1
|
Koskelo J, Reining L, Gatti M. Short-Range Excitonic Phenomena in Low-Density Metals. PHYSICAL REVIEW LETTERS 2025; 134:046402. [PMID: 39951611 DOI: 10.1103/physrevlett.134.046402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/16/2024] [Indexed: 02/16/2025]
Abstract
Excitonic effects in metals are usually supposed to be weak, because the Coulomb interaction is strongly screened. Here, we investigate the low-density regime of the homogeneous electron gas, where, besides the usual high-energy plasmons, the existence of low-energy excitonic collective modes has recently been suggested. Using the Bethe-Salpeter equation (BSE), we show that indeed low-energy modes appear, thanks to reduced screening at short distances. This requires going beyond common approximations to ab initio BSE calculations, which suffer from a self-polarization error that overscreens the electron-hole interaction. The electron-hole wave function of the low-energy mode shows strong and very anisotropic electron-hole correlation, which speaks for an excitonic character of this mode. The fact that the electron-hole interaction at short distances is at the origin of these phenomena explains why, on the other hand, also the simple adiabatic local density approximation to time-dependent density functional theory can capture these effects. This exotic regime might be found in doped semiconductors and interfaces.
Collapse
Affiliation(s)
- Jaakko Koskelo
- Institut Polytechnique de Paris, LSI, CNRS, CEA/DRF/IRAMIS, École Polytechnique, F-91120 Palaiseau, France
- European Theoretical Spectroscopy Facility, (ETSF)
| | - Lucia Reining
- Institut Polytechnique de Paris, LSI, CNRS, CEA/DRF/IRAMIS, École Polytechnique, F-91120 Palaiseau, France
- European Theoretical Spectroscopy Facility, (ETSF)
| | - Matteo Gatti
- Institut Polytechnique de Paris, LSI, CNRS, CEA/DRF/IRAMIS, École Polytechnique, F-91120 Palaiseau, France
- European Theoretical Spectroscopy Facility, (ETSF)
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Svensson P, Aziz Y, Dornheim T, Azadi S, Hollebon P, Skelt A, Vinko SM, Gregori G. Modeling of warm dense hydrogen via explicit real-time electron dynamics: Dynamic structure factors. Phys Rev E 2024; 110:055205. [PMID: 39690610 DOI: 10.1103/physreve.110.055205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/08/2024] [Indexed: 12/19/2024]
Abstract
We present two methods for computing the dynamic structure factor for warm dense hydrogen without invoking either the Born-Oppenheimer approximation or the Chihara decomposition, by employing a wave-packet description that resolves the electron dynamics during ion evolution. First, a semiclassical method is discussed, which is corrected based on known quantum constraints, and second, a direct computation of the density response function within the molecular dynamics. The wave-packet models are compared to PIMC and DFT-MD for the static and low-frequency behavior. For the high-frequency behavior the models recover the expected behavior in the limits of small and large momentum transfers and show the characteristic flattening of the plasmon dispersion for intermediate momentum transfers due to interactions, in agreement with commonly used models for x-ray Thomson scattering. By modeling the electrons and ions on an equal footing, both the ion and free electron part of the spectrum can now be treated within a single framework where we simultaneously resolve the ion-acoustic and plasmon mode, with a self-consistent description of collisions and screening.
Collapse
Affiliation(s)
| | - Yusuf Aziz
- AWE, Aldermaston, Reading, Berkshire RG7 4PR, United Kingdom
| | | | | | | | - Amy Skelt
- AWE, Aldermaston, Reading, Berkshire RG7 4PR, United Kingdom
| | | | | |
Collapse
|
3
|
Dornheim T, Döppner T, Baczewski AD, Tolias P, Böhme MP, Moldabekov ZA, Gawne T, Ranjan D, Chapman DA, MacDonald MJ, Preston TR, Kraus D, Vorberger J. X-ray Thomson scattering absolute intensity from the f-sum rule in the imaginary-time domain. Sci Rep 2024; 14:14377. [PMID: 38909077 PMCID: PMC11193768 DOI: 10.1038/s41598-024-64182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/05/2024] [Indexed: 06/24/2024] Open
Abstract
We present a formally exact and simulation-free approach for the normalization of X-ray Thomson scattering (XRTS) spectra based on the f-sum rule of the imaginary-time correlation function (ITCF). Our method works for any degree of collectivity, over a broad range of temperatures, and is applicable even in nonequilibrium situations. In addition to giving us model-free access to electronic correlations, this new approach opens up the intriguing possibility to extract a plethora of physical properties from the ITCF based on XRTS experiments.
Collapse
Affiliation(s)
- T Dornheim
- Center for Advanced Systems Understanding (CASUS), 02826, Görlitz, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany.
| | - T Döppner
- Lawrence Livermore National Laboratory (LLNL), California, 94550, Livermore, USA
| | - A D Baczewski
- Center for Computing Research, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - P Tolias
- Space and Plasma Physics, Royal Institute of Technology (KTH), Stockholm, 100 44, Sweden
| | - M P Böhme
- Center for Advanced Systems Understanding (CASUS), 02826, Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Zh A Moldabekov
- Center for Advanced Systems Understanding (CASUS), 02826, Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany
| | - Th Gawne
- Center for Advanced Systems Understanding (CASUS), 02826, Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany
| | - D Ranjan
- Institut für Physik, Universität Rostock, 18057, Rostock, Germany
| | - D A Chapman
- First Light Fusion, Yarnton, Oxfordshire, UK
| | - M J MacDonald
- Lawrence Livermore National Laboratory (LLNL), California, 94550, Livermore, USA
| | | | - D Kraus
- Institut für Physik, Universität Rostock, 18057, Rostock, Germany
| | - J Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany
| |
Collapse
|
4
|
Moldabekov Z, Gawne TD, Schwalbe S, Preston TR, Vorberger J, Dornheim T. Ultrafast Heating-Induced Suppression of d-Band Dominance in the Electronic Excitation Spectrum of Cuprum. ACS OMEGA 2024; 9:25239-25250. [PMID: 38882083 PMCID: PMC11170750 DOI: 10.1021/acsomega.4c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
The combination of isochoric heating of solids by free-electron lasers (FELs) and in situ diagnostics by X-ray Thomson scattering (XRTS) allows for measurements of material properties at warm dense matter (WDM) conditions relevant for astrophysics, inertial confinement fusion, and materials science. In the case of metals, the FEL beam pumps energy directly into electrons with the lattice structure of ions being nearly unaffected. This leads to a unique transient state that gives rise to a set of interesting physical effects, which can serve as a reliable testing platform for WDM theories. In this work, we present extensive linear-response time-dependent density functional theory (TDDFT) results for the electronic dynamic structure factor of isochorically heated copper with a face-centered cubic lattice. At ambient conditions, the plasmon is heavily damped due to the presence of d-band excitations, and its position is independent of the wavenumber. In contrast, the plasmon feature starts to dominate the excitation spectrum and has a Bohm-Gross-type plasmon dispersion for temperatures T ≥ 4 eV, where the quasi-free electrons in the interstitial region are in the WDM regime. In addition, we analyze the thermal changes in the d-band excitations and outline the possibility to use future XRTS measurements of isochorically heated copper as a controlled testbed for WDM theories.
Collapse
Affiliation(s)
- Zhandos Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Thomas D Gawne
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Sebastian Schwalbe
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | | | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
5
|
Dornheim T, Schwalbe S, Moldabekov ZA, Vorberger J, Tolias P. Ab Initio Path Integral Monte Carlo Simulations of the Uniform Electron Gas on Large Length Scales. J Phys Chem Lett 2024; 15:1305-1313. [PMID: 38285536 PMCID: PMC10860150 DOI: 10.1021/acs.jpclett.3c03193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
The accurate description of non-ideal quantum many-body systems is of prime importance for a host of applications within physics, quantum chemistry, materials science, and related disciplines. At finite temperatures, the gold standard is given by ab initio path integral Monte Carlo (PIMC) simulations, which do not require any empirical input but exhibit an exponential increase in the required computation time for Fermionic systems with an increase in system size N. Very recently, computing Fermionic properties without this bottleneck based on PIMC simulations of fictitious identical particles has been suggested. In our work, we use this technique to perform very large (N ≤ 1000) PIMC simulations of the warm dense electron gas and demonstrate that it is capable of providing a highly accurate description of the investigated properties, i.e., the static structure factor, the static density response function, and the local field correction, over the entire range of length scales.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center
for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-02826 Görlitz, Germany
| | - Sebastian Schwalbe
- Center
for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-02826 Görlitz, Germany
| | - Zhandos A. Moldabekov
- Center
for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-02826 Görlitz, Germany
| | - Jan Vorberger
- Institute
of Radiation Physics, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Panagiotis Tolias
- Space
and Plasma Physics, Royal Institute of Technology
(KTH), Stockholm SE-100 44, Sweden
| |
Collapse
|
6
|
Filinov AV, Bonitz M. Equation of state of partially ionized hydrogen and deuterium plasma revisited. Phys Rev E 2023; 108:055212. [PMID: 38115427 DOI: 10.1103/physreve.108.055212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/31/2023] [Indexed: 12/21/2023]
Abstract
We present improved first-principle fermionic path integral Monte Carlo (PIMC) simulation results for a dense partially ionized hydrogen (deuterium) plasma, for temperatures in the range 15000K≤T≤400000K and densities 7×10^{-7}g/cm^{3}≤ρ_{H}≤0.085g/cm^{3} (1.4×10^{-6}g/cm^{3}≤ρ_{D}≤0.17g/cm^{3}), corresponding to 100≥r_{s}≥2, where r_{s}=r[over ¯]/a_{B} is the ratio of the mean interparticle distance to the Bohr radius. These simulations are based on the fermionic propagator PIMC (FP-PIMC) approach in the grand canonical ensemble [Filinov et al., Contrib. Plasma Phys. 61, e202100112 (2021)0863-104210.1002/ctpp.202100112] and fully account for correlation and quantum degeneracy and spin effects. For the application to hydrogen and deuterium, we develop a combination of the fourth-order factorization and the pair product ansatz for the density matrix. Moreover, we avoid the fixed node approximation that may lead to uncontrolled errors in restricted PIMC (RPIMC). Our results allow us to critically reevaluate the accuracy of the RPIMC simulations for hydrogen by Hu et al. [Phys. Rev. B 84, 224109 (2011)1098-012110.1103/PhysRevB.84.224109] and of various chemical models. The deviations are generally found to be small, but for the lowest temperature, T=15640 K they reach several percent. We present detailed tables with our first principles results for the pressure and energy isotherms. We expect our updated results will serve as a valuable benchmark for comparison with other methods.
Collapse
Affiliation(s)
- A V Filinov
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - M Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| |
Collapse
|
7
|
Dornheim T, Tolias P, Groth S, Moldabekov ZA, Vorberger J, Hirshberg B. Fermionic physics from ab initio path integral Monte Carlo simulations of fictitious identical particles. J Chem Phys 2023; 159:164113. [PMID: 37888764 DOI: 10.1063/5.0171930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
The ab initio path integral Monte Carlo (PIMC) method is one of the most successful methods in statistical physics, quantum chemistry and related fields, but its application to quantum degenerate Fermi systems is severely hampered by an exponential computational bottleneck: the notorious fermion sign problem. Very recently, Xiong and Xiong [J. Chem. Phys. 157, 094112 (2022)] have suggested to partially circumvent the sign problem by carrying out simulations of fictitious systems guided by an interpolating continuous variable ξ ∈ [-1, 1], with the physical Fermi- and Bose-statistics corresponding to ξ = -1 and ξ = 1. It has been proposed that information about the fermionic limit might be obtained by calculations within the bosonic sector ξ > 0 combined with an extrapolation throughout the fermionic sector ξ < 0, essentially bypassing the sign problem. Here, we show how the inclusion of the artificial parameter ξ can be interpreted as an effective penalty on the formation of permutation cycles in the PIMC simulation. We demonstrate that the proposed extrapolation method breaks down for moderate to high quantum degeneracy. Instead, the method constitutes a valuable tool for the description of large Fermi-systems of weak quantum degeneracy. This is demonstrated for electrons in a 2D harmonic trap and for the uniform electron gas (UEG), where we find excellent agreement (∼0.5%) with exact configuration PIMC results in the high-density regime while attaining a speed-up exceeding 11 orders of magnitude. Finally, we extend the idea beyond the energy and analyze the radial density distribution (2D trap), as well as the static structure factor and imaginary-time density-density correlation function (UEG).
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Panagiotis Tolias
- Space and Plasma Physics, Royal Institute of Technology (KTH), Stockholm SE-100 44, Sweden
| | - Simon Groth
- Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | - Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Barak Hirshberg
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
Dornheim T, Böhme MP, Moldabekov ZA, Vorberger J. Electronic density response of warm dense hydrogen on the nanoscale. Phys Rev E 2023; 108:035204. [PMID: 37849144 DOI: 10.1103/physreve.108.035204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/11/2023] [Indexed: 10/19/2023]
Abstract
The properties of hydrogen at warm dense matter (WDM) conditions are of high importance for the understanding of astrophysical objects and technological applications such as inertial confinement fusion. In this work, we present extensive ab initio path integral Monte Carlo results for the electronic properties in the Coulomb potential of a fixed ionic configuration. This gives us unique insights into the complex interplay between the electronic localization around the protons with their density response to an external harmonic perturbation. We find qualitative agreement between our simulation data and a heuristic model based on the assumption of a local uniform electron gas model, but important trends are not captured by this simplification. In addition to being interesting in their own right, we are convinced that our results will be of high value for future projects, such as the rigorous benchmarking of approximate theories for the simulation of WDM, most notably density functional theory.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Maximilian P Böhme
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| | - Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
9
|
Filinov AV, Ara J, Tkachenko IM. Dynamic properties and the roton mode attenuation in liquid 3He: ab initio study within the self-consistent method of moments. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220324. [PMID: 37393939 DOI: 10.1098/rsta.2022.0324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/25/2023] [Indexed: 07/04/2023]
Abstract
The dynamic structure factor and the eigenmodes of density fluctuations in liquid 3He are studied using a novel non-perturbative approach. This new version of the self-consistent method of moments invokes up to nine sum rules and other exact relations, the two-parameter Shannon information entropy maximization procedure, and the ab initio path integral Monte Carlo simulations which provide necessary reliable input information on the system static properties. Detailed analysis is performed of the collective excitations dispersion relations, the modes' decrements and the static structure factor of 3He at the saturated vapour pressure. The results are compared to available experimental data by Albergamo et al. (Albergamo et al. 2007 Phys. Rev. Lett. 99, 205301. (doi:10.1103/PhysRevLett.99.205301)) and Fåk et al. (Fåk et al. 1994 J. Low Temp. Phys. 97, 445-487. (doi:10.1007/BF00754303)). The theory reveals a clear signature of the roton-like feature in the particle-hole segment of the excitation spectrum with a significant reduction of the roton decrement in the wavenumber range [Formula: see text]. The observed roton mode remains a well-defined collective mode even in the particle-hole band, where it is strongly damped. The existence of the roton-like mode in the bulk liquid 3He is confirmed like in other quantum fluids. The phonon branch of the spectrum is in a reasonable agreement with the same experimental data. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
Collapse
Affiliation(s)
- A V Filinov
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - J Ara
- Instituto de Tecnología Química, Universitat Politècnica de València, Valencia, Spain
| | - I M Tkachenko
- Departament de Matemàtica Aplicada, Universitat Poliècnica de València, Valencia, Spain
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
10
|
Dornheim T, Vorberger J, Moldabekov ZA, Böhme M. Analysing the dynamic structure of warm dense matter in the imaginary-time domain: theoretical models and simulations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220217. [PMID: 37393936 DOI: 10.1098/rsta.2022.0217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/10/2023] [Indexed: 07/04/2023]
Abstract
Rigorous diagnostics of experiments with warm dense matter are notoriously difficult. A key method is X-ray Thomson scattering (XRTS), but the interpretation of XRTS measurements is usually based on theoretical models that entail various approximations. Recently, Dornheim et al. [Nat. Commun. 13, 7911 (2022)] introduced a new framework for temperature diagnostics of XRTS experiments that is based on imaginary-time correlation functions. On the one hand, switching from the frequency to the imaginary-time domain gives one direct access to a number of physical properties, which facilitates the extraction of the temperature of arbitrarily complex materials without relying on any models or approximations. On the other hand, the bulk of theoretical work in dynamic quantum many-body theory is devoted to the frequency domain, and, to the best of our knowledge, the manifestation of physics properties within the imaginary-time density-density correlation function (ITCF) remains poorly understood. In the present work, we aim to fill this gap by introducing a simple, semi-analytical model for the imaginary-time dependence of two-body correlations within the framework of imaginary-time path integrals. As a practical example, we compare our new model to extensive ab initio path integral Monte Carlo results for the ITCF of a uniform electron gas, and find excellent agreement over a broad range of wavenumbers, densities and temperatures. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Maximilian Böhme
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
11
|
Van Benschoten W, Petras HR, Shepherd JJ. Electronic Free Energy Surface of the Nitrogen Dimer Using First-Principles Finite Temperature Electronic Structure Methods. J Phys Chem A 2023; 127:6842-6856. [PMID: 37535315 PMCID: PMC10440793 DOI: 10.1021/acs.jpca.3c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/20/2023] [Indexed: 08/04/2023]
Abstract
We use full configuration interaction and density matrix quantum Monte Carlo methods to calculate the electronic free energy surface of the nitrogen dimer within the free-energy Born-Oppenheimer approximation. As the temperature is raised from T = 0, we find a temperature regime in which the internal energy causes bond strengthening. At these temperatures, adding in the entropy contributions is required to cause the bond to gradually weaken with increasing temperature. We predict a thermally driven dissociation for the nitrogen dimer between 22,000 to 63,200 K depending on symmetries and basis set. Inclusion of more spatial and spin symmetries reduces the temperature required. The origin of these observations is explored using the structure of the density matrix at various temperatures and bond lengths.
Collapse
Affiliation(s)
| | - Hayley R. Petras
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - James J. Shepherd
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
12
|
Pihlajamaa I, Laudicina CCL, Luo C, Janssen LMC. Emergent structural correlations in dense liquids. PNAS NEXUS 2023; 2:pgad184. [PMID: 37342651 PMCID: PMC10279420 DOI: 10.1093/pnasnexus/pgad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
The complete quantitative description of the structure of dense and supercooled liquids remains a notoriously difficult problem in statistical physics. Most studies to date focus solely on two-body structural correlations, and only a handful of papers have sought to consider additional three-body correlations. Here, we go beyond the state of the art by extracting many-body static structure factors from molecular dynamics simulations and by deriving accurate approximations up to the six-body structure factor via density functional theory. We find that supercooling manifestly increases four-body correlations, akin to the two- and three-body case. However, at small wave numbers, we observe that the four-point structure of a liquid drastically changes upon supercooling, both qualitatively and quantitatively, which is not the case in two-point structural correlations. This indicates that theories of the structure or dynamics of dense liquids should incorporate many-body correlations beyond the two-particle level to fully capture their intricate behavior.
Collapse
Affiliation(s)
| | | | - Chengjie Luo
- Soft Matter & Biological Physics, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
| | | |
Collapse
|
13
|
Shen T, Barghathi H, Yu J, Del Maestro A, Rubenstein BM. Stable recursive auxiliary field quantum Monte Carlo algorithm in the canonical ensemble: Applications to thermometry and the Hubbard model. Phys Rev E 2023; 107:055302. [PMID: 37329093 DOI: 10.1103/physreve.107.055302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Many experimentally accessible, finite-sized interacting quantum systems are most appropriately described by the canonical ensemble of statistical mechanics. Conventional numerical simulation methods either approximate them as being coupled to a particle bath or use projective algorithms which may suffer from nonoptimal scaling with system size or large algorithmic prefactors. In this paper, we introduce a highly stable, recursive auxiliary field quantum Monte Carlo approach that can directly simulate systems in the canonical ensemble. We apply the method to the fermion Hubbard model in one and two spatial dimensions in a regime known to exhibit a significant "sign" problem and find improved performance over existing approaches including rapid convergence to ground-state expectation values. The effects of excitations above the ground state are quantified using an estimator-agnostic approach including studying the temperature dependence of the purity and overlap fidelity of the canonical and grand canonical density matrices. As an important application, we show that thermometry approaches often exploited in ultracold atoms that employ an analysis of the velocity distribution in the grand canonical ensemble may be subject to errors leading to an underestimation of extracted temperatures with respect to the Fermi temperature.
Collapse
Affiliation(s)
- Tong Shen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Hatem Barghathi
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - Jiangyong Yu
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - Adrian Del Maestro
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Brenda M Rubenstein
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
14
|
Tolias P, Lucco Castello F, Dornheim T. Quantum version of the integral equation theory-based dielectric scheme for strongly coupled electron liquids. J Chem Phys 2023; 158:141102. [PMID: 37061474 DOI: 10.1063/5.0145687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
A novel dielectric scheme is proposed for strongly coupled electron liquids, which handles quantum mechanical effects beyond the random phase approximation level and treats electronic correlations within the integral equation theory of classical liquids. The self-consistent scheme features a complicated dynamic local field correction functional and its formulation is guided by ab initio path integral Monte Carlo simulations. Remarkably, our scheme is capable of providing unprecedently accurate results for the static structure factor with the exception of the Wigner crystallization vicinity, despite the absence of adjustable or empirical parameters.
Collapse
Affiliation(s)
- Panagiotis Tolias
- Space and Plasma Physics - Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | | | - Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| |
Collapse
|
15
|
Moldabekov Z, Böhme M, Vorberger J, Blaschke D, Dornheim T. Ab Initio Static Exchange-Correlation Kernel across Jacob's Ladder without Functional Derivatives. J Chem Theory Comput 2023; 19:1286-1299. [PMID: 36724889 PMCID: PMC9979610 DOI: 10.1021/acs.jctc.2c01180] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 02/03/2023]
Abstract
The electronic exchange─correlation (XC) kernel constitutes a fundamental input for the estimation of a gamut of properties such as the dielectric characteristics, the thermal and electrical conductivity, or the response to an external perturbation. In this work, we present a formally exact methodology for the computation of the system specific static XC kernel exclusively within the framework of density functional theory (DFT) and without employing functional derivatives─no external input apart from the usual XC-functional is required. We compare our new results with exact quantum Monte Carlo (QMC) data for the archetypical uniform electron gas model under both ambient and warm dense matter conditions. This gives us unprecedented insights into the performance of different XC functionals, and it has important implications for the development of new functionals that are designed for the application at extreme temperatures. In addition, we obtain new DFT results for the XC kernel of warm dense hydrogen as it occurs in fusion applications and astrophysical objects. The observed excellent agreement to the QMC reference data demonstrates that presented framework is capable to capture nontrivial effects such as XC-induced isotropy breaking in the density response of hydrogen at large wave numbers.
Collapse
Affiliation(s)
- Zhandos Moldabekov
- Center
for Advanced Systems Understanding (CASUS), D-02826Görlitz, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), D-01328Dresden, Germany
| | - Maximilian Böhme
- Center
for Advanced Systems Understanding (CASUS), D-02826Görlitz, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), D-01328Dresden, Germany
| | - David Blaschke
- Institute
of Theoretical Physics, University of Wroclaw, 50-204Wroclaw, Poland
| | - Tobias Dornheim
- Center
for Advanced Systems Understanding (CASUS), D-02826Görlitz, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), D-01328Dresden, Germany
| |
Collapse
|
16
|
Janković V, Vučičević J. Fermionic-propagator and alternating-basis quantum Monte Carlo methods for correlated electrons on a lattice. J Chem Phys 2023; 158:044108. [PMID: 36725525 DOI: 10.1063/5.0133597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ultracold-atom simulations of the Hubbard model provide insights into the character of charge and spin correlations in and out of equilibrium. The corresponding numerical simulations, on the other hand, remain a significant challenge. We build on recent progress in the quantum Monte Carlo (QMC) simulation of electrons in continuous space and apply similar ideas to the square-lattice Hubbard model. We devise and benchmark two discrete-time QMC methods, namely the fermionic-propagator QMC (FPQMC) and the alternating-basis QMC (ABQMC). In FPQMC, the time evolution is represented by snapshots in real space, whereas the snapshots in ABQMC alternate between real and reciprocal space. The methods may be applied to study equilibrium properties within the grand-canonical or canonical ensemble, external field quenches, and even the evolution of pure states. Various real-space/reciprocal-space correlation functions are also within their reach. Both methods deal with matrices of size equal to the number of particles (thus independent of the number of orbitals or time slices), which allows for cheap updates. We benchmark the methods in relevant setups. In equilibrium, the FPQMC method is found to have an excellent average sign and, in some cases, yields correct results even with poor imaginary-time discretization. ABQMC has a significantly worse average sign, but also produces good results. Out of equilibrium, FPQMC suffers from a strong dynamical sign problem. On the contrary, in ABQMC, the sign problem is not time-dependent. Using ABQMC, we compute survival probabilities for several experimentally relevant pure states.
Collapse
Affiliation(s)
- Veljko Janković
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Jakša Vučičević
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| |
Collapse
|
17
|
Böhme M, Moldabekov ZA, Vorberger J, Dornheim T. Ab initio path integral Monte Carlo simulations of hydrogen snapshots at warm dense matter conditions. Phys Rev E 2023; 107:015206. [PMID: 36797933 DOI: 10.1103/physreve.107.015206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
We combine ab initio path integral Monte Carlo (PIMC) simulations with fixed ion configurations from density functional theory molecular dynamics (DFT-MD) simulations to solve the electronic problem for hydrogen under warm dense matter conditions [Böhme et al., Phys. Rev. Lett. 129, 066402 (2022)0031-900710.1103/PhysRevLett.129.066402]. The problem of path collapse due to the Coulomb attraction is avoided by utilizing the pair approximation, which is compared against the simpler Kelbg pair potential. We find very favorable convergence behavior towards the former. Since we do not impose any nodal restrictions, our PIMC simulations are afflicted with the notorious fermion sign problem, which we analyze in detail. While computationally demanding, our results constitute an exact benchmark for other methods and approximations within DFT. Our setup gives us the unique capability to study important properties of warm dense hydrogen such as the electronic static density response and exchange-correlation kernel without any model assumptions, which will be very valuable for a variety of applications such as the interpretation of experiments and the development of new XC functionals.
Collapse
Affiliation(s)
- Maximilian Böhme
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, D-01328 Dresden, Germany
- Technische Universität Dresden, Institute of Theoretical Physics, D-01062 Dresden, Germany
| | - Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, D-01328 Dresden, Germany
| | - Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, D-01328 Dresden, Germany
| |
Collapse
|
18
|
Dornheim T, Böhme M, Kraus D, Döppner T, Preston TR, Moldabekov ZA, Vorberger J. Accurate temperature diagnostics for matter under extreme conditions. Nat Commun 2022; 13:7911. [PMID: 36564411 PMCID: PMC9789064 DOI: 10.1038/s41467-022-35578-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The experimental investigation of matter under extreme densities and temperatures, as in astrophysical objects and nuclear fusion applications, constitutes one of the most active frontiers at the interface of material science, plasma physics, and engineering. The central obstacle is given by the rigorous interpretation of the experimental results, as even the diagnosis of basic parameters like the temperature T is rendered difficult at these extreme conditions. Here, we present a simple, approximation-free method to extract the temperature of arbitrarily complex materials in thermal equilibrium from X-ray Thomson scattering experiments, without the need for any simulations or an explicit deconvolution. Our paradigm can be readily implemented at modern facilities and corresponding experiments will have a profound impact on our understanding of warm dense matter and beyond, and open up a variety of appealing possibilities in the context of thermonuclear fusion, laboratory astrophysics, and related disciplines.
Collapse
Affiliation(s)
- Tobias Dornheim
- grid.510908.5Center for Advanced Systems Understanding (CASUS), Görlitz, D-02826 Germany ,grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, D-01328 Germany
| | - Maximilian Böhme
- grid.510908.5Center for Advanced Systems Understanding (CASUS), Görlitz, D-02826 Germany ,grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, D-01328 Germany ,grid.4488.00000 0001 2111 7257Technische Universität Dresden, Dresden, D-01062 Germany
| | - Dominik Kraus
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, D-01328 Germany ,grid.10493.3f0000000121858338Institut für Physik, Universität Rostock, Rostock, D-18059 Germany
| | - Tilo Döppner
- grid.250008.f0000 0001 2160 9702Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
| | - Thomas R. Preston
- grid.434729.f0000 0004 0590 2900European XFEL, Schenefeld, D-22869 Germany
| | - Zhandos A. Moldabekov
- grid.510908.5Center for Advanced Systems Understanding (CASUS), Görlitz, D-02826 Germany ,grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, D-01328 Germany
| | - Jan Vorberger
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, D-01328 Germany
| |
Collapse
|
19
|
Böhme M, Moldabekov ZA, Vorberger J, Dornheim T. Static Electronic Density Response of Warm Dense Hydrogen: Ab Initio Path Integral Monte Carlo Simulations. PHYSICAL REVIEW LETTERS 2022; 129:066402. [PMID: 36018668 DOI: 10.1103/physrevlett.129.066402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/12/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The properties of hydrogen under extreme conditions are important for many applications, including inertial confinement fusion and astrophysical models. A key quantity is given by the electronic density response to an external perturbation, which is probed in x-ray Thomson scattering experiments-the state of the art diagnostics from which system parameters like the free electron density n_{e}, the electronic temperature T_{e}, and the charge state Z can be inferred. In this work, we present highly accurate path integral Monte Carlo results for the static electronic density response of hydrogen. We obtain the static exchange-correlation (XC) kernel K_{XC}, which is of central relevance for many applications, such as time-dependent density functional theory. This gives us a first unbiased look into the electronic density response of hydrogen in the warm-dense matter regime, thereby opening up a gamut of avenues for future research.
Collapse
Affiliation(s)
- Maximilian Böhme
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| | - Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
20
|
Dornheim T, Tolias P, Moldabekov ZA, Cangi A, Vorberger J. Effective electronic forces and potentials from ab initio path integral Monte Carlo simulations. J Chem Phys 2022; 156:244113. [PMID: 35778089 DOI: 10.1063/5.0097768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rigorous description of correlated quantum many-body systems constitutes one of the most challenging tasks in contemporary physics and related disciplines. In this context, a particularly useful tool is the concept of effective pair potentials that take into account the effects of the complex many-body medium consistently. In this work, we present extensive, highly accurate ab initio path integral Monte Carlo (PIMC) results for the effective interaction and the effective force between two electrons in the presence of the uniform electron gas. This gives us a direct insight into finite-size effects, thereby, opening up the possibility for novel domain decompositions and methodological advances. In addition, we present unassailable numerical proof for an effective attraction between two electrons under moderate coupling conditions, without the mediation of an underlying ionic structure. Finally, we compare our exact PIMC results to effective potentials from linear-response theory, and we demonstrate their usefulness for the description of the dynamic structure factor. All PIMC results are made freely available online and can be used as a thorough benchmark for new developments and approximations.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Panagiotis Tolias
- Space and Plasma Physics, Royal Institute of Technology (KTH), Stockholm SE-100 44, Sweden
| | | | - Attila Cangi
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
21
|
Van Benschoten WZ, Shepherd JJ. Piecewise Interaction Picture Density Matrix Quantum Monte Carlo. J Chem Phys 2022; 156:184107. [DOI: 10.1063/5.0094290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The density matrix quantum Monte Carlo (DMQMC) set of methods stochastically samples the exact $N$-body density matrix for interacting electrons at finite temperature. We introduce a simple modification to the interaction picture DMQMC method (IP-DMQMC) which overcomes the limitation of only sampling one inverse temperature point at a time, instead allowing for the sampling of a temperature range within a single calculation thereby reducing the computational cost. At the target inverse temperature, instead of ending the simulation, we incorporate a change of picture away from the interaction picture. The resulting equations of motion have piecewise functions and use the interaction picture in the first phase of a simulation, followed by the application of the Bloch equation once the target inverse temperature is reached. We find that the performance of this method is similar to or better than the DMQMC and IP-DMQMC algorithms in a variety of molecular test systems.
Collapse
|
22
|
Dornheim T, Moldabekov ZA, Vorberger J, Militzer B. Path integral Monte Carlo approach to the structural properties and collective excitations of liquid [Formula: see text] without fixed nodes. Sci Rep 2022; 12:708. [PMID: 35027602 PMCID: PMC8758733 DOI: 10.1038/s41598-021-04355-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/21/2021] [Indexed: 11/10/2022] Open
Abstract
Due to its nature as a strongly correlated quantum liquid, ultracold helium is characterized by the nontrivial interplay of different physical effects. Bosonic [Formula: see text] exhibits superfluidity and Bose-Einstein condensation. Its physical properties have been accurately determined on the basis of ab initio path integral Monte Carlo (PIMC) simulations. In contrast, the corresponding theoretical description of fermionic [Formula: see text] is severely hampered by the notorious fermion sign problem, and previous PIMC results have been derived by introducing the uncontrolled fixed-node approximation. In this work, we present extensive new PIMC simulations of normal liquid [Formula: see text] without any nodal constraints. This allows us to to unambiguously quantify the impact of Fermi statistics and to study the effects of temperature on different physical properties like the static structure factor [Formula: see text], the momentum distribution [Formula: see text], and the static density response function [Formula: see text]. In addition, the dynamic structure factor [Formula: see text] is rigorously reconstructed from imaginary-time PIMC data. From simulations of [Formula: see text], we derived the familiar phonon-maxon-roton dispersion function that is well-known for [Formula: see text] and has been reported previously for two-dimensional [Formula: see text] films (Nature 483:576-579 (2012)). The comparison of our new results for both [Formula: see text] and [Formula: see text] with neutron scattering measurements reveals an excellent agreement between theory and experiment.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), 02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Zhandos A. Moldabekov
- Center for Advanced Systems Understanding (CASUS), 02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 USA
- Department of Astronomy, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
23
|
Dornheim T, Vorberger J, Militzer B, Moldabekov ZA. Momentum distribution of the uniform electron gas at finite temperature: Effects of spin polarization. Phys Rev E 2021; 104:055206. [PMID: 34942706 DOI: 10.1103/physreve.104.055206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/25/2021] [Indexed: 11/07/2022]
Abstract
We carry out extensive direct path integral Monte Carlo (PIMC) simulations of the uniform electron gas (UEG) at finite temperature for different values of the spin-polarization ξ. This allows us to unambiguously quantify the impact of spin effects on the momentum distribution function n(k) and related properties. We find that interesting physical effects like the interaction-induced increase in the occupation of the zero-momentum state n(0) substantially depend on ξ. Our results further advance the current understanding of the UEG as a fundamental model system, and are of practical relevance for the description of transport properties of warm dense matter in an external magnetic field. All PIMC results are freely available online and can be used as a benchmark for the development of methods and applications.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA.,Department of Astronomy, University of California, Berkeley, California 94720, USA
| | - Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
24
|
Petras HR, Van Benschoten WZ, Ramadugu SK, Shepherd JJ. The Sign Problem in Density Matrix Quantum Monte Carlo. J Chem Theory Comput 2021; 17:6036-6052. [PMID: 34546738 PMCID: PMC8515812 DOI: 10.1021/acs.jctc.1c00078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Density matrix quantum Monte Carlo (DMQMC) is a recently developed method for stochastically sampling the N-particle thermal density matrix to obtain exact-on-average energies for model and ab initio systems. We report a systematic numerical study of the sign problem in DMQMC based on simulations of atomic and molecular systems. In DMQMC, the density matrix is written in an outer product basis of Slater determinants. In principle, this means that DMQMC needs to sample a space that scales in the system size, N, as O[(exp(N))2]. In practice, removing the sign problem requires a total walker population that exceeds a system-dependent critical walker population (Nc), imposing limitations on both storage and compute time. We establish that Nc for DMQMC is the square of Nc for FCIQMC. By contrast, the minimum Nc in the interaction picture modification of DMQMC (IP-DMQMC) is only linearly related to the Nc for FCIQMC. We find that this difference originates from the difference in propagation of IP-DMQMC versus canonical DMQMC: the former is asymmetric, whereas the latter is symmetric. When an asymmetric mode of propagation is used in DMQMC, there is a much greater stochastic error and is thus prohibitively expensive for DMQMC without the interaction picture adaptation. Finally, we find that the equivalence between IP-DMQMC and FCIQMC seems to extend to the initiator approximation, which is often required to study larger systems with large basis sets. This suggests that IP-DMQMC offers a way to ameliorate the cost of moving between a Slater determinant space and an outer product basis.
Collapse
Affiliation(s)
- Hayley R Petras
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | | | - Sai Kumar Ramadugu
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - James J Shepherd
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| |
Collapse
|
25
|
Tolias P, Lucco Castello F, Dornheim T. Integral equation theory based dielectric scheme for strongly coupled electron liquids. J Chem Phys 2021; 155:134115. [PMID: 34625000 DOI: 10.1063/5.0065988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In a recent paper, Lucco Castello et al. (arXiv:2107.03537) provided an accurate parameterization of classical one-component plasma bridge functions that was embedded in a novel dielectric scheme for strongly coupled electron liquids. Here, this approach is rigorously formulated, its set of equations is formally derived, and its numerical algorithm is scrutinized. A systematic comparison with available and new path integral Monte Carlo simulations reveals a rather unprecedented agreement especially in terms of the interaction energy and the long wavelength limit of the static local field correction.
Collapse
Affiliation(s)
- P Tolias
- Space and Plasma Physics-Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | - F Lucco Castello
- Space and Plasma Physics-Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | - T Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| |
Collapse
|
26
|
Moldabekov Z, Dornheim T, Böhme M, Vorberger J, Cangi A. The relevance of electronic perturbations in the warm dense electron gas. J Chem Phys 2021; 155:124116. [PMID: 34598570 DOI: 10.1063/5.0062325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Warm dense matter (WDM) has emerged as one of the frontiers of both experimental physics and theoretical physics and is a challenging traditional concept of plasma, atomic, and condensed-matter physics. While it has become common practice to model correlated electrons in WDM within the framework of Kohn-Sham density functional theory, quantitative benchmarks of exchange-correlation (XC) functionals under WDM conditions are yet incomplete. Here, we present the first assessment of common XC functionals against exact path-integral Monte Carlo calculations of the harmonically perturbed thermal electron gas. This system is directly related to the numerical modeling of x-ray scattering experiments on warm dense samples. Our assessment yields the parameter space where common XC functionals are applicable. More importantly, we pinpoint where the tested XC functionals fail when perturbations on the electronic structure are imposed. We indicate the lack of XC functionals that take into account the needs of WDM physics in terms of perturbed electronic structures.
Collapse
Affiliation(s)
- Zhandos Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Maximilian Böhme
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Attila Cangi
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| |
Collapse
|
27
|
Zan X, Lin C, Hou Y, Yuan J. Local field correction to ionization potential depression of ions in warm or hot dense matter. Phys Rev E 2021; 104:025203. [PMID: 34525605 DOI: 10.1103/physreve.104.025203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/19/2021] [Indexed: 11/07/2022]
Abstract
An analytical self-consistent approach was recently established to predict the ionization potential depression (IPD) in multicomponent dense plasmas, which is achieved by considering the self-energy of ions and electrons within the quantum statistical theory. In order to explicitly account for the exchange-correlation effect of electrons, we incorporate the effective static approximation of local field correction (LFC) within our IPD framework through the connection of dynamical structure factor. The effective static approximation poses an accurate description for the asymptotic large wave number behavior with the recently developed machine learning representation of static LFC induced from the path-integral Monte Carlo data. Our calculation shows that the introduction of static LFC through dynamical structure factor brings a nontrivial influence on IPD at warm/hot dense matter conditions. The correlation effect within static LFC could provide up to 20% correction to free-electron contribution of IPD in the strong coupling and degeneracy regime. Furthermore, a new screening factor is obtained from the density distribution of free electrons calculated within the average-atom model, with which excellent agreements are observed with other methods and experiments at warm/hot dense matter conditions.
Collapse
Affiliation(s)
- Xiaolei Zan
- Department of Physics, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| | - Chengliang Lin
- Graduate School of China Academy of Engineering Physics, Beijing 100193, People's Republic of China
| | - Yong Hou
- Department of Physics, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| | - Jianmin Yuan
- Department of Physics, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China.,Graduate School of China Academy of Engineering Physics, Beijing 100193, People's Republic of China
| |
Collapse
|
28
|
Dornheim T, Moldabekov ZA, Vorberger J. Nonlinear density response from imaginary-time correlation functions: Ab initio path integral Monte Carlo simulations of the warm dense electron gas. J Chem Phys 2021; 155:054110. [PMID: 34364322 DOI: 10.1063/5.0058988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ab initio path integral Monte Carlo (PIMC) approach is one of the most successful methods in quantum many-body theory. A particular strength of this method is its straightforward access to imaginary-time correlation functions (ITCFs). For example, the well-known density-density ITCF F(q, τ) allows one to estimate the linear response of a given system for all wave vectors q from a single simulation of the unperturbed system. Moreover, it constitutes the basis for the reconstruction of the dynamic structure factor S(q, ω)-a key quantity in state-of-the-art scattering experiments. In this work, we present analogous relations between the nonlinear density response in the quadratic and cubic order of the perturbation strength and generalized ITCFs measuring correlations between up to four imaginary-time arguments. As a practical demonstration of our new approach, we carry out simulations of the warm dense electron gas and find excellent agreement with previous PIMC results that had been obtained with substantially larger computational effort. In addition, we give a relation between a cubic ITCF and the triple dynamic structure factor S(q1, ω1; q2, ω2), which evokes the enticing possibility to study dynamic three-body effects on an ab initio level.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | | | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
29
|
Hunger K, Schoof T, Dornheim T, Bonitz M, Filinov A. Momentum distribution function and short-range correlations of the warm dense electron gas: Ab initio quantum Monte Carlo results. Phys Rev E 2021; 103:053204. [PMID: 34134307 DOI: 10.1103/physreve.103.053204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/19/2021] [Indexed: 01/22/2023]
Abstract
In a classical plasma the momentum distribution, n(k), decays exponentially, for large k, and the same is observed for an ideal Fermi gas. However, when quantum and correlation effects are relevant simultaneously, an algebraic decay, n_{∞}(k)∼k^{-8} has been predicted. This is of relevance for cross sections and threshold processes in dense plasmas that depend on the number of energetic particles. Here we present extensive ab initio results for the momentum distribution of the nonideal uniform electron gas at warm dense matter conditions. Our results are based on first principle fermionic path integral Monte Carlo (CPIMC) simulations and clearly confirm the k^{-8} asymptotic. This asymptotic behavior is directly linked to short-range correlations which are analyzed via the on-top pair distribution function (on-top PDF), i.e., the PDF of electrons with opposite spin. We present extensive results for the density and temperature dependence of the on-top PDF and for the momentum distribution in the entire momentum range.
Collapse
Affiliation(s)
- Kai Hunger
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - Tim Schoof
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany.,Deutsches Elektronen Synchotron (DESY), Hamburg, Germany
| | - Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Michael Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - Alexey Filinov
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany.,Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13, Moscow 125412, Russia
| |
Collapse
|
30
|
Lee J, Malone FD, Morales MA, Reichman DR. Spectral Functions from Auxiliary-Field Quantum Monte Carlo without Analytic Continuation: The Extended Koopmans' Theorem Approach. J Chem Theory Comput 2021; 17:3372-3387. [PMID: 33983735 DOI: 10.1021/acs.jctc.1c00100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We explore the extended Koopmans' theorem (EKT) within the phaseless auxiliary-field quantum Monte Carlo (AFQMC) method. The EKT allows for the direct calculation of electron addition and removal spectral functions using reduced density matrices of the N-particle system and avoids the need for analytic continuation. The lowest level of EKT with AFQMC, called EKT1-AFQMC, is benchmarked using atoms, small molecules, 14-electron and 54-electron uniform electron gas supercells, and a minimal unit cell model of diamond at the Γ-point. Via comparison with numerically exact results (when possible) and coupled-cluster methods, we find that EKT1-AFQMC can reproduce the qualitative features of spectral functions for Koopmans-like charge excitations with errors in peak locations of less than 0.25 eV in a finite basis. We also note the numerical difficulties that arise in the EKT1-AFQMC eigenvalue problem, especially when back-propagated quantities are very noisy. We show how a systematic higher-order EKT approach can correct errors in EKT1-based theories with respect to the satellite region of the spectral function. Our work will be of use for the study of low-energy charge excitations and spectral functions in correlated molecules and solids where AFQMC can be reliably performed for both energy and back propagation.
Collapse
Affiliation(s)
- Joonho Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Fionn D Malone
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, United States
| | - Miguel A Morales
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
31
|
Dornheim T, Vorberger J. Overcoming finite-size effects in electronic structure simulations at extreme conditions. J Chem Phys 2021; 154:144103. [DOI: 10.1063/5.0045634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
32
|
Lee J, Morales MA, Malone FD. A phaseless auxiliary-field quantum Monte Carlo perspective on the uniform electron gas at finite temperatures: Issues, observations, and benchmark study. J Chem Phys 2021; 154:064109. [DOI: 10.1063/5.0041378] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Joonho Lee
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Miguel A. Morales
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| | - Fionn D. Malone
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| |
Collapse
|
33
|
Fei J, Yeh CN, Gull E. Nevanlinna Analytical Continuation. PHYSICAL REVIEW LETTERS 2021; 126:056402. [PMID: 33605755 DOI: 10.1103/physrevlett.126.056402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Simulations of finite temperature quantum systems provide imaginary frequency Green's functions that correspond one to one to experimentally measurable real-frequency spectral functions. However, due to the bad conditioning of the continuation transform from imaginary to real frequencies, established methods tend to either wash out spectral features at high frequencies or produce spectral functions with unphysical negative parts. Here, we show that explicitly respecting the analytic "Nevanlinna" structure of the Green's function leads to intrinsically positive and normalized spectral functions, and we present a continued fraction expansion that yields all possible functions consistent with the analytic structure. Application to synthetic trial data shows that sharp, smooth, and multipeak data is resolved accurately. Application to the band structure of silicon demonstrates that high energy features are resolved precisely. Continuations in a realistic correlated setup reveal additional features that were previously unresolved. By substantially increasing the resolution of real frequency calculations our work overcomes one of the main limitations of finite-temperature quantum simulations.
Collapse
Affiliation(s)
- Jiani Fei
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Chia-Nan Yeh
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Emanuel Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
34
|
Dornheim T, Invernizzi M, Vorberger J, Hirshberg B. Attenuating the fermion sign problem in path integral Monte Carlo simulations using the Bogoliubov inequality and thermodynamic integration. J Chem Phys 2020; 153:234104. [DOI: 10.1063/5.0030760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Michele Invernizzi
- Institute of Computational Sciences, Università Della Svizzera Italiana, 6900 Lugano, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, Università Della Svizzera Italiana, 6900 Lugano, Switzerland
- Department of Physics, ETH Zurich, 8092 Zurich, Switzerland
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Barak Hirshberg
- Institute of Computational Sciences, Università Della Svizzera Italiana, 6900 Lugano, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
35
|
Dornheim T, Cangi A, Ramakrishna K, Böhme M, Tanaka S, Vorberger J. Effective Static Approximation: A Fast and Reliable Tool for Warm-Dense Matter Theory. PHYSICAL REVIEW LETTERS 2020; 125:235001. [PMID: 33337174 DOI: 10.1103/physrevlett.125.235001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
We present an effective static approximation (ESA) to the local field correction (LFC) of the electron gas that enables highly accurate calculations of electronic properties like the dynamic structure factor S(q,ω), the static structure factor S(q), and the interaction energy v. The ESA combines the recent neural-net representation by T. Dornheim et al., [J. Chem. Phys. 151, 194104 (2019)JCPSA60021-960610.1063/1.5123013] of the temperature-dependent LFC in the exact static limit with a consistent large wave-number limit obtained from quantum Monte Carlo data of the on-top pair distribution function g(0). It is suited for a straightforward integration into existing codes. We demonstrate the importance of the LFC for practical applications by reevaluating the results of the recent x-ray Thomson scattering experiment on aluminum by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.115001]. We find that an accurate incorporation of electronic correlations in terms of the ESA leads to a different prediction of the inelastic scattering spectrum than obtained from state-of-the-art models like the Mermin approach or linear-response time-dependent density functional theory. Furthermore, the ESA scheme is particularly relevant for the development of advanced exchange-correlation functionals in density functional theory.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Attila Cangi
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Kushal Ramakrishna
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| | - Maximilian Böhme
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| | - Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, Kobe 657-8501, Japan
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
36
|
Dornheim T, Vorberger J. Finite-size effects in the reconstruction of dynamic properties from ab initio path integral Monte Carlo simulations. Phys Rev E 2020; 102:063301. [PMID: 33466040 DOI: 10.1103/physreve.102.063301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
We systematically investigate finite-size effects in the dynamic structure factor S(q,ω) of the uniform electron gas obtained via the analytic continuation of ab initio path integral Monte Carlo data for the imaginary-time density-density correlation function F(q,τ). Using the recent scheme by Dornheim et al. [Phys. Rev. Lett. 121, 255001 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.255001], we find that the reconstructed spectra are not afflicted with any finite-size effects for as few as N=14 electrons both at warm dense matter (WDM) conditions and at the margins of the strongly correlated electron liquid regime. Our results further corroborate the high quality of our current description of the dynamic density response of correlated electrons, which is of high importance for many applications in WDM theory and beyond.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
37
|
Yilmaz A, Hunger K, Dornheim T, Groth S, Bonitz M. Restricted configuration path integral Monte Carlo. J Chem Phys 2020; 153:124114. [DOI: 10.1063/5.0022800] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- A. Yilmaz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - K. Hunger
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - T. Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - S. Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - M. Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| |
Collapse
|
38
|
Dornheim T, Vorberger J, Bonitz M. Nonlinear Electronic Density Response in Warm Dense Matter. PHYSICAL REVIEW LETTERS 2020; 125:085001. [PMID: 32909774 DOI: 10.1103/physrevlett.125.085001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Warm dense matter (WDM)-an extreme state with high temperatures and densities that occurs, e.g., in astrophysical objects-constitutes one of the most active fields in plasma physics and materials science. These conditions can be realized in the lab by shock compression or laser excitation, and the most accurate experimental diagnostics is achieved with lasers and free electron lasers which is theoretically modeled using linear response theory. Here, we present first ab initio path integral Monte Carlo results for the nonlinear density response of correlated electrons in WDM and show that for many situations of experimental relevance nonlinear effects cannot be neglected.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-028262 Görlitz, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Michael Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| |
Collapse
|
39
|
Moldabekov ZA, Dornheim T, Bonitz M, Ramazanov TS. Ion energy-loss characteristics and friction in a free-electron gas at warm dense matter and nonideal dense plasma conditions. Phys Rev E 2020; 101:053203. [PMID: 32575188 DOI: 10.1103/physreve.101.053203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
We investigate the energy-loss characteristics of an ion in warm dense matter (WDM) and dense plasmas concentrating on the influence of electronic correlations. The basis for our analysis is a recently developed ab initio quantum Monte Carlo- (QMC) based machine learning representation of the static local field correction (LFC) [Dornheim et al., J. Chem. Phys. 151, 194104 (2019)JCPSA60021-960610.1063/1.5123013], which provides an accurate description of the dynamical density response function of the electron gas at the considered parameters. We focus on the polarization-induced stopping power due to free electrons, the friction function, and the straggling rate. In addition, we compute the friction coefficient which constitutes a key quantity for the adequate Langevin dynamics simulation of ions. Considering typical experimental WDM parameters with partially degenerate electrons, we find that the friction coefficient is of the order of γ/ω_{pi}=0.01, where ω_{pi} is the ionic plasma frequency. This analysis is performed by comparing QMC-based data to results from the random-phase approximation (RPA), the Mermin dielectric function, and the Singwi-Tosi-Land-Sjölander (STLS) approximation. It is revealed that the widely used relaxation time approximation (Mermin dielectric function) has severe limitations regarding the description of the energy loss of ions in a correlated partially degenerate electrons gas. Moreover, by comparing QMC-based data with the results obtained using STLS, we find that the ion energy-loss properties are not sensitive to the inaccuracy of the static local field correction (LFC) at large wave numbers, k/k_{F}>2 (with k_{F} being the Fermi wave number), but that a correct description of the static LFC at k/k_{F}≲1.5 is important.
Collapse
Affiliation(s)
- Zh A Moldabekov
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - T Dornheim
- Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
| | - M Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - T S Ramazanov
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| |
Collapse
|
40
|
Shaffer NR, Starrett CE. Correlations between conduction electrons in dense plasmas. Phys Rev E 2020; 101:013208. [PMID: 32069618 DOI: 10.1103/physreve.101.013208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 11/07/2022]
Abstract
Most treatments of electron-electron correlations in dense plasmas either ignore them entirely (random phase approximation) or neglect the role of ions (jellium approximation). In this work, we go beyond both these approximations to derive a formula for the electron-electron static structure factor which properly accounts for the contributions of both ionic structure and quantum-mechanical dynamic response in the electrons. The result can be viewed as a natural extension of the quantum Ornstein-Zernike theory of ionic and electronic correlations, and it is suitable for dense plasmas in which the ions are classical and the conduction electrons are quantum-mechanical. The corresponding electron-electron pair distribution functions are compared with the results of path integral Monte Carlo simulations, showing good agreement whenever no strong electron resonance states are present. We construct approximate potentials of mean force which describe the effective screened interaction between electrons. Significant deviations from Debye-Hückel screening are present at temperatures and densities relevant to high-energy density experiments involving warm and hot dense plasmas. The presence of correlations between conduction electrons is likely to influence the electron-electron contribution to the electrical and thermal conductivity. It is expected that excitation processes involving the conduction electrons (e.g., free-free absorption) will also be affected.
Collapse
Affiliation(s)
- Nathaniel R Shaffer
- Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Charles E Starrett
- Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
41
|
Dornheim T, Vorberger J, Groth S, Hoffmann N, Moldabekov ZA, Bonitz M. The static local field correction of the warm dense electron gas: An ab initio path integral Monte Carlo study and machine learning representation. J Chem Phys 2019; 151:194104. [DOI: 10.1063/1.5123013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- T. Dornheim
- Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| | - J. Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - S. Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| | - N. Hoffmann
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Zh. A. Moldabekov
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Al-Farabi Str. 71, 050040 Almaty, Kazakhstan
| | - M. Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| |
Collapse
|
42
|
Dornheim T. Fermion sign problem in path integral Monte Carlo simulations: Quantum dots, ultracold atoms, and warm dense matter. Phys Rev E 2019; 100:023307. [PMID: 31574603 DOI: 10.1103/physreve.100.023307] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 11/07/2022]
Abstract
The ab initio thermodynamic simulation of correlated Fermi systems is of central importance for many applications, such as warm dense matter, electrons in quantum dots, and ultracold atoms. Unfortunately, path integral Monte Carlo (PIMC) simulations of fermions are severely restricted by the notorious fermion sign problem (FSP). In this paper, we present a hands-on discussion of the FSP and investigate in detail its manifestation with respect to temperature, system size, interaction-strength and -type, and the dimensionality of the system. Moreover, we analyze the probability distribution of fermionic expectation values, which can be non-Gaussian and fat-tailed when the FSP is severe. As a practical application, we consider electrons and dipolar atoms in a harmonic confinement, and the uniform electron gas in the warm dense matter regime. In addition, we provide extensive PIMC data, which can be used as a reference for the development of new methods and as a benchmark for approximations.
Collapse
Affiliation(s)
- T Dornheim
- Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
| |
Collapse
|
43
|
Lee J, Malone FD, Morales MA. An auxiliary-Field quantum Monte Carlo perspective on the ground state of the dense uniform electron gas: An investigation with Hartree-Fock trial wavefunctions. J Chem Phys 2019. [DOI: 10.1063/1.5109572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joonho Lee
- College of Chemistry, University of California, Berkeley, California 94720, USA
| | - Fionn D. Malone
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| | - Miguel A. Morales
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| |
Collapse
|
44
|
Dornheim T, Groth S, Filinov AV, Bonitz M. Path integral Monte Carlo simulation of degenerate electrons: Permutation-cycle properties. J Chem Phys 2019; 151:014108. [DOI: 10.1063/1.5093171] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- T. Dornheim
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 15, Kiel, Germany
- Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
| | - S. Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 15, Kiel, Germany
| | - A. V. Filinov
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 15, Kiel, Germany
- Joint Institute for High Temperatures RAS, Izhorskaya Str. 13, Moscow, Russia
| | - M. Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 15, Kiel, Germany
| |
Collapse
|
45
|
Choi Y, Dharuman G, Murillo MS. High-frequency response of classical strongly coupled plasmas. Phys Rev E 2019; 100:013206. [PMID: 31499843 DOI: 10.1103/physreve.100.013206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 06/10/2023]
Abstract
The dynamic structure factor (DSF) of the Yukawa system is here obtained with highly converged molecular dynamics (MD) over the entire liquid phase. The data provide a rigorous test of theoretical models of ion-acoustic wave-dispersion relations, the intermediate scattering function, and the high-frequency response. We compare our MD results with seven diverse models, finding good agreement among those that enforce the three basic sum rules for dispersion properties, although one of the models has previously unreported spurious peaks. The MD simulations reveal that at intermediate frequencies ω, the high-frequency response of the DSF follows a power law, going approximately as ω^{-p}, where p>0, and p shows nontrivial dependencies on the wave vector q and the plasma parameters κ and Γ. In contrast, among the seven comparison models, the predicted high-frequency response is found to be independent of {q,κ,Γ}. This high-frequency power suggests a useful fitting form. In addition, these results expose limitations of several models and, moreover, suggest that some approaches are difficult or impossible to extend because of the lack of finite moments. We also find the double-plasmon resonance peak in our MD simulations that none of the theoretical models predicts.
Collapse
Affiliation(s)
- Yongjun Choi
- Institute for Cyber-Enabled Research, Michigan State University, East Lansing, Michigan 48824, USA
| | - Gautham Dharuman
- Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Michael S Murillo
- Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
46
|
Moldabekov ZA, Kählert H, Dornheim T, Groth S, Bonitz M, Ramazanov TS. Dynamical structure factor of strongly coupled ions in a dense quantum plasma. Phys Rev E 2019; 99:053203. [PMID: 31212426 DOI: 10.1103/physreve.99.053203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 06/09/2023]
Abstract
The dynamical structure factor (DSF) of strongly coupled ions in dense plasmas with partially and strongly degenerate electrons is investigated. The main focus is on the impact of electronic correlations (nonideality) on the ionic DSF. The latter is computed by carrying out molecular dynamics (MD) simulations with a screened ion-ion interaction potential. The electronic screening is taken into account by invoking the Singwi-Tosi-Land-Sjölander approximation, and it is compared to the MD simulation data obtained considering the electronic screening in the random phase approximation and using the Yukawa potential. We find that electronic correlations lead to lower values of the ion-acoustic mode frequencies and to an extension of the applicability limit with respect to the wave-number of a hydrodynamic description. Moreover, we show that even in the limit of weak electronic coupling, electronic correlations have a nonnegligible impact on the ionic longitudinal sound speed. Additionally, the applicability of the Yukawa potential with an adjustable screening parameter is discussed, which will be of interest, e.g., for the interpretation of experimental results for the ionic DSF of dense plasmas.
Collapse
Affiliation(s)
- Zh A Moldabekov
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Street, 050040 Almaty, Kazakhstan
| | - H Kählert
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - T Dornheim
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - S Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - M Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - T S Ramazanov
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Street, 050040 Almaty, Kazakhstan
| |
Collapse
|