1
|
Klaiss R, Ziegler J, Miller D, Zappitelli K, Watanabe K, Taniguchi T, Alemán B. Uncovering the morphological effects of high-energy Ga + focused ion beam milling on hBN single-photon emitter fabrication. J Chem Phys 2022; 157:074703. [DOI: 10.1063/5.0097581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Many techniques to fabricate complex nanostructures and quantum emitting defects in low dimensional materials for quantum information technologies rely on the patterning capabilities of focused ion beam (FIB) systems. In particular, the ability to pattern arrays of bright and stable room temperature single-photon emitters (SPEs) in 2D wide-bandgap insulator hexagonal boron nitride (hBN) via high-energy heavy-ion FIB allows for direct placement of SPEs without structured substrates or polymer-reliant lithography steps. However, the process parameters needed to create hBN SPEs with this technique are dependent on the growth method of the material chosen. Moreover, morphological damage induced by high-energy heavy-ion exposure may further influence the successful creation of SPEs. In this work, we perform atomic force microscopy to characterize the surface morphology of hBN regions patterned by Ga+ FIB to create SPEs at a range of ion doses and find that material swelling, and not milling as expected, is most strongly and positively correlated with the onset of non-zero SPE yields. Furthermore, we simulate vacancy concentration profiles at each of the tested doses and propose a qualitative model to elucidate how Ga+ FIB patterning creates isolated SPEs that is consistent with observed optical and morphological characteristics and is dependent on the consideration of void nucleation and growth from vacancy clusters. Our results provide novel insight into the formation of hBN SPEs created by high-energy heavy-ion milling that can be leveraged for monolithic hBN photonic devices and could be applied to a wide range of low-dimensional solid-state SPE hosts.
Collapse
Affiliation(s)
- Rachael Klaiss
- Department of Physics, Material Science Institute, Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA
| | - Joshua Ziegler
- Department of Physics, Material Science Institute, Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA
| | - David Miller
- Department of Physics, Material Science Institute, Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA
| | - Kara Zappitelli
- Department of Physics, Material Science Institute, Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Benjamín Alemán
- Department of Physics, Material Science Institute, Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
2
|
Stability of the Discrete Time-Crystalline Order in Spin-Optomechanical and Open Cavity QED Systems. PHOTONICS 2022. [DOI: 10.3390/photonics9020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Discrete time crystals (DTC) have been demonstrated experimentally in several different quantum systems in the past few years. Spin couplings and cavity losses have been shown to play crucial roles for realizing DTC order in open many-body systems out of equilibrium. Recently, it has been proposed that eternal and transient DTC can be present with an open Floquet setup in the thermodynamic limit and in the deep quantum regime with few qubits, respectively. In this work, we consider the effects of spin damping and spin dephasing on the DTC order in spin-optomechanical and open cavity systems in which the spins can be all-to-all coupled. In the thermodynamic limit, it is shown that the existence of dephasing can destroy the coherence of the system and finally lead the system to its trivial steady state. Without dephasing, eternal DTC is displayed in the weak damping regime, which may be destroyed by increasing the all-to-all spin coupling or the spin damping. By contrast, the all-to-all coupling is constructive to the DTC in the moderate damping regime. We also focus on a model which can be experimentally realized by a suspended hexagonal boron nitride (hBN) membrane with a few spin color centers under microwave drive and Floquet magnetic field. Signatures of transient DTC behavior are demonstrated in both weak and moderate dissipation regimes without spin dephasing. Relevant experimental parameters are also discussed for realizing transient DTC order in such an hBN optomechanical system.
Collapse
|
3
|
Castelletto S, Inam FA, Sato SI, Boretti A. Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin-photon interface. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:740-769. [PMID: 32461875 PMCID: PMC7214868 DOI: 10.3762/bjnano.11.61] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/16/2020] [Indexed: 05/09/2023]
Abstract
Single-photon sources and their optical spin readout are at the core of applications in quantum communication, quantum computation, and quantum sensing. Their integration in photonic structures such as photonic crystals, microdisks, microring resonators, and nanopillars is essential for their deployment in quantum technologies. While there are currently only two material platforms (diamond and silicon carbide) with proven single-photon emission from the visible to infrared, a quantum spin-photon interface, and ancilla qubits, it is expected that other material platforms could emerge with similar characteristics in the near future. These two materials also naturally lead to monolithic integrated photonics as both are good photonic materials. While so far the verification of single-photon sources was based on discovery, assignment and then assessment and control of their quantum properties for applications, a better approach could be to identify applications and then search for the material that could address the requirements of the application in terms of quantum properties of the defects. This approach is quite difficult as it is based mostly on the reliability of modeling and predicting of color center properties in various materials, and their experimental verification is challenging. In this paper, we review some recent advances in an emerging material, low-dimensional (2D, 1D, 0D) hexagonal boron nitride (h-BN), which could lead to establishing such a platform. We highlight the recent achievements of the specific material for the expected applications in quantum technologies, indicating complementary outstanding properties compared to the other 3D bulk materials.
Collapse
Affiliation(s)
| | - Faraz A Inam
- Dept. of Physics, Aligarh Muslim University, Aligarh, U.P. 202002, India
| | - Shin-ichiro Sato
- National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma, 370-1292, Japan
| | - Alberto Boretti
- Mechanical Engineering Department, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar 31952, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Zhai C, Huang R, Jing H, Kuang LM. Mechanical switch of photon blockade and photon-induced tunneling. OPTICS EXPRESS 2019; 27:27649-27662. [PMID: 31684529 DOI: 10.1364/oe.27.027649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
We propose how to mechanically control photon blockade (PB) and photon-induced tunneling (PIT) in an optomechanical system. We show that single-photon blockade (1PB) and two-photon blockade (2PB) can emerge by tuning mechanical driving parameters. Moreover, by varying the strength of mechanical driving, PIT can be converted into 1PB or 2PB, or vice versa, with the constant optical frequency. We refer to this effect as PIT-1PB or PIT-2PB switch. In addition, the switch between 1PB and 2PB can also be realized with this strategy. This mechanical engineering of quantum optical effects can be understood from the shifts of energy levels induced by external mechanical pumping. Our results not only pave the way towards devising new schemes for quantum light switch but also, on a more fundamental level, could shed light on the nonclassicality of the few-photon states.
Collapse
|