1
|
Miao J. Computational microscopy with coherent diffractive imaging and ptychography. Nature 2025; 637:281-295. [PMID: 39780004 DOI: 10.1038/s41586-024-08278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/23/2024] [Indexed: 01/11/2025]
Abstract
Microscopy and crystallography are two essential experimental methodologies for advancing modern science. They complement one another, with microscopy typically relying on lenses to image the local structures of samples, and crystallography using diffraction to determine the global atomic structure of crystals. Over the past two decades, computational microscopy, encompassing coherent diffractive imaging (CDI) and ptychography, has advanced rapidly, unifying microscopy and crystallography to overcome their limitations. Here, I review the innovative developments in CDI and ptychography, which achieve exceptional imaging capabilities across nine orders of magnitude in length scales, from resolving atomic structures in materials at sub-ångstrom resolution to quantitative phase imaging of centimetre-sized tissues, using the same principle and similar computational algorithms. These methods have been applied to determine the 3D atomic structures of crystal defects and amorphous materials, visualize oxygen vacancies in high-temperature superconductors and capture ultrafast dynamics. They have also been used for nanoscale imaging of magnetic, quantum and energy materials, nanomaterials, integrated circuits and biological specimens. By harnessing fourth-generation synchrotron radiation, X-ray-free electron lasers, high-harmonic generation, electron microscopes, optical microscopes, cutting-edge detectors and deep learning, CDI and ptychography are poised to make even greater contributions to multidisciplinary sciences in the years to come.
Collapse
Affiliation(s)
- Jianwei Miao
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
García-Alfonso E, Ancilotto F, Barranco M, Pi M, Halberstadt N. Quantized vortex nucleation in collisions of superfluid nanoscopic helium droplets at zero temperature. J Chem Phys 2023; 159:074305. [PMID: 37602801 DOI: 10.1063/5.0165820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
We address the collision of two superfluid 4He droplets at non-zero initial relative velocities and impact parameters within the framework of liquid 4He time-dependent density functional theory at zero temperature. Despite the small size of these droplets (1000 He atoms in the merged droplet) imposed by computational limitations, we have found that quantized vortices may be readily nucleated for reasonable collision parameters. At variance with head-on collisions, where only vortex rings are produced, collisions with a non-zero impact parameter produce linear vortices that are nucleated at indentations appearing on the surface of the deformed merged droplet. Whereas for equal-size droplets, vortices are produced in pairs, an odd number of vortices can appear when the colliding droplet sizes are different. In all cases, vortices coexist with surface capillary waves. The possibility for collisions to be at the origin of vortex nucleation in experiments involving very large droplets is discussed. An additional surprising result is the observation of the drops coalescence even for grazing and distal collisions at relative velocities as high as 80 and 40 m/s, respectively, induced by the long-range van der Waals attraction between the droplets.
Collapse
Affiliation(s)
- Ernesto García-Alfonso
- Laboratoire Collisions, Agrégats, Réactivité (LCAR), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Francesco Ancilotto
- Dipartimento di Fisica e Astronomia "Galileo Galilei" and CNISM, Università di Padova, Via Marzolo 8, 35122 Padova, Italy
- CNR-IOM Democritos, Via Bonomea, 265 - 34136 Trieste, Italy
| | - Manuel Barranco
- Departament FQA, Facultat de Física, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Martí Pi
- Departament FQA, Facultat de Física, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Nadine Halberstadt
- Laboratoire Collisions, Agrégats, Réactivité (LCAR), Université de Toulouse, CNRS, 31062 Toulouse, France
| |
Collapse
|
3
|
Ulmer A, Heilrath A, Senfftleben B, O'Connell-Lopez SMO, Kruse B, Seiffert L, Kolatzki K, Langbehn B, Hoffmann A, Baumann TM, Boll R, Chatterley AS, De Fanis A, Erk B, Erukala S, Feinberg AJ, Fennel T, Grychtol P, Hartmann R, Ilchen M, Izquierdo M, Krebs B, Kuster M, Mazza T, Montaño J, Noffz G, Rivas DE, Schlosser D, Seel F, Stapelfeldt H, Strüder L, Tiggesbäumker J, Yousef H, Zabel M, Ziołkowski P, Meyer M, Ovcharenko Y, Vilesov AF, Möller T, Rupp D, Tanyag RMP. Generation of Large Vortex-Free Superfluid Helium Nanodroplets. PHYSICAL REVIEW LETTERS 2023; 131:076002. [PMID: 37656857 DOI: 10.1103/physrevlett.131.076002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/22/2023] [Indexed: 09/03/2023]
Abstract
Superfluid helium nanodroplets are an ideal environment for the formation of metastable, self-organized dopant nanostructures. However, the presence of vortices often hinders their formation. Here, we demonstrate the generation of vortex-free helium nanodroplets and explore the size range in which they can be produced. From x-ray diffraction images of xenon-doped droplets, we identify that single compact structures, assigned to vortex-free aggregation, prevail up to 10^{8} atoms per droplet. This finding builds the basis for exploring the assembly of far-from-equilibrium nanostructures at low temperatures.
Collapse
Affiliation(s)
- Anatoli Ulmer
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Andrea Heilrath
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Björn Senfftleben
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Sean M O O'Connell-Lopez
- Department of Chemistry, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089, USA
| | - Björn Kruse
- Institute for Physics, Universität Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| | - Lennart Seiffert
- Institute for Physics, Universität Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| | - Katharina Kolatzki
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
- Laboratory for Solid State Physics, Swiss Federal Institute of Technology in Zurich, John-von-Neumann-Weg 9, 8093 Zurich, Switzerland
| | - Bruno Langbehn
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Andreas Hoffmann
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
| | | | - Rebecca Boll
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Adam S Chatterley
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | | | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Swetha Erukala
- Department of Chemistry, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089, USA
| | - Alexandra J Feinberg
- Department of Chemistry, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089, USA
| | - Thomas Fennel
- Institute for Physics, Universität Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| | | | | | - Markus Ilchen
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Bennet Krebs
- Institute for Physics, Universität Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| | - Markus Kuster
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Tommaso Mazza
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Georg Noffz
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | | | | | - Fabian Seel
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | | | - Josef Tiggesbäumker
- Institute for Physics, Universität Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
- Department "Life, Light and Matter," Universität Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| | - Hazem Yousef
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Michael Zabel
- Institute for Physics, Universität Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| | | | - Michael Meyer
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Andrey F Vilesov
- Department of Chemistry, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089, USA
- Department of Physics and Astronomy, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089, USA
| | - Thomas Möller
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Daniela Rupp
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
- Laboratory for Solid State Physics, Swiss Federal Institute of Technology in Zurich, John-von-Neumann-Weg 9, 8093 Zurich, Switzerland
| | - Rico Mayro P Tanyag
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Ancilotto F, Barranco M, Pi M. Nanoscopic jets and filaments of superfluid 4He at zero temperature: A DFT study. J Chem Phys 2023; 158:144306. [PMID: 37061465 DOI: 10.1063/5.0143399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
The instability of a cryogenic 4He jet exiting through a small nozzle into vacuum leads to the formation of 4He drops, which are considered ideal matrices for spectroscopic studies of embedded atoms and molecules. Here, we present a He-density functional theory (DFT) description of droplet formation resulting from jet breaking and contraction of superfluid 4He filaments. Whereas the fragmentation of long jets closely follows the predictions of linear theory for inviscid fluids, leading to droplet trains interspersed with smaller satellite droplets, the contraction of filaments with an aspect ratio larger than a threshold value leads to the nucleation of vortex rings, which hinder their breakup into droplets.
Collapse
Affiliation(s)
- Francesco Ancilotto
- Dipartimento di Fisica e Astronomia "Galileo Galilei" and CNISM, Università di Padova, via Marzolo 8, 35122 Padova, Italy
| | - Manuel Barranco
- Departament FQA, Facultat de Física, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Martí Pi
- Departament FQA, Facultat de Física, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Colombo A, Dold S, Kolb P, Bernhardt N, Behrens P, Correa J, Düsterer S, Erk B, Hecht L, Heilrath A, Irsig R, Iwe N, Jordan J, Kruse B, Langbehn B, Manschwetus B, Martinez F, Meiwes-Broer KH, Oldenburg K, Passow C, Peltz C, Sauppe M, Seel F, Tanyag RMP, Treusch R, Ulmer A, Walz S, Fennel T, Barke I, Möller T, von Issendorff B, Rupp D. Three-dimensional femtosecond snapshots of isolated faceted nanostructures. SCIENCE ADVANCES 2023; 9:eade5839. [PMID: 36812315 PMCID: PMC9946342 DOI: 10.1126/sciadv.ade5839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The structure and dynamics of isolated nanosamples in free flight can be directly visualized via single-shot coherent diffractive imaging using the intense and short pulses of x-ray free-electron lasers. Wide-angle scattering images encode three-dimensional (3D) morphological information of the samples, but its retrieval remains a challenge. Up to now, effective 3D morphology reconstructions from single shots were only achieved via fitting with highly constrained models, requiring a priori knowledge about possible geometries. Here, we present a much more generic imaging approach. Relying on a model that allows for any sample morphology described by a convex polyhedron, we reconstruct wide-angle diffraction patterns from individual silver nanoparticles. In addition to known structural motives with high symmetries, we retrieve imperfect shapes and agglomerates that were not previously accessible. Our results open unexplored routes toward true 3D structure determination of single nanoparticles and, ultimately, 3D movies of ultrafast nanoscale dynamics.
Collapse
Affiliation(s)
- Alessandro Colombo
- Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Simon Dold
- European XFEL GmbH, 22869 Schenefeld, Germany
| | - Patrice Kolb
- Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Nils Bernhardt
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Patrick Behrens
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Jonathan Correa
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Stefan Düsterer
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Linos Hecht
- Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Andrea Heilrath
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Robert Irsig
- Institute of Physics, University of Rostock, 18057 Rostock, Germany
| | - Norman Iwe
- Institute of Physics, University of Rostock, 18057 Rostock, Germany
| | - Jakob Jordan
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Björn Kruse
- Institute of Physics, University of Rostock, 18057 Rostock, Germany
| | - Bruno Langbehn
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | | | | | - Karl-Heinz Meiwes-Broer
- Institute of Physics, University of Rostock, 18057 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Kevin Oldenburg
- Institute of Physics, University of Rostock, 18057 Rostock, Germany
| | | | - Christian Peltz
- Institute of Physics, University of Rostock, 18057 Rostock, Germany
| | - Mario Sauppe
- Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Fabian Seel
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Rico Mayro P. Tanyag
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Anatoli Ulmer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Saida Walz
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Thomas Fennel
- Institute of Physics, University of Rostock, 18057 Rostock, Germany
| | - Ingo Barke
- Institute of Physics, University of Rostock, 18057 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Thomas Möller
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Bernd von Issendorff
- Department of Physics, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, 79104 Freiburg, Germany
| | - Daniela Rupp
- Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland
- Max Born Institute, 12489 Berlin, Germany
| |
Collapse
|
6
|
Zimmermann J, Beguet F, Guthruf D, Langbehn B, Rupp D. Finding the semantic similarity in single-particle diffraction images using self-supervised contrastive projection learning. NPJ COMPUTATIONAL MATERIALS 2023; 9:24. [PMID: 38666059 PMCID: PMC11041688 DOI: 10.1038/s41524-023-00966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/10/2023] [Indexed: 04/28/2024]
Abstract
Single-shot coherent diffraction imaging of isolated nanosized particles has seen remarkable success in recent years, yielding in-situ measurements with ultra-high spatial and temporal resolution. The progress of high-repetition-rate sources for intense X-ray pulses has further enabled recording datasets containing millions of diffraction images, which are needed for the structure determination of specimens with greater structural variety and dynamic experiments. The size of the datasets, however, represents a monumental problem for their analysis. Here, we present an automatized approach for finding semantic similarities in coherent diffraction images without relying on human expert labeling. By introducing the concept of projection learning, we extend self-supervised contrastive learning to the context of coherent diffraction imaging and achieve a dimensionality reduction producing semantically meaningful embeddings that align with physical intuition. The method yields substantial improvements compared to previous approaches, paving the way toward real-time and large-scale analysis of coherent diffraction experiments at X-ray free-electron lasers.
Collapse
Affiliation(s)
| | | | | | | | - Daniela Rupp
- ETH Zürich, Zürich, Switzerland
- Max-Born-Institut, Berlin, Germany
| |
Collapse
|
7
|
Colombo A, Zimmermann J, Langbehn B, Möller T, Peltz C, Sander K, Kruse B, Tümmler P, Barke I, Rupp D, Fennel T. The Scatman: an approximate method for fast wide-angle scattering simulations. J Appl Crystallogr 2022; 55:1232-1246. [PMID: 36249495 PMCID: PMC9533759 DOI: 10.1107/s1600576722008068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Single-shot coherent diffraction imaging (CDI) is a powerful approach to characterize the structure and dynamics of isolated nanoscale objects such as single viruses, aerosols, nanocrystals and droplets. Using X-ray wavelengths, the diffraction images in CDI experiments usually cover only small scattering angles of a few degrees. These small-angle patterns represent the magnitude of the Fourier transform of the 2D projection of the sample's electron density, which can be reconstructed efficiently but lacks any depth information. In cases where the diffracted signal can be measured up to scattering angles exceeding ∼10°, i.e. in the wide-angle regime, some 3D morphological information of the target is contained in a single-shot diffraction pattern. However, the extraction of the 3D structural information is no longer straightforward and defines the key challenge in wide-angle CDI. So far, the most convenient approach relies on iterative forward fitting of the scattering pattern using scattering simulations. Here the Scatman is presented, an approximate and fast numerical tool for the simulation and iterative fitting of wide-angle scattering images of isolated samples. Furthermore, the open-source software implementation of the Scatman algorithm, PyScatman, is published and described in detail. The Scatman approach, which has already been applied in previous work for forward-fitting-based shape retrieval, adopts the multi-slice Fourier transform method. The effects of optical properties are partially included, yielding quantitative results for small, isolated and weakly interacting samples. PyScatman is capable of computing wide-angle scattering patterns in a few milliseconds even on consumer-level computing hardware, potentially enabling new data analysis schemes for wide-angle coherent diffraction experiments.
Collapse
Affiliation(s)
- Alessandro Colombo
- Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - Julian Zimmermann
- Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - Bruno Langbehn
- Institute for Optics and Atomic Physics, Technical University Berlin, 10623 Berlin, Germany
| | - Thomas Möller
- Institute for Optics and Atomic Physics, Technical University Berlin, 10623 Berlin, Germany
| | - Christian Peltz
- Institute for Physics, University of Rostock, 18059 Rostock, Germany
| | - Katharina Sander
- Institute for Physics, University of Rostock, 18059 Rostock, Germany
| | - Björn Kruse
- Institute for Physics, University of Rostock, 18059 Rostock, Germany
| | - Paul Tümmler
- Institute for Physics, University of Rostock, 18059 Rostock, Germany
| | - Ingo Barke
- Institute for Physics, University of Rostock, 18059 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| | - Daniela Rupp
- Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - Thomas Fennel
- Institute for Physics, University of Rostock, 18059 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
8
|
Bacellar C, Chatterley AS, Lackner F, Pemmaraju CD, Tanyag RMP, Verma D, Bernando C, O'Connell SMO, Bucher M, Ferguson KR, Gorkhover T, Coffee RN, Coslovich G, Ray D, Osipov T, Neumark DM, Bostedt C, Vilesov AF, Gessner O. Anisotropic Surface Broadening and Core Depletion during the Evolution of a Strong-Field Induced Nanoplasma. PHYSICAL REVIEW LETTERS 2022; 129:073201. [PMID: 36018694 DOI: 10.1103/physrevlett.129.073201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/30/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Strong-field ionization of nanoscale clusters provides excellent opportunities to study the complex correlated electronic and nuclear dynamics of near-solid density plasmas. Yet, monitoring ultrafast, nanoscopic dynamics in real-time is challenging, which often complicates a direct comparison between theory and experiment. Here, near-infrared laser-induced plasma dynamics in ∼600 nm diameter helium droplets are studied by femtosecond time-resolved x-ray coherent diffractive imaging. An anisotropic, ∼20 nm wide surface region, defined as the range where the density lies between 10% and 90% of the core value, is established within ∼100 fs, in qualitative agreement with theoretical predictions. At longer timescales, however, the width of this region remains largely constant while the radius of the dense plasma core shrinks at average rates of ≈71 nm/ps along and ≈33 nm/ps perpendicular to the laser polarization. These dynamics are not captured by previous plasma expansion models. The observations are phenomenologically described within a numerical simulation; details of the underlying physics, however, remain to be explored.
Collapse
Affiliation(s)
- Camila Bacellar
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | - Adam S Chatterley
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | - Florian Lackner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | - C D Pemmaraju
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Rico Mayro P Tanyag
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Deepak Verma
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Charles Bernando
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Sean M O O'Connell
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Maximilian Bucher
- Argonne National Laboratory, 9700 South Cass Avenue B109, Lemont, Illinois 60439, USA
| | - Ken R Ferguson
- Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Tais Gorkhover
- Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- Institute of Optics and Atomic Physics, Technical University of Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Ryan N Coffee
- Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Giacomo Coslovich
- Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Dipanwita Ray
- Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Timur Osipov
- Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Daniel M Neumark
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | - Christoph Bostedt
- Argonne National Laboratory, 9700 South Cass Avenue B109, Lemont, Illinois 60439, USA
- Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Andrey F Vilesov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Oliver Gessner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
9
|
Bellisario A, Maia FRNC, Ekeberg T. Noise reduction and mask removal neural network for X-ray single-particle imaging. J Appl Crystallogr 2022; 55:122-132. [PMID: 35145358 PMCID: PMC8805166 DOI: 10.1107/s1600576721012371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/22/2021] [Indexed: 12/03/2022] Open
Abstract
Free-electron lasers could enable X-ray imaging of single biological macromolecules and the study of protein dynamics, paving the way for a powerful new imaging tool in structural biology, but a low signal-to-noise ratio and missing regions in the detectors, colloquially termed 'masks', affect data collection and hamper real-time evaluation of experimental data. In this article, the challenges posed by noise and masks are tackled by introducing a neural network pipeline that aims to restore diffraction intensities. For training and testing of the model, a data set of diffraction patterns was simulated from 10 900 different proteins with molecular weights within the range of 10-100 kDa and collected at a photon energy of 8 keV. The method is compared with a simple low-pass filtering algorithm based on autocorrelation constraints. The results show an improvement in the mean-squared error of roughly two orders of magnitude in the presence of masks compared with the noisy data. The algorithm was also tested at increasing mask width, leading to the conclusion that demasking can achieve good results when the mask is smaller than half of the central speckle of the pattern. The results highlight the competitiveness of this model for data processing and the feasibility of restoring diffraction intensities from unknown structures in real time using deep learning methods. Finally, an example is shown of this preprocessing making orientation recovery more reliable, especially for data sets containing very few patterns, using the expansion-maximization-compression algorithm.
Collapse
Affiliation(s)
- Alfredo Bellisario
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Tomas Ekeberg
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| |
Collapse
|
10
|
Tanyag RMP, Bacellar C, Pang W, Bernando C, Gomez LF, Jones CF, Ferguson KR, Kwok J, Anielski D, Belkacem A, Boll R, Bozek J, Carron S, Chen G, Delmas T, Englert L, Epp SW, Erk B, Foucar L, Hartmann R, Hexemer A, Huth M, Leone SR, Ma JH, Marchesini S, Neumark DM, Poon BK, Prell J, Rolles D, Rudek B, Rudenko A, Seifrid M, Swiggers M, Ullrich J, Weise F, Zwart P, Bostedt C, Gessner O, Vilesov AF. Sizes of pure and doped helium droplets from single shot x-ray imaging. J Chem Phys 2022; 156:041102. [PMID: 35105059 DOI: 10.1063/5.0080342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Advancements in x-ray free-electron lasers on producing ultrashort, ultrabright, and coherent x-ray pulses enable single-shot imaging of fragile nanostructures, such as superfluid helium droplets. This imaging technique gives unique access to the sizes and shapes of individual droplets. In the past, such droplet characteristics have only been indirectly inferred by ensemble averaging techniques. Here, we report on the size distributions of both pure and doped droplets collected from single-shot x-ray imaging and produced from the free-jet expansion of helium through a 5 μm diameter nozzle at 20 bars and nozzle temperatures ranging from 4.2 to 9 K. This work extends the measurement of large helium nanodroplets containing 109-1011 atoms, which are shown to follow an exponential size distribution. Additionally, we demonstrate that the size distributions of the doped droplets follow those of the pure droplets at the same stagnation condition but with smaller average sizes.
Collapse
Affiliation(s)
- Rico Mayro P Tanyag
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Camila Bacellar
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Weiwu Pang
- Department of Computer Science, University of Southern California, Los Angeles, California 90089, USA
| | - Charles Bernando
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Luis F Gomez
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Curtis F Jones
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Ken R Ferguson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Justin Kwok
- Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, California 90089, USA
| | - Denis Anielski
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Ali Belkacem
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Rebecca Boll
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - John Bozek
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Sebastian Carron
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Gang Chen
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Tjark Delmas
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Lars Englert
- Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, 85741 Garching, Germany
| | - Sascha W Epp
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Benjamin Erk
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Lutz Foucar
- Max-Planck-Institut für Medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | - Alexander Hexemer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martin Huth
- PNSensor GmbH, Otto-Hahn-Ring 6, 81739 München, Germany
| | - Stephen R Leone
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jonathan H Ma
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stefano Marchesini
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Daniel M Neumark
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Billy K Poon
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - James Prell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Daniel Rolles
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Benedikt Rudek
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Artem Rudenko
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Martin Seifrid
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Michele Swiggers
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Joachim Ullrich
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Fabian Weise
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Petrus Zwart
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Christoph Bostedt
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Oliver Gessner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Andrey F Vilesov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
11
|
Feinberg AJ, Verma D, O’Connell-Lopez SM, Erukala S, Tanyag RMP, Pang W, Saladrigas CA, Toulson BW, Borgwardt M, Shivaram N, Lin MF, Al Haddad A, Jäger W, Bostedt C, Walter P, Gessner O, Vilesov AF. Aggregation of solutes in bosonic versus fermionic quantum fluids. SCIENCE ADVANCES 2021; 7:eabk2247. [PMID: 34890219 PMCID: PMC8664268 DOI: 10.1126/sciadv.abk2247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Quantum fluid droplets made of helium-3 (3He) or helium-4 (4He) isotopes have long been considered as ideal cryogenic nanolabs, enabling unique ultracold chemistry and spectroscopy applications. The droplets were believed to provide a homogeneous environment in which dopant atoms and molecules could move and react almost as in free space but at temperatures close to absolute zero. Here, we report ultrafast x-ray diffraction experiments on xenon-doped 3He and 4He nanodroplets, demonstrating that the unavoidable rotational excitation of isolated droplets leads to highly anisotropic and inhomogeneous interactions between the host matrix and enclosed dopants. Superfluid 4He droplets are laced with quantum vortices that trap the embedded particles, leading to the formation of filament-shaped clusters. In comparison, dopants in 3He droplets gather in diffuse, ring-shaped structures along the equator. The shapes of droplets carrying filaments or rings are direct evidence that rotational excitation is the root cause for the inhomogeneous dopant distributions.
Collapse
Affiliation(s)
- Alexandra J. Feinberg
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Deepak Verma
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- RA3, Intel Corporation, Ronler Acres, 2501 NE Century Blvd, Hillsboro, OR 97124, USA
| | - Sean M.O. O’Connell-Lopez
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Cswy., Miami, FL 33149, USA
| | - Swetha Erukala
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Rico Mayro P. Tanyag
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Weiwu Pang
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Catherine A. Saladrigas
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Benjamin W. Toulson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mario Borgwardt
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Niranjan Shivaram
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Andre Al Haddad
- Laboratory for Femtochemistry (LSF), Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
| | - Wolfgang Jäger
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christoph Bostedt
- Laboratory for Femtochemistry (LSF), Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
- LUXS Laboratory for Ultrafast X-ray Sciences, Institute for Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Peter Walter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Oliver Gessner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Andrey F. Vilesov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
12
|
Gonzalez-Ballestero C, Aspelmeyer M, Novotny L, Quidant R, Romero-Isart O. Levitodynamics: Levitation and control of microscopic objects in vacuum. Science 2021; 374:eabg3027. [PMID: 34618558 DOI: 10.1126/science.abg3027] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- C Gonzalez-Ballestero
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria.,Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences A-6020 Innsbruck, Austria
| | - M Aspelmeyer
- Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, A-1090 Vienna, Austria.,Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - L Novotny
- Photonics Laboratory, ETH Zürich, 8093 Zürich, Switzerland.,Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| | - R Quidant
- Quantum Center, ETH Zürich, 8093 Zürich, Switzerland.,Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - O Romero-Isart
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria.,Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences A-6020 Innsbruck, Austria
| |
Collapse
|
13
|
Stielow T, Scheel S. Reconstruction of nanoscale particles from single-shot wide-angle free-electron-laser diffraction patterns with physics-informed neural networks. Phys Rev E 2021; 103:053312. [PMID: 34134223 DOI: 10.1103/physreve.103.053312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/11/2021] [Indexed: 11/07/2022]
Abstract
Single-shot wide-angle diffraction imaging is a widely used method to investigate the structure of noncrystallizing objects such as nanoclusters, large proteins, or even viruses. Its main advantage is that information about the three-dimensional structure of the object is already contained in a single image. This makes it useful for the reconstruction of fragile and nonreproducible particles without the need for tomographic measurements. However, currently there is no efficient numerical inversion algorithm available that is capable of determining the object's structure in real time. Neural networks, on the other hand, excel in image processing tasks suited for such purpose. Here we show how a physics-informed deep neural network can be used to reconstruct complete three-dimensional object models of uniform, convex particles on a voxel grid from single two-dimensional wide-angle scattering patterns. We demonstrate its universal reconstruction capabilities for silver nanoclusters, where the network uncovers novel geometric structures that reproduce the experimental scattering data with very high precision.
Collapse
Affiliation(s)
- Thomas Stielow
- Institut für Physik, Universität Rostock, D-18059 Rostock, Germany
| | - Stefan Scheel
- Institut für Physik, Universität Rostock, D-18059 Rostock, Germany
| |
Collapse
|
14
|
Wang Z, Wang X, Miao Q, Gao F, Zhao YP. Spontaneous Motion and Rotation of Acid Droplets on the Surface of a Liquid Metal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4370-4379. [PMID: 33792321 DOI: 10.1021/acs.langmuir.1c00455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-propulsion of droplets is of great significance in many fields. The spontaneous horizontal motion and self-jumping of droplets have been well realized in various ways. However, there is still a lack of an effective method to enable a droplet to rotate spontaneously and steadily. In this paper, by employing an acid droplet and a liquid metal, the spontaneous and steady rotation of droplets is achieved. For an acid droplet, it may spontaneously move when it is deposited on the surface of the liquid metal. By adjusting experimental parameters to the proper range, the self-rotation of droplet happens. This phenomenon originates from the fluctuation of the droplet boundary and the collective movement of bubbles that are generated by the chemical reactions between the acid droplet and liquid metal. This rotation has a simpler implementation method and more steady rotation state. Its angular velocity is much higher than that driven by other mechanisms. Moreover, the movements of acid droplets on the liquid metal are classified according to experimental conditions. The internal flow fields, the movements and distribution of bubbles, and the fluctuation of the droplet boundary are also explored and discussed. The theoretical model describing the rotational droplet is given. Our work may deepen the understanding of the physical system transition affected by chemical reactions and provide a new way for the design of potential applications, e.g., micro- and nanodevices.
Collapse
Affiliation(s)
- Zhanlong Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaohe Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Qing Miao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Feifei Gao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Ya-Pu Zhao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
15
|
Stielow T, Schmidt R, Peltz C, Fennel T, Scheel S. Fast reconstruction of single-shot wide-angle diffraction images through deep learning. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/abb213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
Single-shot x-ray imaging of short-lived nanostructures such as clusters and nanoparticles near a phase transition or non-crystalizing objects such as large proteins and viruses is currently the most elegant method for characterizing their structure. Using hard x-ray radiation provides scattering images that encode two-dimensional projections, which can be combined to identify the full three-dimensional object structure from multiple identical samples. Wide-angle scattering using XUV or soft x-rays, despite yielding lower resolution, provides three-dimensional structural information in a single shot and has opened routes towards the characterization of non-reproducible objects in the gas phase. The retrieval of the structural information contained in wide-angle scattering images is highly non-trivial, and currently no efficient rigorous algorithm is known. Here we show that deep learning networks, trained with simulated scattering data, allow for fast and accurate reconstruction of shape and orientation of nanoparticles from experimental images. The gain in speed compared to conventional retrieval techniques opens the route for automated structure reconstruction algorithms capable of real-time discrimination and pre-identification of nanostructures in scattering experiments with high repetition rate—thus representing the enabling technology for fast femtosecond nanocrystallography.
Collapse
|
16
|
Tanyag RMP, Feinberg AJ, O’Connell SMO, Vilesov AF. Disintegration of diminutive liquid helium jets in vacuum. J Chem Phys 2020; 152:234306. [DOI: 10.1063/5.0004503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Rico Mayro P. Tanyag
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Alexandra J. Feinberg
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Sean M. O. O’Connell
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Andrey F. Vilesov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
17
|
O'Connell SMO, Tanyag RMP, Verma D, Bernando C, Pang W, Bacellar C, Saladrigas CA, Mahl J, Toulson BW, Kumagai Y, Walter P, Ancilotto F, Barranco M, Pi M, Bostedt C, Gessner O, Vilesov AF. Angular Momentum in Rotating Superfluid Droplets. PHYSICAL REVIEW LETTERS 2020; 124:215301. [PMID: 32530661 DOI: 10.1103/physrevlett.124.215301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
The angular momentum of rotating superfluid droplets originates from quantized vortices and capillary waves, the interplay between which remains to be uncovered. Here, the rotation of isolated submicrometer superfluid ^{4}He droplets is studied by ultrafast x-ray diffraction using a free electron laser. The diffraction patterns provide simultaneous access to the morphology of the droplets and the vortex arrays they host. In capsule-shaped droplets, vortices form a distorted triangular lattice, whereas they arrange along elliptical contours in ellipsoidal droplets. The combined action of vortices and capillary waves results in droplet shapes close to those of classical droplets rotating with the same angular velocity. The findings are corroborated by density functional theory calculations describing the velocity fields and shape deformations of a rotating superfluid cylinder.
Collapse
Affiliation(s)
- Sean M O O'Connell
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Rico Mayro P Tanyag
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Technische Universität Berlin, Institut für Optik und Atomare Physik, 10623 Berlin, Germany
| | - Deepak Verma
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Charles Bernando
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
- OVO (PT. Visionet Internasional), Lippo Kuningan 20th floor, Jalan HR Rasuna Said No. B-12, Setiabudi, Jakarta 12940, Indonesia
| | - Weiwu Pang
- Department of Computer Science, University of Southern California, Los Angeles, California 90089, USA
| | - Camila Bacellar
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | - Catherine A Saladrigas
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | - Johannes Mahl
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of Hamburg, 22761 Hamburg, Germany
| | - Benjamin W Toulson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yoshiaki Kumagai
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue B109, Lemont, Illinois 60439, USA
| | - Peter Walter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Francesco Ancilotto
- Dipartimento di Fisica e Astronomia and CNISM, Università di Padova, 35122 Padova, Italy
- CNR-IOM Democritos, 34136 Trieste, Italy
| | - Manuel Barranco
- Departament FQA, Universitat de Barcelona, Facultat de Física, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
- Laboratoire des Collisions, Agrégats et Réactivité, IRSAMC, Université Toulouse 3, F-31062 Toulouse, France
| | - Marti Pi
- Departament FQA, Universitat de Barcelona, Facultat de Física, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Christoph Bostedt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue B109, Lemont, Illinois 60439, USA
- Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
- LUXS Laboratory for Ultrafast X-ray Sciences, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Oliver Gessner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Andrey F Vilesov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
18
|
García-Alfonso E, Coppens F, Barranco M, Pi M, Stienkemeier F, Halberstadt N. Alkali atoms attached to vortex-hosting helium nanodroplets. J Chem Phys 2020; 152:194109. [PMID: 33687233 DOI: 10.1063/5.0008923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Light absorption or fluorescence excitation spectroscopy of alkali atoms attached to 4He droplets is investigated as a possible way for detecting the presence of vortices. To this end, we have calculated the equilibrium configuration and energetics of alkali atoms attached to a 4He1000 droplet hosting a vortex line using 4He density functional theory. We use them to study how the dipole absorption spectrum of the alkali atom is modified when the impurity is attached to a vortex line. Spectra are found to be blue-shifted (higher frequencies) and broadened compared to vortex-free droplets because the dimple in which the alkali atom sits at the intersection of the vortex line and the droplet surface is deeper. This effect is smaller for lighter alkali atoms and all the more so when using a quantum description since, in this case, they sit further away from the droplet surface on average due to their zero-point motion. Spectral modifications due to the presence of a vortex line are minor for np ← ns excitation and therefore insufficient for vortex detection. In the case of higher n'p ← ns or n's ← ns (n' > n) excitations, the shifts are larger as the excited state orbital is more extended and therefore more sensitive to changes in the surrounding helium density.
Collapse
Affiliation(s)
| | - Francois Coppens
- Université Toulouse 3 and CNRS, Laboratoire des Collisions, Agrégats et Réactivité, IRSAMC, 118 route de Narbonne, F-31062 Toulouse Cedex 09, France
| | - Manuel Barranco
- Université Toulouse 3 and CNRS, Laboratoire des Collisions, Agrégats et Réactivité, IRSAMC, 118 route de Narbonne, F-31062 Toulouse Cedex 09, France
| | - Martí Pi
- Departament FQA, Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | - Nadine Halberstadt
- Université Toulouse 3 and CNRS, Laboratoire des Collisions, Agrégats et Réactivité, IRSAMC, 118 route de Narbonne, F-31062 Toulouse Cedex 09, France
| |
Collapse
|
19
|
Affiliation(s)
- Martí Pi
- Departament FQA, Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Francesco Ancilotto
- Dipartimento di Fisica e Astronomia “Galileo Galilei” and CNISM, Università di Padova, via Marzolo 8, 35122 Padova, Italy
- CNR-IOM Democritos, via Bonomea, 265 - 34136 Trieste, Italy
| | - Manuel Barranco
- Departament FQA, Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
- Université Toulouse 3, Laboratoire des Collisions, Agrégats et Réactivité, IRSAMC, 118 route de Narbonne, F-31062 Toulouse Cedex 09, France
| |
Collapse
|
20
|
Rupp D, Flückiger L, Adolph M, Colombo A, Gorkhover T, Harmand M, Krikunova M, Müller JP, Oelze T, Ovcharenko Y, Richter M, Sauppe M, Schorb S, Treusch R, Wolter D, Bostedt C, Möller T. Imaging plasma formation in isolated nanoparticles with ultrafast resonant scattering. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:034303. [PMID: 32596413 PMCID: PMC7304997 DOI: 10.1063/4.0000006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
We have recorded the diffraction patterns from individual xenon clusters irradiated with intense extreme ultraviolet pulses to investigate the influence of light-induced electronic changes on the scattering response. The clusters were irradiated with short wavelength pulses in the wavelength regime of different 4d inner-shell resonances of neutral and ionic xenon, resulting in distinctly different optical properties from areas in the clusters with lower or higher charge states. The data show the emergence of a transient structure with a spatial extension of tens of nanometers within the otherwise homogeneous sample. Simulations indicate that ionization and nanoplasma formation result in a light-induced outer shell in the cluster with a strongly altered refractive index. The presented resonant scattering approach enables imaging of ultrafast electron dynamics on their natural timescale.
Collapse
Affiliation(s)
- Daniela Rupp
- Authors to whom correspondence should be addressed: and
| | | | - Marcus Adolph
- IOAP, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Tais Gorkhover
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94305, USA
| | | | | | | | - Tim Oelze
- IOAP, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Maria Richter
- IOAP, Technische Universität Berlin, 10623 Berlin, Germany
| | | | | | | | | | | | - Thomas Möller
- IOAP, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
21
|
|
22
|
Mudrich M, LaForge AC, Ciavardini A, O'Keeffe P, Callegari C, Coreno M, Demidovich A, Devetta M, Fraia MD, Drabbels M, Finetti P, Gessner O, Grazioli C, Hernando A, Neumark DM, Ovcharenko Y, Piseri P, Plekan O, Prince KC, Richter R, Ziemkiewicz MP, Möller T, Eloranta J, Pi M, Barranco M, Stienkemeier F. Ultrafast relaxation of photoexcited superfluid He nanodroplets. Nat Commun 2020; 11:112. [PMID: 31913265 PMCID: PMC6949273 DOI: 10.1038/s41467-019-13681-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/19/2019] [Indexed: 11/23/2022] Open
Abstract
The relaxation of photoexcited nanosystems is a fundamental process of light–matter interaction. Depending on the couplings of the internal degrees of freedom, relaxation can be ultrafast, converting electronic energy in a few fs, or slow, if the energy is trapped in a metastable state that decouples from its environment. Here, we study helium nanodroplets excited resonantly by femtosecond extreme-ultraviolet (XUV) pulses from a seeded free-electron laser. Despite their superfluid nature, we find that helium nanodroplets in the lowest electronically excited states undergo ultrafast relaxation. By comparing experimental photoelectron spectra with time-dependent density functional theory simulations, we unravel the full relaxation pathway: Following an ultrafast interband transition, a void nanometer-sized bubble forms around the localized excitation (He\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{* }$$\end{document}*) within 1 ps. Subsequently, the bubble collapses and releases metastable He\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{* }$$\end{document}* at the droplet surface. This study highlights the high level of detail achievable in probing the photodynamics of nanosystems using tunable XUV pulses. There is interest in understanding the relaxation mechanisms of photoexcitation in atoms, molecules and other complex systems. Here the authors unravel the photoexcitation and ultrafast relaxation of superfluid helium nanodroplets using a pump-probe experiment with FEL pulses.
Collapse
Affiliation(s)
- M Mudrich
- Department of Physics and Astronomy, Aarhus University, Aarhus C, 8000, Denmark.
| | - A C LaForge
- Institute of Physics, University of Freiburg, Freiburg im Breisgau, 79104, Germany.,Department of Physics, University of Connecticut, Storrs, CT, 06269, USA
| | - A Ciavardini
- CNR-ISM, Area della Ricerca di Roma 1, Monterotondo Scalo, 00015, Italy.,CERIC-ERIC Basovizza, Trieste, 34149, Italy
| | - P O'Keeffe
- CNR-ISM, Area della Ricerca di Roma 1, Monterotondo Scalo, 00015, Italy
| | - C Callegari
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, 34149, Italy
| | - M Coreno
- CNR-ISM, Area della Ricerca di Roma 1, Monterotondo Scalo, 00015, Italy
| | - A Demidovich
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, 34149, Italy
| | - M Devetta
- Dipartimento di Fisica, Università degli Studi di Milano, Milan, 20133, Italy.,CNR-IFN, Milano, 20133, Italy
| | - M Di Fraia
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, 34149, Italy
| | - M Drabbels
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - P Finetti
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, 34149, Italy
| | - O Gessner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - C Grazioli
- CNR-IOM, Istituto Officina dei Materiali, Area Science Park - Basovizza, Trieste, 34149, Italy
| | - A Hernando
- Kido Dynamics, EPFL Innovation Park Bat. C, 1015, Lausanne, Switzerland.,IFISC (CSIC-UIB), Instituto de Fisica Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, 07122, Palma de Mallorca, Spain
| | - D M Neumark
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Y Ovcharenko
- Institut für Optik und Atomare Physik, TU-Berlin, 10623, Germany.,European XFEL, Schenefeld, 22869, Germany
| | - P Piseri
- Dipartimento di Fisica, Università degli Studi di Milano, Milan, 20133, Italy
| | - O Plekan
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, 34149, Italy
| | - K C Prince
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, 34149, Italy
| | - R Richter
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, 34149, Italy
| | - M P Ziemkiewicz
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - T Möller
- Institut für Optik und Atomare Physik, TU-Berlin, 10623, Germany
| | - J Eloranta
- Department of Chemistry and Biochemistry, California State University at Northridge, Northridge, CA, 91330, USA
| | - M Pi
- Departament FQA, Facultat de Física, Universitat de Barcelona, Barcelona, 08028, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, 08028, Spain
| | - M Barranco
- Departament FQA, Facultat de Física, Universitat de Barcelona, Barcelona, 08028, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, 08028, Spain.,Laboratoire des Collisions, Agrégats, Réactivité, IRSAMC, UMR 5589, CNRS et Université Paul Sabatier-Toulouse 3, Toulouse, Cedex 09, 31062, France
| | - F Stienkemeier
- Institute of Physics, University of Freiburg, Freiburg im Breisgau, 79104, Germany
| |
Collapse
|
23
|
Olshin PK, Voss JM, Drabbels M, Lorenz UJ. Real-time observation of jumping and spinning nanodroplets. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:011101. [PMID: 31966988 PMCID: PMC6960032 DOI: 10.1063/1.5135699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/01/2020] [Indexed: 05/06/2023]
Abstract
The manipulation of liquids at nanoscale dimensions is a central goal of the emergent nanofluidics field. Such endeavors extend to nanodroplets, which are ubiquitous objects involved in many technological applications. Here, we employ time-resolved electron microscopy to elucidate the formation of so-called jumping nanodroplets on a graphene surface. We flash-melt a thin gold nanostructure with a laser pulse and directly observe how the resulting nanodroplet contracts into a sphere and jumps off its substrate, a process that occurs in just a few nanoseconds. Our study provides the first experimental characterization of these morphological dynamics through real-time observation and reveals new aspects of the phenomenon. We observe that friction alters the trajectories of individual droplets. Surprisingly, this leads some droplets to adopt dumbbell-shaped geometries after they jump, suggesting that they spin with considerable angular momentum. Our experiments open up new avenues for studying and controlling the fast morphological dynamics of nanodroplets through their interaction with structured surfaces.
Collapse
Affiliation(s)
- Pavel K. Olshin
- Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jonathan M. Voss
- Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marcel Drabbels
- Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ulrich J. Lorenz
- Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Nishiyama T, Niozu A, Bostedt C, Ferguson KR, Sato Y, Hutchison C, Nagaya K, Fukuzawa H, Motomura K, Wada SI, Sakai T, Matsunami K, Matsuda K, Tachibana T, Ito Y, Xu W, Mondal S, Umemoto T, Nicolas C, Miron C, Kameshima T, Joti Y, Tono K, Hatsui T, Yabashi M, Ueda K. Refinement for single-nanoparticle structure determination from low-quality single-shot coherent diffraction data. IUCRJ 2020; 7:10-17. [PMID: 31949900 PMCID: PMC6949595 DOI: 10.1107/s2052252519014222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
With the emergence of X-ray free-electron lasers, it is possible to investigate the structure of nanoscale samples by employing coherent diffractive imaging in the X-ray spectral regime. In this work, we developed a refinement method for structure reconstruction applicable to low-quality coherent diffraction data. The method is based on the gradient search method and considers the missing region of a diffraction pattern and the small number of detected photons. We introduced an initial estimate of the structure in the method to improve the convergence. The present method is applied to an experimental diffraction pattern of an Xe cluster obtained in an X-ray scattering experiment at the SPring-8 Angstrom Compact free-electron LAser (SACLA) facility. It is found that the electron density is successfully reconstructed from the diffraction pattern with a large missing region, with a good initial estimate of the structure. The diffraction pattern calculated from the reconstructed electron density reproduced the observed diffraction pattern well, including the characteristic intensity modulation in each ring. Our refinement method enables structure reconstruction from diffraction patterns under difficulties such as missing areas and low diffraction intensity, and it is potentially applicable to the structure determination of samples that have low scattering power.
Collapse
Affiliation(s)
- Toshiyuki Nishiyama
- Division of Physics and Astronomy, Kyoto University, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Akinobu Niozu
- Division of Physics and Astronomy, Kyoto University, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Christoph Bostedt
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont IL 60439, USA
- Paul-Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- LUXS Laboratory for Ultrafast X-ray Sciences, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ken R. Ferguson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Yuhiro Sato
- Division of Physics and Astronomy, Kyoto University, Kyoto 606-8501, Japan
| | | | - Kiyonobu Nagaya
- Division of Physics and Astronomy, Kyoto University, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Hironobu Fukuzawa
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Koji Motomura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Shin-ichi Wada
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Department of Physical Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Tsukasa Sakai
- Division of Physics and Astronomy, Kyoto University, Kyoto 606-8501, Japan
| | - Kenji Matsunami
- Division of Physics and Astronomy, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhiro Matsuda
- Division of Physics and Astronomy, Kyoto University, Kyoto 606-8501, Japan
| | - Tetsuya Tachibana
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Yuta Ito
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Weiqing Xu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Subhendu Mondal
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Takayuki Umemoto
- Department of Physical Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Christophe Nicolas
- Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Catalin Miron
- Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
- Extreme Light Infrastructure - Nuclear Physics (ELI-NP), "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, Măgurele RO-077125, Jud.Ilfov, Romania
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Takashi Kameshima
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | | | | | - Kiyoshi Ueda
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
25
|
Multispectroscopic Study of Single Xe Clusters Using XFEL Pulses. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
X-ray free-electron lasers (XFELs) deliver ultrashort coherent laser pulses in the X-ray spectral regime, enabling novel investigations into the structure of individual nanoscale samples. In this work, we demonstrate how single-shot small-angle X-ray scattering (SAXS) measurements combined with fluorescence and ion time-of-flight (TOF) spectroscopy can be used to obtain size- and structure-selective evaluation of the light-matter interaction processes on the nanoscale. We recorded the SAXS images of single xenon clusters using XFEL pulses provided by the SPring-8 Angstrom compact free-electron laser (SACLA). The XFEL fluences and the radii of the clusters at the reaction point were evaluated and the ion TOF spectra and fluorescence spectra were sorted accordingly. We found that the XFEL fluence and cluster size extracted from the diffraction patterns showed a clear correlation with the fluorescence and ion TOF spectra. Our results demonstrate the effectiveness of the multispectroscopic approach for exploring laser–matter interaction in the X-ray regime without the influence of the size distribution of samples and the fluence distribution of the incident XFEL pulses.
Collapse
|
26
|
Zimmermann J, Langbehn B, Cucini R, Di Fraia M, Finetti P, LaForge AC, Nishiyama T, Ovcharenko Y, Piseri P, Plekan O, Prince KC, Stienkemeier F, Ueda K, Callegari C, Möller T, Rupp D. Deep neural networks for classifying complex features in diffraction images. Phys Rev E 2019; 99:063309. [PMID: 31330687 DOI: 10.1103/physreve.99.063309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 11/07/2022]
Abstract
Intense short-wavelength pulses from free-electron lasers and high-harmonic-generation sources enable diffractive imaging of individual nanosized objects with a single x-ray laser shot. The enormous data sets with up to several million diffraction patterns present a severe problem for data analysis because of the high dimensionality of imaging data. Feature recognition and selection is a crucial step to reduce the dimensionality. Usually, custom-made algorithms are developed at a considerable effort to approximate the particular features connected to an individual specimen, but because they face different experimental conditions, these approaches do not generalize well. On the other hand, deep neural networks are the principal instrument for today's revolution in automated image recognition, a development that has not been adapted to its full potential for data analysis in science. We recently published [Langbehn et al., Phys. Rev. Lett. 121, 255301 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.255301] the application of a deep neural network as a feature extractor for wide-angle diffraction images of helium nanodroplets. Here we present the setup, our modifications, and the training process of the deep neural network for diffraction image classification and its systematic bench marking. We find that deep neural networks significantly outperform previous attempts for sorting and classifying complex diffraction patterns and are a significant improvement for the much-needed assistance during postprocessing of large amounts of experimental coherent diffraction imaging data.
Collapse
Affiliation(s)
- Julian Zimmermann
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Bruno Langbehn
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Michele Di Fraia
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy.,ISM-CNR, Istituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | - Paola Finetti
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - Aaron C LaForge
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - Toshiyuki Nishiyama
- Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yevheniy Ovcharenko
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany.,European XFEL GmbH, 22869 Schenefeld, Germany
| | - Paolo Piseri
- CIMAINA and Dipartimento di Fisica, University degli Studi di Milano, 20133 Milano, Italy
| | - Oksana Plekan
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - Kevin C Prince
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy.,Department of Chemistry and Biotechnology, Swinburne University of Technology, Victoria 3122, Australia
| | | | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Carlo Callegari
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy.,ISM-CNR, Istituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | - Thomas Möller
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Daniela Rupp
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| |
Collapse
|
27
|
Abstract
Free superfluid helium droplets constitute a versatile medium for a diverse range of experiments in physics and chemistry that extend from studies of the fundamental laws of superfluid motion to the synthesis of novel nanomaterials. In particular, the emergence of quantum vortices in rotating helium droplets is one of the most dramatic hallmarks of superfluidity and gives detailed access to the wave function describing the quantum liquid. This review provides an introduction to quantum vorticity in helium droplets, followed by a historical account of experiments on vortex visualization in bulk superfluid helium and a more detailed discussion of recent advances in the study of the rotational motion of isolated, nano- to micrometer-scale superfluid helium droplets. Ultrafast X-ray and extreme ultraviolet scattering techniques enabled by X-ray free-electron lasers and high-order harmonic generation in particular have facilitated the in situ detection of droplet shapes and the imaging of vortex structures inside individual, isolated droplets. New applications of helium droplets ranging from studies of quantum phase separations to mechanisms of low-temperature aggregation are discussed.
Collapse
Affiliation(s)
- Oliver Gessner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Andrey F. Vilesov
- Department of Chemistry and Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|