akitoshi Shiotari
- Department of Advanced Materials Science, The University of Tokyo 5-1-5 Kashiwanoha 277-8561 Kashiwa Japan +81 4 7536 4058 +81 4 7536 3997
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Yoshiaki Sugimoto
- Department of Advanced Materials Science, The University of Tokyo 5-1-5 Kashiwanoha 277-8561 Kashiwa Japan +81 4 7536 4058 +81 4 7536 3997
| |
Collapse
|
5
|
Schulze Lammers B, Yesilpinar D, Timmer A, Hu Z, Ji W, Amirjalayer S, Fuchs H, Mönig H. Benchmarking atomically defined AFM tips for chemical-selective imaging. NANOSCALE 2021; 13:13617-13623. [PMID: 34477636 DOI: 10.1039/d1nr04080d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlling the identity of the tip-terminating atom or molecule in low-temperature atomic force microscopy has led to ground breaking progress in surface chemistry and nanotechnology. Lacking a comparative tip-performance assessment, a profound standardization in such experiments is highly desirable. Here we directly compare the imaging and force-spectroscopy capabilities of four atomically defined tips, namely Cu-, Xe-, CO-, and O-terminated Cu-tips (CuOx-tips). Using a nanostructured copper-oxide surface as benchmark system, we found that Cu-tips react with surface oxygen, while chemically inert Xe- and CO-tips allow entering the repulsive force regime enabling increased resolution. However, their high flexibility leads to imaging artifacts and their strong passivation suppresses the chemical contrast. The higher rigidity and selectively increased chemical reactivity of CuOx-tips prevent tip-bending artifacts and generate a distinct chemical contrast. This result is particularly promising in view of future studies on other metal-oxide surfaces.
Collapse
Affiliation(s)
- Bertram Schulze Lammers
- Physikalisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany.
- Center for Nanotechnology, 48149 Münster, Germany
| | - Damla Yesilpinar
- Physikalisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany.
- Center for Nanotechnology, 48149 Münster, Germany
| | | | - Zhixin Hu
- Center for Quantum Joint Studies and Department of Physics, Tianjin University, Tianjin, China.
| | - Wei Ji
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Renmin University of China, Beijing, China
| | - Saeed Amirjalayer
- Physikalisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany.
- Center for Nanotechnology, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, 48149 Münster, Germany
| | - Harald Fuchs
- Physikalisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany.
- Center for Nanotechnology, 48149 Münster, Germany
| | - Harry Mönig
- Physikalisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany.
- Center for Nanotechnology, 48149 Münster, Germany
| |
Collapse
|
6
|
Weymouth AJ, Riegel E, Simmet B, Gretz O, Giessibl FJ. Lateral Force Microscopy Reveals the Energy Barrier of a Molecular Switch. ACS NANO 2021; 15:3264-3271. [PMID: 33523628 DOI: 10.1021/acsnano.0c09965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Copper phthalocyanine (CuPc) is a small molecule often used in organic light emitting diodes where it is deposited on a conducting electrode. Previous scanning tunneling microscopy (STM) studies of CuPc on Cu(111) have shown that inelastic tunneling events can cause CuPc to switch between a ground state and two symmetrically equivalent metastable states in which the molecule is rotated. We investigated CuPc on Cu(111) and Ag(111) with STM and lateral force microscopy (LFM). Even without inelastic events, the presence of the tip can induce rotations and upon closer approach, causes the rotated states to be favored. Combining STM measurements at various temperatures and LFM measurements, we show that the long-range attraction of the tip changes the potential energy landscape of this molecular switch. We can also determine the geometry of the rotated and ground states. We compare our observations of CuPc on Cu(111) to CuPc on Ag(111). On Ag(111), CuPc appears flat and does not rotate. Stronger bonding typically involves shorter bond lengths, larger shifts of energy levels, and structural stability. Although the binding of CuPc to Cu(111) is stronger than that on Ag(111), the nonplanar geometry of CuPc on Cu(111) is accompanied by two metastable states which are not present on the Ag(111) surface.
Collapse
Affiliation(s)
| | | | | | - Oliver Gretz
- University of Regensburg, Regensburg 93053, Germany
| | | |
Collapse
|
7
|
Larson AM, Balema TA, Zahl P, Schilling AC, Stacchiola DJ, Sykes ECH. Hypothetical Efficiency of Electrical to Mechanical Energy Transfer during Individual Stochastic Molecular Switching Events. ACS NANO 2020; 14:16558-16564. [PMID: 32946215 DOI: 10.1021/acsnano.0c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There are now many examples of single molecule rotors, motors, and switches in the literature that, when driven by photons, electrons, or chemical reactions, exhibit well-defined motions. As a step toward using these single molecule devices to perform useful functions, one must understand how they interact with their environment and quantify their ability to perform work on it. Using a single molecule rotary switch, we examine the transfer of electrical energy, delivered via electron tunneling, to mechanical motion and measure the forces the switch experiences with a noncontact q-plus atomic force microscope. Action spectra reveal that the molecular switch has two stable states and can be excited resonantly between them at a bias of 100 mV via a one-electron inelastic tunneling process which corresponds to an energy input of 16 zJ. While the electrically induced switching events are stochastic and no net work is done on the cantilever, by measuring the forces between the molecular switch and the AFM cantilever, we can derive the maximum hypothetical work the switch could perform during a single switching event, which is ∼55 meV, equal to 8.9 zJ, which translates to a hypothetical efficiency of ∼55% per individual inelastic tunneling electron-induced switching event. When considering the total electrical energy input, this drops to 1 × 10-7% due to elastic tunneling events that dominate the tunneling current. However, this approach constitutes a general method for quantifying and comparing the energy input and output of molecular-mechanical devices.
Collapse
Affiliation(s)
- Amanda M Larson
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Tedros A Balema
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Percy Zahl
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alex C Schilling
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Dario J Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - E Charles H Sykes
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
8
|
Shiotari A, Hamada I, Nakae T, Mori S, Okujima T, Uno H, Sakaguchi H, Hamamoto Y, Morikawa Y, Sugimoto Y. Manipulable Metal Catalyst for Nanographene Synthesis. NANO LETTERS 2020; 20:8339-8345. [PMID: 33090808 DOI: 10.1021/acs.nanolett.0c03510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Performing bottom-up synthesis by using molecules adsorbed on a surface is an effective method to yield functional polycyclic aromatic hydrocarbons (PAHs) and nanocarbon materials. The intramolecular cyclodehydrogenation of hydrocarbons is a critical process in this synthesis; however, thus far, its elementary steps have not been elucidated thoroughly. In this study, we utilize the metal tip of a low-temperature noncontact atomic force microscope as a manipulable metal surface to locally activate dehydrogenation for PAH-forming cyclodehydrogenation. This method leads to the dissociation of a H atom of an intermediate to yield the cyclodehydrogenated product in a target-selective and reproducible manner. We demonstrate the metal-tip-catalyzed dehydrogenation for both benzenoid and nonbenzonoid PAHs, suggesting its universal applicability as a catalyst for nanographene synthesis.
Collapse
Affiliation(s)
- Akitoshi Shiotari
- Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, 277-8561 Kashiwa, Japan
| | - Ikutaro Hamada
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 565-0871 Suita, Japan
| | - Takahiro Nakae
- Institute of Advanced Energy, Kyoto University, 611-0011 Uji, Japan
| | - Shigeki Mori
- Advanced Research Support Center, Ehime University, 790-8577 Matsuyama, Japan
| | - Tetsuo Okujima
- Graduate School of Science and Engineering, Ehime University, 790-8577 Matsuyama, Japan
| | - Hidemitsu Uno
- Graduate School of Science and Engineering, Ehime University, 790-8577 Matsuyama, Japan
| | | | - Yuji Hamamoto
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 565-0871 Suita, Japan
| | - Yoshitada Morikawa
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 565-0871 Suita, Japan
- Research Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 565-0871 Suita, Japan
| | - Yoshiaki Sugimoto
- Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, 277-8561 Kashiwa, Japan
| |
Collapse
|
9
|
Chen C, Kong L, Wang Y, Cheng P, Feng B, Zheng Q, Zhao J, Chen L, Wu K. Dynamics of Single-Molecule Dissociation by Selective Excitation of Molecular Phonons. PHYSICAL REVIEW LETTERS 2019; 123:246804. [PMID: 31922847 DOI: 10.1103/physrevlett.123.246804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Breaking bonds selectively in molecules is vital in many chemistry reactions and custom nanoscale device fabrications. The scanning tunneling microscope (STM) has proved to be an ideal tool to initiate and view bond-selective chemistry at the single-molecule level, offering opportunities for the further study of the dynamics in single molecules on metal surfaces. We demonstrate H─HS and H─S bond breaking on Au(111) induced by tunneling electrons using low-temperature STM. An experimental study combined with theoretical calculations shows that the dissociation pathway is facilitated by vibrational excitations. Furthermore, the dissociation probabilities of the two different dissociation processes are bias dependent due to different inelastic-tunneling probabilities, and they are also closely linked to the lifetime of inelastic-tunneling electrons. Combined with time-dependent ab initio nonadiabatic molecular dynamics simulations, the dynamics of the injected electron and the phonon-excitation-induced molecule dissociation can be understood at the atomic scale, demonstrating the potential application of STM for the investigation of excited-state dynamics of single molecules on surfaces.
Collapse
Affiliation(s)
- Caiyun Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longjuan Kong
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Cheng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baojie Feng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qijing Zheng
- ICQD/Hefei National Laboratory for Physical Sciences at Microscale, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin Zhao
- ICQD/Hefei National Laboratory for Physical Sciences at Microscale, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lan Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Kehui Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
10
|
Chutora T, de la Torre B, Mutombo P, Hellerstedt J, Kopeček J, Jelínek P, Švec M. Nitrous oxide as an effective AFM tip functionalization: a comparative study. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:315-321. [PMID: 30800570 PMCID: PMC6369984 DOI: 10.3762/bjnano.10.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/07/2019] [Indexed: 05/14/2023]
Abstract
We investigate the possibility of functionalizing Au tips by N2O molecules deposited on a Au(111) surface and their further use for imaging with submolecular resolution. First, we characterize the adsorption of the N2O species on Au(111) by means of atomic force microscopy with CO-functionalized tips and density functional theory (DFT) simulations. Subsequently we devise a method of attaching a single N2O to a metal tip apex and benchmark its high-resolution imaging and spectroscopic capabilities using FePc molecules. Our results demonstrate the feasibility of high-resolution imaging. However, we find an inherent asymmetry of the N2O probe-particle adsorption on the tip apex, in contrast to a CO tip reference. These findings are consistent with DFT calculations of the N2O- and CO tip apexes.
Collapse
Affiliation(s)
- Taras Chutora
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Bruno de la Torre
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
| | - Pingo Mutombo
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
| | - Jack Hellerstedt
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
| | - Jaromír Kopeček
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
| | - Pavel Jelínek
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
| | - Martin Švec
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
| |
Collapse
|
11
|
Giessibl FJ. The qPlus sensor, a powerful core for the atomic force microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:011101. [PMID: 30709191 DOI: 10.1063/1.5052264] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/25/2018] [Indexed: 05/27/2023]
Abstract
Atomic force microscopy (AFM) was introduced in 1986 and has since made its way into surface science, nanoscience, chemistry, biology, and material science as an imaging and manipulating tool with a rising number of applications. AFM can be employed in ambient and liquid environments as well as in vacuum and at low and ultralow temperatures. The technique is an offspring of scanning tunneling microscopy (STM), where the tunneling tip of the STM is replaced by using a force sensor with an attached tip. Measuring the tiny chemical forces that act between the tip and the sample is more difficult than measuring the tunneling current in STM. Therefore, even 30 years after the introduction of AFM, progress in instrumentation is substantial. Here, we focus on the core of the AFM, the force sensor with its tip and detection mechanism. Initially, force sensors were mainly micro-machined silicon cantilevers, mainly using optical methods to detect their deflection. The qPlus sensor, originally based on a quartz tuning fork and now custom built from quartz, is self-sensing by utilizing the piezoelectricity of quartz. The qPlus sensor allows us to perform STM and AFM in parallel, and the spatial resolution of its AFM channel has reached the subatomic level, exceeding the resolution of STM. Frequency modulation AFM (FM-AFM), where the frequency of an oscillating cantilever is altered by the gradient of the force that acts between the tip and the sample, has emerged over the years as the method that provides atomic and subatomic spatial resolution as well as force spectroscopy with sub-piconewton sensitivity. FM-AFM is precise; because of all physical observables, time and frequency can be measured by far with the greatest accuracy. By design, FM-AFM clearly separates conservative and dissipative interactions where conservative forces induce a frequency shift and dissipative interactions alter the power needed to maintain a constant oscillation amplitude of the cantilever. As it operates in a noncontact mode, it enables simultaneous AFM and STM measurements. The frequency stability of quartz and the small oscillation amplitudes that are possible with stiff quartz sensors optimize the signal to noise ratio. Here, we discuss the operating principles, the assembly of qPlus sensors, amplifiers, limiting factors, and applications. Applications encompass unprecedented subatomic spatial resolution, the measurement of forces that act in atomic manipulation, imaging and spectroscopy of spin-dependent forces, and atomic resolution of organic molecules, graphite, graphene, and oxides.
Collapse
Affiliation(s)
- Franz J Giessibl
- Institute of Experimental and Applied Physics, University of Regensburg, Universitätsstrasse 31, D-93040 Regensburg, Germany
| |
Collapse
|