1
|
Ishiyama T, Ono K, Takano T, Sunaga A, Takahashi Y. Observation of an Inner-Shell Orbital Clock Transition in Neutral Ytterbium Atoms. PHYSICAL REVIEW LETTERS 2023; 130:153402. [PMID: 37115891 DOI: 10.1103/physrevlett.130.153402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
We observe a weakly allowed optical transition of atomic ytterbium from the ground state to the metastable state 4f^{13}5d6s^{2} (J=2) for all five bosonic and two fermionic isotopes with resolved Zeeman and hyperfine structures. This inner-shell orbital transition has been proposed as a new frequency standard as well as a quantum sensor for new physics. We find magic wavelengths through the measurement of the scalar and tensor polarizabilities and reveal that the measured trap lifetime in a three-dimensional optical lattice is 1.9(1) s, which is crucial for precision measurements. We also determine the g factor by an interleaved measurement, consistent with our relativistic atomic calculation. This work opens the possibility of an optical lattice clock with improved stability and accuracy as well as novel approaches for physics beyond the standard model.
Collapse
Affiliation(s)
- Taiki Ishiyama
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Koki Ono
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsushi Takano
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Ayaki Sunaga
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshiro Takahashi
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Dreissen LS, Yeh CH, Fürst HA, Grensemann KC, Mehlstäubler TE. Improved bounds on Lorentz violation from composite pulse Ramsey spectroscopy in a trapped ion. Nat Commun 2022; 13:7314. [DOI: 10.1038/s41467-022-34818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/08/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractIn attempts to unify the four known fundamental forces in a single quantum-consistent theory, it is suggested that Lorentz symmetry may be broken at the Planck scale. Here we search for Lorentz violation at the low-energy limit by comparing orthogonally oriented atomic orbitals in a Michelson-Morley-type experiment. We apply a robust radiofrequency composite pulse sequence in the 2F7/2 manifold of an Yb+ ion, extending the coherence time from 200 μs to more than 1 s. In this manner, we fully exploit the high intrinsic susceptibility of the 2F7/2 state and take advantage of its exceptionally long lifetime. We match the stability of the previous best Lorentz symmetry test nearly an order of magnitude faster and improve the constraints on the symmetry breaking coefficients to the 10−21 level. These results represent the most stringent test of this type of Lorentz violation. The demonstrated method can be further extended to ion Coulomb crystals.
Collapse
|
3
|
Nichol BC, Srinivas R, Nadlinger DP, Drmota P, Main D, Araneda G, Ballance CJ, Lucas DM. An elementary quantum network of entangled optical atomic clocks. Nature 2022; 609:689-694. [PMID: 36071166 DOI: 10.1038/s41586-022-05088-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Optical atomic clocks are our most precise tools to measure time and frequency1-3. Precision frequency comparisons between clocks in separate locations enable one to probe the space-time variation of fundamental constants4,5 and the properties of dark matter6,7, to perform geodesy8-10 and to evaluate systematic clock shifts. Measurements on independent systems are limited by the standard quantum limit; measurements on entangled systems can surpass the standard quantum limit to reach the ultimate precision allowed by quantum theory-the Heisenberg limit. Although local entangling operations have demonstrated this enhancement at microscopic distances11-16, comparisons between remote atomic clocks require the rapid generation of high-fidelity entanglement between systems that have no intrinsic interactions. Here we report the use of a photonic link17,18 to entangle two 88Sr+ ions separated by a macroscopic distance19 (approximately 2 m) to demonstrate an elementary quantum network of entangled optical clocks. For frequency comparisons between the ions, we find that entanglement reduces the measurement uncertainty by nearly [Formula: see text], the value predicted for the Heisenberg limit. Today's optical clocks are typically limited by dephasing of the probe laser20; in this regime, we find that entanglement yields a factor of 2 reduction in the measurement uncertainty compared with conventional correlation spectroscopy techniques20-22. We demonstrate this enhancement for the measurement of a frequency shift applied to one of the clocks. This two-node network could be extended to additional nodes23, to other species of trapped particles or-through local operations-to larger entangled systems.
Collapse
Affiliation(s)
- B C Nichol
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK.
| | - R Srinivas
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK.
| | - D P Nadlinger
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
| | - P Drmota
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
| | - D Main
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
| | - G Araneda
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
| | - C J Ballance
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
| | - D M Lucas
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Stark J, Warnecke C, Bogen S, Chen S, Dijck EA, Kühn S, Rosner MK, Graf A, Nauta J, Oelmann JH, Schmöger L, Schwarz M, Liebert D, Spieß LJ, King SA, Leopold T, Micke P, Schmidt PO, Pfeifer T, Crespo López-Urrutia JR. An ultralow-noise superconducting radio-frequency ion trap for frequency metrology with highly charged ions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:083203. [PMID: 34470420 DOI: 10.1063/5.0046569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
We present a novel ultrastable superconducting radio-frequency (RF) ion trap realized as a combination of an RF cavity and a linear Paul trap. Its RF quadrupole mode at 34.52 MHz reaches a quality factor of Q ≈ 2.3 × 105 at a temperature of 4.1 K and is used to radially confine ions in an ultralow-noise pseudopotential. This concept is expected to strongly suppress motional heating rates and related frequency shifts that limit the ultimate accuracy achieved in advanced ion traps for frequency metrology. Running with its low-vibration cryogenic cooling system, electron-beam ion trap, and deceleration beamline supplying highly charged ions (HCIs), the superconducting trap offers ideal conditions for optical frequency metrology with ionic species. We report its proof-of-principle operation as a quadrupole-mass filter with HCIs and trapping of Doppler-cooled 9Be+ Coulomb crystals.
Collapse
Affiliation(s)
- J Stark
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - C Warnecke
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - S Bogen
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - S Chen
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - E A Dijck
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - S Kühn
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - M K Rosner
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - A Graf
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - J Nauta
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - J-H Oelmann
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - L Schmöger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - M Schwarz
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - D Liebert
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - L J Spieß
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - S A King
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - T Leopold
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - P Micke
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - P O Schmidt
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - T Pfeifer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
5
|
Abstract
The effects of Lorentz and CPT violations on macroscopic objects are explored. Effective composite coefficients for Lorentz violation are derived in terms of coefficients for electrons, protons, and neutrons in the Standard-Model Extension, including all minimal and non-minimal violations. The hamiltonian and modified Newton’s second law for a test body are derived. The framework is applied to free-fall and torsion-balance tests of the weak equivalence principle and to orbital motion. The effects on continuous media are studied, and the frequency shifts in acoustic resonators are calculated.
Collapse
|
6
|
Abstract
This is an overview of recent publications on the prospects of searching for nonminimal Lorentz-violating effects in atomic spectroscopy experiments. The article discusses the differences in the signals for Lorentz violation in the presence of minimal and nonminimal operators and what systems are more sensitive to certain types of Lorentz-violating operators.
Collapse
|