1
|
Lu H, Wu HQ, Chen BB, Meng ZY. Continuous Transition between Bosonic Fractional Chern Insulator and Superfluid. PHYSICAL REVIEW LETTERS 2025; 134:076601. [PMID: 40053965 DOI: 10.1103/physrevlett.134.076601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/19/2024] [Accepted: 01/24/2025] [Indexed: 03/09/2025]
Abstract
The properties of fractional Chern insulator (FCI) phases and the phase transitions between FCIs and Mott insulators in bosonic systems are well studied. The continuous transitions between FCI and superfluids (SFs), however, despite the inspiring field theoretical predictions [M. Barkeshli and J. McGreevy, Phys. Rev. B 89, 235116 (2014)PRBMDO1098-012110.1103/PhysRevB.89.235116; M. Barkeshli and J. McGreevy, Phys. Rev. B 86, 075136 (2012)PRBMDO1098-012110.1103/PhysRevB.86.075136; M. Barkeshli et al., Phys. Rev. Lett. 115, 026802 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.026802; X.-Y. Song et al., Phys. Rev. B 109, 085143 (2024)PRBMDO2469-995010.1103/PhysRevB.109.085143; and X.-Y. Song and Y.-H. Zhang, SciPost Phys. 15, 215 (2023)2542-465310.21468/SciPostPhys.15.5.215], have not been directly verified. The existing numerical results of the FCI-SF transition are either indirect or clearly first order. Here, by simply tuning the bandwidth of the Haldane honeycomb lattice model, we find direct transitions from a bosonic FCI at ν=1/2 filling of a flat Chern band to two SF states with bosons condensed at momenta M or Γ, respectively. While the FCI-SF(M) transition is first order, the FCI-SF(Γ) transition is found to be continuous, and the bipartite entanglement entropy at the critical point with the area-law scaling is consistent with the critical theories. Through finite-size criticality analysis, the obtained critical exponents β≈0.35(5) and ν≈0.62(12) are both compatible with those of the 3D XY universality class within numerical uncertainty and possibly more exotic beyond-Landau ones. This Letter thence presents a direct numerical demonstration of a continuous FCI-SF transition between a topologically ordered phase and a spontaneous continuous symmetry-breaking phase, and further indicates the zero-field bosonic FCI might be realized from a SF state by gradually flattening the dispersion of the Chern band, through the (quasi)adiabatic preparation in ultracold atom systems.
Collapse
Affiliation(s)
- Hongyu Lu
- The University of Hong Kong, Department of Physics and HK Institute of Quantum Science and Technology, Pokfulam Road, Hong Kong
| | - Han-Qing Wu
- Sun Yat-sen University, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Guangzhou 510275, China
| | - Bin-Bin Chen
- The University of Hong Kong, Department of Physics and HK Institute of Quantum Science and Technology, Pokfulam Road, Hong Kong
| | - Zi Yang Meng
- The University of Hong Kong, Department of Physics and HK Institute of Quantum Science and Technology, Pokfulam Road, Hong Kong
| |
Collapse
|
2
|
Shi Z, Khazali M, Qin L, Zhou Y, Zhong Y. Pattern formations and their active manipulation in a Rydberg noisy-dressed Bose-Einstein condensate. OPTICS LETTERS 2024; 49:6517-6520. [PMID: 39546708 DOI: 10.1364/ol.536991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
We investigate the formation and manipulation of spatial patterns and their structural phase transitions by examining the effects of laser linewidth on the dynamics of Rydberg noise-dressed Bose-Einstein condensates (RnD BECs). We discover that the homogeneous matter wave can transition into various types of self-organized patterns, which are manipulated by tuning the laser linewidth, control field intensity, and atomic density. Remarkably, the system exhibits stable nonlocal matter-wave solitons, vortices, and soliton molecules under specific laser linewidths.
Collapse
|
3
|
Zampronio V, Mendoza-Coto A, Macrì T, Cinti F. Exploring Quantum Phases of Dipolar Gases through Quasicrystalline Confinement. PHYSICAL REVIEW LETTERS 2024; 133:196001. [PMID: 39576902 DOI: 10.1103/physrevlett.133.196001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/30/2024] [Indexed: 11/24/2024]
Abstract
The effects of frustration on extended supersolid states is a largely unexplored subject in the realm of cold-atom systems. In this work, we explore the impact of quasicrystalline lattices on the supersolid phases of dipolar bosons. Our findings reveal that weak quasicrystalline lattices can induce a variety of modulated phases, merging the inherent solid pattern with a quasiperiodic decoration induced by the external potential. As the lattice becomes stronger, we observe a superquasicrystal phase and a Bose glass phase. Our results, supported by a detailed discussion on experimental feasibility using dysprosium atoms and quasicrystalline optical lattice potentials, open a new avenue in the exploration of long-range interacting quantum systems in aperiodic environments. We provide a solid foundation for future experimental investigations, potentially confirming our theoretical predictions and contributing profoundly to the field of quantum gases in complex external potentials.
Collapse
Affiliation(s)
| | | | | | - Fabio Cinti
- Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019 Sesto Fiorentino (FI), Italy
- INFN, Sezione di Firenze, I-50019 Sesto Fiorentino (FI), Italy
- Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| |
Collapse
|
4
|
Lu H, Wu HQ, Chen BB, Sun K, Yang Meng Z. From fractional quantum anomalous Hall smectics to polar smectic metals: nontrivial interplay between electronic liquid crystal order and topological order in correlated topological flat bands. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:108003. [PMID: 39222655 DOI: 10.1088/1361-6633/ad7640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Symmetry-breaking orders can not only compete with each other, but also be intertwined, and the intertwined topological and symmetry-breaking orders make the situation more intriguing. This work examines the archetypal correlated flat band model on a checkerboard lattice at fillingν=2/3and we find that the unique interplay between smectic charge order and topological order gives rise to two novel quantum states. As the interaction strength increases, the system first transitions from a Fermi liquid (FL) into FQAH smectic (FQAHS) state, where the topological order coexists cooperatively with smectic charge order with enlarged ground-state degeneracy and interestingly, the Hall conductivity isσxy=ν=2/3, different from the band-folding or doping scenarios. Further increasing the interaction strength, the system undergoes another quantum phase transition and evolves into a polar smectic metal (PSM) state. This emergent PSM is an anisotropic non-Fermi liquid, whose interstripe tunneling is irrelevant while it is metallic inside each stripe. Different from the FQAHS and conventional smectic orders, this PSM spontaneously breaks the two-fold rotational symmetry, resulting in a nonzero electric dipole moment and ferroelectric order. In addition to the exotic ground states, large-scale numerical simulations are also used to study low-energy excitations and thermodynamic characteristics. We find that the onset temperature of the incompressible FQAHS state, which also coincides with the onset of non-polar smectic order, is dictated by the magneto-roton modes. Above this onset temperature, the PSM state exists at an intermediate-temperature regime. Although theT = 0 quantum phase transition between PSM and FQAHS is first order, the thermal FQAHS-PSM transition could be continuous. We expect the features of the exotic states and thermal phase transitions could be accessed in future experiments.
Collapse
Affiliation(s)
- Hongyu Lu
- Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Han-Qing Wu
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Bin-Bin Chen
- Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Kai Sun
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Zi Yang Meng
- Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| |
Collapse
|
5
|
Li G, Zhao Z, Jiang X, Chen Z, Liu B, Malomed BA, Li Y. Strongly Anisotropic Vortices in Dipolar Quantum Droplets. PHYSICAL REVIEW LETTERS 2024; 133:053804. [PMID: 39159105 DOI: 10.1103/physrevlett.133.053804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/17/2024] [Indexed: 08/21/2024]
Abstract
We construct strongly anisotropic quantum droplets with embedded vorticity in the 3D space, with mutually perpendicular vortex axis and polarization of atomic magnetic moments. Stability of these anisotropic vortex quantum droplets (AVQDs) is verified by means of systematic simulations. Their stability area is identified in the parametric plane of the total atom number and scattering length of the contact interactions. We also construct vortex-antivortex-vortex bound states and find their stability region in the parameter space. The application of a torque perpendicular to the vorticity axis gives rise to robust intrinsic oscillations or rotation of the AVQDs. The effect of three-body losses on the AVQD stability is considered too. The results show that the AVQDs can retain the topological structure (vorticity) for a sufficiently long time if the scattering length exceeds a critical value.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongyao Li
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China
| |
Collapse
|
6
|
Sánchez-Baena J, Politi C, Maucher F, Ferlaino F, Pohl T. Heating a dipolar quantum fluid into a solid. Nat Commun 2023; 14:1868. [PMID: 37015907 PMCID: PMC10073146 DOI: 10.1038/s41467-023-37207-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/06/2023] [Indexed: 04/06/2023] Open
Abstract
Raising the temperature of a material enhances the thermal motion of particles. Such an increase in thermal energy commonly leads to the melting of a solid into a fluid and eventually vaporises the liquid into a gaseous phase of matter. Here, we study the finite-temperature physics of dipolar quantum fluids and find surprising deviations from this general phenomenology. In particular, we describe how heating a dipolar superfluid from near-zero temperatures can induce a phase transition to a supersolid state with a broken translational symmetry. We discuss the observation of this effect in experiments on ultracold dysprosium atoms, which opens the door for exploring the unusual thermodynamics of dipolar quantum fluids.
Collapse
Affiliation(s)
- J Sánchez-Baena
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, DK-8000, Aarhus C, Denmark.
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, 08034, Barcelona, Spain.
| | - C Politi
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria
| | - F Maucher
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, DK-8000, Aarhus C, Denmark
- Departament de Física, Universitat de les Illes Balears & IAC-3, Campus UIB, E-07122, Palma de Mallorca, Spain
| | - F Ferlaino
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria
| | - T Pohl
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
7
|
Shi Z, Huang G. Matter-wave dromions in a disk-shaped dipolar Bose-Einstein condensate with the Lee-Huang-Yang correction. Phys Rev E 2023; 107:024214. [PMID: 36932626 DOI: 10.1103/physreve.107.024214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
We investigate, both analytically and numerically, the nonlinear dynamics of (2+1)-dimensional [(2+1)D] matter waves excited in a disk-shaped dipolar Bose-Einstein condensate (BEC) when quantum fluctuations described by the Lee-Huang-Yang (LHY) correction are taken into consideration. By using a method of multiple scales, we derive Davey-Stewartson I equations that govern the nonlinear evolution of matter-wave envelopes. We demonstrate that the system supports (2+1)D matter-wave dromions, which are superpositions of a short-wavelength excitation and a long-wavelength mean flow. We found that the stability of the matter-wave dromions can be enhanced by the LHY correction. We also found that such dromions display interesting behaviors of collision, reflection, and transmission when they interact with each other and are scattered by obstacles. The results reported here are useful not only for improving the understanding on the physical property of the quantum fluctuations in BECs, but also for possible experimental findings of new nonlinear localized excitations in systems with long-ranged interactions.
Collapse
Affiliation(s)
- Zeyun Shi
- School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan 442000, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Guoxiang Huang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- NYU-ECRU Joint Institute of Physics, New York University at Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
8
|
Chomaz L, Ferrier-Barbut I, Ferlaino F, Laburthe-Tolra B, Lev BL, Pfau T. Dipolar physics: a review of experiments with magnetic quantum gases. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 86:026401. [PMID: 36583342 DOI: 10.1088/1361-6633/aca814] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Since the achievement of quantum degeneracy in gases of chromium atoms in 2004, the experimental investigation of ultracold gases made of highly magnetic atoms has blossomed. The field has yielded the observation of many unprecedented phenomena, in particular those in which long-range and anisotropic dipole-dipole interactions (DDIs) play a crucial role. In this review, we aim to present the aspects of the magnetic quantum-gas platform that make it unique for exploring ultracold and quantum physics as well as to give a thorough overview of experimental achievements. Highly magnetic atoms distinguish themselves by the fact that their electronic ground-state configuration possesses a large electronic total angular momentum. This results in a large magnetic moment and a rich electronic transition spectrum. Such transitions are useful for cooling, trapping, and manipulating these atoms. The complex atomic structure and large dipolar moments of these atoms also lead to a dense spectrum of resonances in their two-body scattering behaviour. These resonances can be used to control the interatomic interactions and, in particular, the relative importance of contact over dipolar interactions. These features provide exquisite control knobs for exploring the few- and many-body physics of dipolar quantum gases. The study of dipolar effects in magnetic quantum gases has covered various few-body phenomena that are based on elastic and inelastic anisotropic scattering. Various many-body effects have also been demonstrated. These affect both the shape, stability, dynamics, and excitations of fully polarised repulsive Bose or Fermi gases. Beyond the mean-field instability, strong dipolar interactions competing with slightly weaker contact interactions between magnetic bosons yield new quantum-stabilised states, among which are self-bound droplets, droplet assemblies, and supersolids. Dipolar interactions also deeply affect the physics of atomic gases with an internal degree of freedom as these interactions intrinsically couple spin and atomic motion. Finally, long-range dipolar interactions can stabilise strongly correlated excited states of 1D gases and also impact the physics of lattice-confined systems, both at the spin-polarised level (Hubbard models with off-site interactions) and at the spinful level (XYZ models). In the present manuscript, we aim to provide an extensive overview of the various related experimental achievements up to the present.
Collapse
Affiliation(s)
- Lauriane Chomaz
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
- Physikalisches Institut der Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
| | - Igor Ferrier-Barbut
- Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| | - Francesca Ferlaino
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
| | - Bruno Laburthe-Tolra
- Université Sorbonne Paris Nord, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France
- CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France
| | - Benjamin L Lev
- Departments of Physics and Applied Physics and Ginzton Laboratory, Stanford University, Stanford, CA 94305, United States of America
| | - Tilman Pfau
- Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| |
Collapse
|
9
|
González-García LA, Alva-Sánchez H, Paredes R. Localization in Two-Dimensional Quasicrystalline Lattices. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1628. [PMID: 36359718 PMCID: PMC9689662 DOI: 10.3390/e24111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
We investigate the emergence of localization in a weakly interacting Bose gas confined in quasicrystalline lattices with three different rotational symmetries: five, eight, and twelve. The analysis, performed at a mean field level and from which localization is detected, relies on the study of two observables: the inverse participation ratio (IPR) and the Shannon entropy in the coordinate space. Those physical quantities were determined from a robust statistical study for the stationary density profiles of the interacting condensate. Localization was identified for each lattice type as a function of the potential depth. Our analysis revealed a range of the potential depths for which the condensate density becomes localized, from partially at random lattice sites to fully in a single site. We found that localization in the case of five-fold rotational symmetry appears for (6ER,9ER), while it occurs in the interval (12ER,15ER) for octagonal and dodecagonal symmetries.
Collapse
|
10
|
Steinberg AB, Maucher F, Gurevich SV, Thiele U. Exploring bifurcations in Bose-Einstein condensates via phase field crystal models. CHAOS (WOODBURY, N.Y.) 2022; 32:113112. [PMID: 36456347 DOI: 10.1063/5.0101401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/03/2022] [Indexed: 06/17/2023]
Abstract
To facilitate the analysis of pattern formation and the related phase transitions in Bose-Einstein condensates, we present an explicit approximate mapping from the nonlocal Gross-Pitaevskii equation with cubic nonlinearity to a phase field crystal (PFC) model. This approximation is valid close to the superfluid-supersolid phase transition boundary. The simplified PFC model permits the exploration of bifurcations and phase transitions via numerical path continuation employing standard software. While revealing the detailed structure of the bifurcations present in the system, we demonstrate the existence of localized states in the PFC approximation. Finally, we discuss how higher-order nonlinearities change the structure of the bifurcation diagram representing the transitions found in the system.
Collapse
Affiliation(s)
- A B Steinberg
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
| | - F Maucher
- Departament de Física, Universitat de les Illes Balears and IAC-3, Campus UIB, E-07122 Palma de Mallorca, Spain
| | - S V Gurevich
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
| | - U Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
| |
Collapse
|
11
|
Bland T, Poli E, Politi C, Klaus L, Norcia MA, Ferlaino F, Santos L, Bisset RN. Two-Dimensional Supersolid Formation in Dipolar Condensates. PHYSICAL REVIEW LETTERS 2022; 128:195302. [PMID: 35622047 DOI: 10.1103/physrevlett.128.195302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/19/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Dipolar condensates have recently been coaxed to form the long-sought supersolid phase. While one-dimensional supersolids may be prepared by triggering a roton instability, we find that such a procedure in two dimensions (2D) leads to a loss of both global phase coherence and crystalline order. Unlike in 1D, the 2D roton modes have little in common with the supersolid configuration. We develop a finite-temperature stochastic Gross-Pitaevskii theory that includes beyond-mean-field effects to explore the formation process in 2D and find that evaporative cooling directly into the supersolid phase-hence bypassing the first-order roton instability-can produce a robust supersolid in a circular trap. Importantly, the resulting supersolid is stable at the final nonzero temperature. We then experimentally produce a 2D supersolid in a near-circular trap through such an evaporative procedure. Our work provides insight into the process of supersolid formation in 2D and defines a realistic path to the formation of large two-dimensional supersolid arrays.
Collapse
Affiliation(s)
- T Bland
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck 6020, Austria
| | - E Poli
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck 6020, Austria
| | - C Politi
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck 6020, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck 6020, Austria
| | - L Klaus
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck 6020, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck 6020, Austria
| | - M A Norcia
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck 6020, Austria
| | - F Ferlaino
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck 6020, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck 6020, Austria
| | - L Santos
- Institut für Theoretische Physik, Leibniz Universität Hannover, Hannover 30167, Germany
| | - R N Bisset
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
12
|
Hertkorn J, Schmidt JN, Guo M, Böttcher F, Ng KSH, Graham SD, Uerlings P, Büchler HP, Langen T, Zwierlein M, Pfau T. Supersolidity in Two-Dimensional Trapped Dipolar Droplet Arrays. PHYSICAL REVIEW LETTERS 2021; 127:155301. [PMID: 34678009 DOI: 10.1103/physrevlett.127.155301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
We theoretically investigate the ground states and the spectrum of elementary excitations across the superfluid to droplet crystallization transition of an oblate dipolar Bose-Einstein condensate. We systematically identify regimes where spontaneous rotational symmetry breaking leads to the emergence of a supersolid phase with characteristic collective excitations, such as the Higgs amplitude mode. Furthermore, we study the dynamics across the transition and show how these supersolids can be realized with standard protocols in state-of-the-art experiments.
Collapse
Affiliation(s)
- J Hertkorn
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - J-N Schmidt
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - M Guo
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - F Böttcher
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - K S H Ng
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - S D Graham
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - P Uerlings
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - H P Büchler
- Institute for Theoretical Physics III and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - T Langen
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - M Zwierlein
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - T Pfau
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
13
|
Two-dimensional supersolidity in a dipolar quantum gas. Nature 2021; 596:357-361. [PMID: 34408330 DOI: 10.1038/s41586-021-03725-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Supersolid states simultaneously feature properties typically associated with a solid and with a superfluid. Like a solid, they possess crystalline order, manifesting as a periodic modulation of the particle density; but unlike a typical solid, they also have superfluid properties, resulting from coherent particle delocalization across the system. Such states were initially envisioned in the context of bulk solid helium, as a possible answer to the question of whether a solid could have superfluid properties1-5. Although supersolidity has not been observed in solid helium (despite much effort)6, ultracold atomic gases provide an alternative approach, recently enabling the observation and study of supersolids with dipolar atoms7-16. However, unlike the proposed phenomena in helium, these gaseous systems have so far only shown supersolidity along a single direction. Here we demonstrate the extension of supersolid properties into two dimensions by preparing a supersolid quantum gas of dysprosium atoms on both sides of a structural phase transition similar to those occurring in ionic chains17-20, quantum wires21,22 and theoretically in chains of individual dipolar particles23,24. This opens the possibility of studying rich excitation properties25-28, including vortex formation29-31, and ground-state phases with varied geometrical structure7,32 in a highly flexible and controllable system.
Collapse
|
14
|
Abstract
This article discusses self-organization in cold atoms via light-mediated interactions induced by feedback from a single retro-reflecting mirror. Diffractive dephasing between the pump beam and the spontaneous sidebands selects the lattice period. Spontaneous breaking of the rotational and translational symmetry occur in the 2D plane transverse to the pump. We elucidate how diffractive ripples couple sites on the self-induced atomic lattice. The nonlinear phase shift of the atomic cloud imprinted onto the optical beam is the parameter determining coupling strength. The interaction can be tailored to operate either on external degrees of freedom leading to atomic crystallization for thermal atoms and supersolids for a quantum degenerate gas, or on internal degrees of freedom like populations of the excited state or Zeeman sublevels. Using the light polarization degrees of freedom on the Poincaré sphere (helicity and polarization direction), specific irreducible tensor components of the atomic Zeeman states can be coupled leading to spontaneous magnetic ordering of states of dipolar and quadrupolar nature. The requirements for critical interaction strength are compared for the different situations. Connections and extensions to longitudinally pumped cavities, counterpropagating beam schemes and the CARL instability are discussed.
Collapse
|
15
|
Baio G, Robb GRM, Yao AM, Oppo GL, Ackemann T. Multiple Self-Organized Phases and Spatial Solitons in Cold Atoms Mediated by Optical Feedback. PHYSICAL REVIEW LETTERS 2021; 126:203201. [PMID: 34110195 DOI: 10.1103/physrevlett.126.203201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
We study the transverse self-structuring of cold atomic clouds with effective atomic interactions mediated by a coherent driving beam retroreflected by means of a single mirror. The resulting self-structuring due to optomechanical forces is much richer than that of an effective-Kerr medium, displaying hexagonal, stripe and honeycomb phases depending on the interaction strength parametrized by the linear susceptibility. Phase domains are described by Ginzburg-Landau amplitude equations with real coefficients. In the stripe phase the system recovers inversion symmetry. Moreover, the subcritical character of the honeycomb phase allows for light-density feedback solitons functioning as self-sustained dark atomic traps with motion controlled by phase gradients in the driving beam.
Collapse
Affiliation(s)
- Giuseppe Baio
- SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
| | - Gordon R M Robb
- SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
| | - Alison M Yao
- SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
| | - Gian-Luca Oppo
- SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
| | - Thorsten Ackemann
- SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
| |
Collapse
|
16
|
Abstract
The article presents the state of the art and reviews the literature on the long-standing problem of the possibility for a sample to be at the same time solid and superfluid. Theoretical models, numerical simulations, and experimental results are discussed.
Collapse
|
17
|
Roccuzzo SM, Gallemí A, Recati A, Stringari S. Rotating a Supersolid Dipolar Gas. PHYSICAL REVIEW LETTERS 2020; 124:045702. [PMID: 32058751 DOI: 10.1103/physrevlett.124.045702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Distinctive features of supersolids show up in their rotational properties. We calculate the moment of inertia of a harmonically trapped dipolar Bose-Einstein condensed gas as a function of the tunable scattering length parameter, providing the transition from the (fully) superfluid to the supersolid phase and eventually to an incoherent crystal of self-bound droplets. The transition from the superfluid to the supersolid phase is characterized by a jump in the moment of inertia, revealing its first order nature. In the case of elongated trapping in the plane of rotation, we show that the moment of inertia determines the value of the frequency of the scissors mode, which is significantly affected by the reduction of superfluidity in the supersolid phase. The case of an in-plane isotropic trapping is instead well suited to study the formation of quantized vortices, which are shown to be characterized, in the supersolid phase, by a sizeable deformed core, caused by the presence of the surrounding density peaks.
Collapse
Affiliation(s)
- S M Roccuzzo
- INO-CNR BEC Center and Dipartimento di Fisica, Università degli Studi di Trento, 38123 Povo, Italy and Trento Institute for Fundamental Physics and Applications, INFN, 38123 Trento, Italy
| | - A Gallemí
- INO-CNR BEC Center and Dipartimento di Fisica, Università degli Studi di Trento, 38123 Povo, Italy and Trento Institute for Fundamental Physics and Applications, INFN, 38123 Trento, Italy
| | - A Recati
- INO-CNR BEC Center and Dipartimento di Fisica, Università degli Studi di Trento, 38123 Povo, Italy and Trento Institute for Fundamental Physics and Applications, INFN, 38123 Trento, Italy
| | - S Stringari
- INO-CNR BEC Center and Dipartimento di Fisica, Università degli Studi di Trento, 38123 Povo, Italy and Trento Institute for Fundamental Physics and Applications, INFN, 38123 Trento, Italy
| |
Collapse
|
18
|
Thermal and Quantum Fluctuation Effects in Quasiperiodic Systems in External Potentials. CONDENSED MATTER 2019. [DOI: 10.3390/condmat4040093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We analyze the many-body phases of an ensemble of particles interacting via a Lifshitz–Petrich–Gaussian pair potential in a harmonic confinement. We focus on specific parameter regimes where we expect decagonal quasiperiodic cluster arrangements. Performing classical Monte Carlo as well as path integral quantum Monte Carlo methods, we numerically simulate systems of a few thousand particles including thermal and quantum fluctuations. Our findings indicate that the competition between the intrinsic length scale of the harmonic oscillator and the wavelengths associated to the minima of the pair potential generically lead to a destruction of the quasicrystalline pattern. Extensions of this work are also discussed.
Collapse
|
19
|
Hertkorn J, Böttcher F, Guo M, Schmidt JN, Langen T, Büchler HP, Pfau T. Fate of the Amplitude Mode in a Trapped Dipolar Supersolid. PHYSICAL REVIEW LETTERS 2019; 123:193002. [PMID: 31765213 DOI: 10.1103/physrevlett.123.193002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/13/2019] [Indexed: 06/10/2023]
Abstract
We theoretically investigate the spectrum of elementary excitations of a trapped dipolar quantum gas across the BEC-supersolid phase transition. Our calculations reveal the existence of distinct Higgs amplitude and Nambu-Goldstone modes that emerge from the softening roton modes of the dipolar BEC at the phase transition point. On the supersolid side of the transition, the energy of the Higgs amplitude mode increases rapidly, leading to a strong coupling to higher-lying modes. Our Letter highlights how the symmetry-breaking nature of the supersolid state translates to finite-size systems.
Collapse
Affiliation(s)
- J Hertkorn
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universitt Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - F Böttcher
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universitt Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - M Guo
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universitt Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - J N Schmidt
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universitt Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - T Langen
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universitt Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - H P Büchler
- Institute for Theoretical Physics III and Center for Integrated Quantum Science and Technology, Universitt Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - T Pfau
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universitt Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
20
|
Natale G, van Bijnen RMW, Patscheider A, Petter D, Mark MJ, Chomaz L, Ferlaino F. Excitation Spectrum of a Trapped Dipolar Supersolid and Its Experimental Evidence. PHYSICAL REVIEW LETTERS 2019; 123:050402. [PMID: 31491290 DOI: 10.1103/physrevlett.123.050402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Indexed: 06/10/2023]
Abstract
We study the spectrum of elementary excitations of a dipolar Bose gas in a three-dimensional anisotropic trap across the superfluid-supersolid phase transition. Theoretically, we show that, when entering the supersolid phase, two distinct excitation branches appear, respectively associated with dominantly crystal and superfluid excitations. These results confirm infinite-system predictions, showing that finite-size effects play only a small qualitative role, and connect the two branches to the simultaneous occurrence of crystal and superfluid orders. Experimentally, we probe compressional excitations in an Er quantum gas across the phase diagram. While in the Bose-Einstein condensate regime the system exhibits an ordinary quadrupole oscillation, in the supersolid regime we observe a striking two-frequency response of the system, related to the two spontaneously broken symmetries.
Collapse
Affiliation(s)
- G Natale
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - R M W van Bijnen
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 21a, 6020 Innsbruck, Austria
| | - A Patscheider
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - D Petter
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - M J Mark
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 21a, 6020 Innsbruck, Austria
| | - L Chomaz
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - F Ferlaino
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 21a, 6020 Innsbruck, Austria
| |
Collapse
|