1
|
Synanidis AP, Gonçalves PAD, García de Abajo FJ. Rydberg-Atom Manipulation through Strong Interaction with Free Electrons. ACS NANO 2025; 19:11891-11899. [PMID: 40096511 DOI: 10.1021/acsnano.4c14658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Optically trapped Rydberg atoms are a suitable platform to explore quantum many-body physics mediated by long-range atom-atom interactions that can be engineered through externally applied light fields. However, this approach is limited to dipole-allowed transitions and a spatial resolution of the order of the optical wavelength. Here, we theoretically investigate the interaction between free electrons and individual Rydberg atoms as an approach to induce nondipolar transitions with subnanometer spatial precision and a substantial degree of control over the final atomic states. We observe unity-order excitation probabilities produced by a single electron for suitably chosen combinations of electron energies and electron-beam distance to the atom. We further discuss free-electron-atom entanglement and atom-atom entanglement in combination with lateral shaping of the electron followed by postselection. Our results support free electrons as powerful tools to manipulate Rydberg atoms in previously inaccessible ways.
Collapse
Affiliation(s)
- Adamantios P Synanidis
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain
| | - P A D Gonçalves
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
2
|
Gibney E. Quantum-computing technology that makes qubits from atoms wins mega investment. Nature 2025:10.1038/d41586-025-00451-2. [PMID: 39948254 DOI: 10.1038/d41586-025-00451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
|
3
|
Pecorari L, Jandura S, Brennen GK, Pupillo G. High-rate quantum LDPC codes for long-range-connected neutral atom registers. Nat Commun 2025; 16:1111. [PMID: 39875382 PMCID: PMC11775376 DOI: 10.1038/s41467-025-56255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
High-rate quantum error correcting (QEC) codes with moderate overheads in qubit number and control complexity are highly desirable for achieving fault-tolerant quantum computing. Recently, quantum error correction has experienced significant progress both in code development and experimental realizations, with neutral atom qubit architecture rapidly establishing itself as a leading platform in the field. Scalable quantum computing will require processing with QEC codes that have low qubit overhead and large error suppression, and while such codes do exist, they involve a degree of non-locality that has yet to be integrated into experimental platforms. In this work, we analyze a family of high-rate Low-Density Parity-Check (LDPC) codes with limited long-range interactions and outline a near-term implementation in neutral atom registers. By means of circuit-level simulations, we find that these codes outperform surface codes in all respects when the two-qubit nearest neighbour gate error probability is below ~ 0.1%. By using multiple laser colors, we show how these codes can be natively integrated in two-dimensional static neutral atom qubit architectures with open boundaries, where the desired long-range connectivity can be targeted via the Rydberg blockade interaction.
Collapse
Affiliation(s)
- Laura Pecorari
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, 67000, Strasbourg, France
| | - Sven Jandura
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, 67000, Strasbourg, France
| | - Gavin K Brennen
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, 67000, Strasbourg, France
- Center for Engineered Quantum Systems, School of Mathematical and Physical Sciences, Macquarie University, Macquarie Park, 2109, NSW, Australia
| | - Guido Pupillo
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, 67000, Strasbourg, France.
| |
Collapse
|
4
|
Wang Q, Lyu D, Liu J, Wang J. Polarization and Orbital Angular Momentum Encoded Quantum Toffoli Gate Enabled by Diffractive Neural Networks. PHYSICAL REVIEW LETTERS 2024; 133:140601. [PMID: 39423413 DOI: 10.1103/physrevlett.133.140601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/19/2024] [Indexed: 10/21/2024]
Abstract
Controlled quantum gates play a crucial role in enabling quantum universal operations by facilitating interactions between qubits. Direct implementation of three-qubit gates simplifies the design of quantum circuits, thereby being conducive to performing complex quantum algorithms. Here, we propose and present an experimental demonstration of a quantum Toffoli gate fully exploiting the polarization and orbital angular momentum of a single photon. The Toffoli gate is implemented using the polarized diffractive neural networks scheme, achieving a mean truth table visibility of 97.27±0.20%. We characterize the gate's performance through quantum state tomography on 216 different input states and quantum process tomography, which yields a process fidelity of 94.05±0.02%. Our method offers a novel approach for realizing the Toffoli gate without requiring exponential optical elements while maintaining extensibility to the implementation of other three-qubit gates.
Collapse
|
5
|
Cao A, Eckner WJ, Lukin Yelin T, Young AW, Jandura S, Yan L, Kim K, Pupillo G, Ye J, Darkwah Oppong N, Kaufman AM. Multi-qubit gates and Schrödinger cat states in an optical clock. Nature 2024; 634:315-320. [PMID: 39385052 DOI: 10.1038/s41586-024-07913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/06/2024] [Indexed: 10/11/2024]
Abstract
Many-particle entanglement is a key resource for achieving the fundamental precision limits of a quantum sensor1. Optical atomic clocks2, the current state of the art in frequency precision, are a rapidly emerging area of focus for entanglement-enhanced metrology3-6. Augmenting tweezer-based clocks featuring microscopic control and detection7-10 with the high-fidelity entangling gates developed for atom-array information processing11,12 offers a promising route towards making use of highly entangled quantum states for improved optical clocks. Here we develop and use a family of multi-qubit Rydberg gates to generate Schrödinger cat states of the Greenberger-Horne-Zeilinger (GHZ) type with up to nine optical clock qubits in a programmable atom array. In an atom-laser comparison at sufficiently short dark times, we demonstrate a fractional frequency instability below the standard quantum limit (SQL) using GHZ states of up to four qubits. However, because of their reduced dynamic range, GHZ states of a single size fail to improve the achievable clock precision at the optimal dark time compared with unentangled atoms13. Towards overcoming this hurdle, we simultaneously prepare a cascade of varying-size GHZ states to perform unambiguous phase estimation over an extended interval14-17. These results demonstrate key building blocks for approaching Heisenberg-limited scaling of optical atomic clock precision.
Collapse
Affiliation(s)
- Alec Cao
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | - William J Eckner
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | - Theodor Lukin Yelin
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | - Aaron W Young
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | - Sven Jandura
- aQCess, University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), Strasbourg, France
| | - Lingfeng Yan
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | - Kyungtae Kim
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | - Guido Pupillo
- aQCess, University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), Strasbourg, France
| | - Jun Ye
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | - Nelson Darkwah Oppong
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | - Adam M Kaufman
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, CO, USA.
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
6
|
Finkelstein R, Tsai RBS, Sun X, Scholl P, Direkci S, Gefen T, Choi J, Shaw AL, Endres M. Universal quantum operations and ancilla-based read-out for tweezer clocks. Nature 2024; 634:321-327. [PMID: 39385054 PMCID: PMC11464380 DOI: 10.1038/s41586-024-08005-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/03/2024] [Indexed: 10/11/2024]
Abstract
Enhancing the precision of measurements by harnessing entanglement is a long-sought goal in quantum metrology1,2. Yet attaining the best sensitivity allowed by quantum theory in the presence of noise is an outstanding challenge, requiring optimal probe-state generation and read-out strategies3-7. Neutral-atom optical clocks8, which are the leading systems for measuring time, have shown recent progress in terms of entanglement generation9-11 but at present lack the control capabilities for realizing such schemes. Here we show universal quantum operations and ancilla-based read-out for ultranarrow optical transitions of neutral atoms. Our demonstration in a tweezer clock platform9,12-16 enables a circuit-based approach to quantum metrology with neutral-atom optical clocks. To this end, we demonstrate two-qubit entangling gates with 99.62(3)% fidelity-averaged over symmetric input states-through Rydberg interactions15,17,18 and dynamical connectivity19 for optical clock qubits, which we combine with local addressing16 to implement universally programmable quantum circuits. Using this approach, we generate a near-optimal entangled probe state1,4, a cascade of Greenberger-Horne-Zeilinger states of different sizes, and perform a dual-quadrature5 Greenberger-Horne-Zeilinger read-out. We also show repeated fast phase detection with non-destructive conditional reset of clock qubits and minimal dead time between repetitions by implementing ancilla-based quantum logic spectroscopy20 for neutral atoms. Finally, we extend this to multi-qubit parity checks and measurement-based, heralded, Bell-state preparation21-24. Our work lays the foundation for hybrid processor-clock devices with neutral atoms and more generally points to a future of practical applications for quantum processors linked with quantum sensors25.
Collapse
Affiliation(s)
| | | | - Xiangkai Sun
- California Institute of Technology, Pasadena, CA, USA
| | - Pascal Scholl
- California Institute of Technology, Pasadena, CA, USA
| | - Su Direkci
- California Institute of Technology, Pasadena, CA, USA
| | - Tuvia Gefen
- California Institute of Technology, Pasadena, CA, USA
| | - Joonhee Choi
- California Institute of Technology, Pasadena, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Adam L Shaw
- California Institute of Technology, Pasadena, CA, USA
| | - Manuel Endres
- California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
7
|
Tao R, Ammenwerth M, Gyger F, Bloch I, Zeiher J. High-Fidelity Detection of Large-Scale Atom Arrays in an Optical Lattice. PHYSICAL REVIEW LETTERS 2024; 133:013401. [PMID: 39042791 DOI: 10.1103/physrevlett.133.013401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/16/2024] [Accepted: 04/24/2024] [Indexed: 07/25/2024]
Abstract
Recent advances in quantum simulation based on neutral atoms have largely benefited from high-resolution, single-atom sensitive imaging techniques. A variety of approaches have been developed to achieve such local detection of atoms in optical lattices or optical tweezers. For alkaline-earth and alkaline-earth-like atoms, the presence of narrow optical transitions opens up the possibility of performing novel types of Sisyphus cooling, where the cooling mechanism originates from the capability to spatially resolve the differential optical level shifts in the trap potential. Up to now, it has been an open question whether high-fidelity imaging could be achieved in a "repulsive Sisyphus" configuration, where the trap depth of the ground state exceeds that of the excited state involved in cooling. Here, we demonstrate high-fidelity (99.971(1)%) and high-survival (99.80(5)%) imaging of strontium atoms using repulsive Sisyphus cooling. We use an optical lattice as a pinning potential for atoms in a large-scale tweezer array with up to 399 tweezers and show repeated, high-fidelity lattice-tweezer-lattice transfers. We furthermore demonstrate loading the lattice with approximately 10 000 atoms directly from the MOT and scalable imaging over >10 000 lattice sites with a combined survival probability and classification fidelity better than 99.2%. Our lattice thus serves as a locally addressable and sortable reservoir for continuous refilling of optical tweezer arrays in the future.
Collapse
|
8
|
Doga H, Raubenolt B, Cumbo F, Joshi J, DiFilippo FP, Qin J, Blankenberg D, Shehab O. A Perspective on Protein Structure Prediction Using Quantum Computers. J Chem Theory Comput 2024; 20:3359-3378. [PMID: 38703105 PMCID: PMC11099973 DOI: 10.1021/acs.jctc.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Despite the recent advancements by deep learning methods such as AlphaFold2, in silico protein structure prediction remains a challenging problem in biomedical research. With the rapid evolution of quantum computing, it is natural to ask whether quantum computers can offer some meaningful benefits for approaching this problem. Yet, identifying specific problem instances amenable to quantum advantage and estimating the quantum resources required are equally challenging tasks. Here, we share our perspective on how to create a framework for systematically selecting protein structure prediction problems that are amenable for quantum advantage, and estimate quantum resources for such problems on a utility-scale quantum computer. As a proof-of-concept, we validate our problem selection framework by accurately predicting the structure of a catalytic loop of the Zika Virus NS3 Helicase, on quantum hardware.
Collapse
Affiliation(s)
- Hakan Doga
- IBM Quantum,
Almaden Research Center, San Jose, California 95120, United States
| | - Bryan Raubenolt
- Center
for Computational Life Sciences, Lerner
Research Institute, The Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Fabio Cumbo
- Center
for Computational Life Sciences, Lerner
Research Institute, The Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Jayadev Joshi
- Center
for Computational Life Sciences, Lerner
Research Institute, The Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Frank P. DiFilippo
- Center
for Computational Life Sciences, Lerner
Research Institute, The Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Jun Qin
- Center
for Computational Life Sciences, Lerner
Research Institute, The Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Daniel Blankenberg
- Center
for Computational Life Sciences, Lerner
Research Institute, The Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Omar Shehab
- IBM
Quantum, IBM Thomas J Watson Research Center, Yorktown Heights, New York 10598, United States
| |
Collapse
|
9
|
Vilas NB, Robichaud P, Hallas C, Li GK, Anderegg L, Doyle JM. An optical tweezer array of ultracold polyatomic molecules. Nature 2024; 628:282-286. [PMID: 38570690 DOI: 10.1038/s41586-024-07199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
Polyatomic molecules have rich structural features that make them uniquely suited to applications in quantum information science1-3, quantum simulation4-6, ultracold chemistry7 and searches for physics beyond the standard model8-10. However, a key challenge is fully controlling both the internal quantum state and the motional degrees of freedom of the molecules. Here we demonstrate the creation of an optical tweezer array of individual polyatomic molecules, CaOH, with quantum control of their internal quantum state. The complex quantum structure of CaOH results in a non-trivial dependence of the molecules' behaviour on the tweezer light wavelength. We control this interaction and directly and non-destructively image individual molecules in the tweezer array with a fidelity greater than 90%. The molecules are manipulated at the single internal quantum state level, thus demonstrating coherent state control in a tweezer array. The platform demonstrated here will enable a variety of experiments using individual polyatomic molecules with arbitrary spatial arrangement.
Collapse
Affiliation(s)
- Nathaniel B Vilas
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA.
| | - Paige Robichaud
- Department of Physics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Christian Hallas
- Department of Physics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Grace K Li
- Department of Physics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Loïc Anderegg
- Department of Physics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| |
Collapse
|
10
|
Bluvstein D, Evered SJ, Geim AA, Li SH, Zhou H, Manovitz T, Ebadi S, Cain M, Kalinowski M, Hangleiter D, Bonilla Ataides JP, Maskara N, Cong I, Gao X, Sales Rodriguez P, Karolyshyn T, Semeghini G, Gullans MJ, Greiner M, Vuletić V, Lukin MD. Logical quantum processor based on reconfigurable atom arrays. Nature 2024; 626:58-65. [PMID: 38056497 PMCID: PMC10830422 DOI: 10.1038/s41586-023-06927-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2-6 for large-scale processing. However, the overhead in the realization of error-corrected 'logical' qubits, in which information is encoded across many physical qubits for redundancy2-4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10-15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6 distance from d = 3 to d = 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical Greenberger-Horne-Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks16,17, we realize computationally complex sampling circuits18 with up to 48 logical qubits entangled with hypercube connectivity19 with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors.
Collapse
Affiliation(s)
- Dolev Bluvstein
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Simon J Evered
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Sophie H Li
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Hengyun Zhou
- Department of Physics, Harvard University, Cambridge, MA, USA
- QuEra Computing Inc., Boston, MA, USA
| | - Tom Manovitz
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Sepehr Ebadi
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Madelyn Cain
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Dominik Hangleiter
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, MD, USA
| | | | - Nishad Maskara
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Iris Cong
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Xun Gao
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | | | - Giulia Semeghini
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Michael J Gullans
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, MD, USA
| | - Markus Greiner
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Vladan Vuletić
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mikhail D Lukin
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
11
|
Miguel-Ramiro J, Shi Z, Dellantonio L, Chan A, Muschik CA, Dür W. Superposed Quantum Error Mitigation. PHYSICAL REVIEW LETTERS 2023; 131:230601. [PMID: 38134783 DOI: 10.1103/physrevlett.131.230601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/06/2023] [Indexed: 12/24/2023]
Abstract
Overcoming the influence of noise and imperfections is a major challenge in quantum computing. Here, we present an approach based on applying a desired unitary computation in superposition between the system of interest and some auxiliary states. We demonstrate, numerically and on the IBM Quantum Platform, that parallel applications of the same operation lead to significant noise mitigation when arbitrary noise processes are considered. We first design probabilistic implementations of our scheme that are plug and play, independent of the noise characteristic and require no postprocessing. We then enhance the success probability (up to deterministic) using adaptive corrections. We provide an analysis of our protocol performance and demonstrate that unit fidelity can be achieved asymptotically. Our approaches are suitable to both standard gate-based and measurement-based computational models.
Collapse
Affiliation(s)
- Jorge Miguel-Ramiro
- Universität Innsbruck, Institut für Theoretische Physik, Technikerstraße 21a, 6020 Innsbruck, Austria
| | - Zheng Shi
- Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Luca Dellantonio
- Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | - Albie Chan
- Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Christine A Muschik
- Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| | - Wolfgang Dür
- Universität Innsbruck, Institut für Theoretische Physik, Technikerstraße 21a, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Zhao L, Lee MDK, Aliyu MM, Loh H. Floquet-tailored Rydberg interactions. Nat Commun 2023; 14:7128. [PMID: 37932268 PMCID: PMC10628180 DOI: 10.1038/s41467-023-42899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
The Rydberg blockade is a key ingredient for entangling atoms in arrays. However, it requires atoms to be spaced well within the blockade radius, which limits the range of local quantum gates. Here we break this constraint using Floquet frequency modulation, with which we demonstrate Rydberg-blockade entanglement beyond the traditional blockade radius and show how the enlarged entanglement range improves qubit connectivity in a neutral atom array. Further, we find that the coherence of entangled states can be extended under Floquet frequency modulation. Finally, we realize Rydberg anti-blockade states for two sodium Rydberg atoms within the blockade radius. Such Rydberg anti-blockade states for atoms at close range enables the robust preparation of strongly-interacting, long-lived Rydberg states, yet their steady-state population cannot be achieved with only the conventional static drive. Our work transforms between the paradigmatic regimes of Rydberg blockade versus anti-blockade and paves the way for realizing more connected, coherent, and tunable neutral atom quantum processors with a single approach.
Collapse
Affiliation(s)
- Luheng Zhao
- Centre for Quantum Technologies, National University of Singapore, 117543, Singapore, Singapore
| | - Michael Dao Kang Lee
- Centre for Quantum Technologies, National University of Singapore, 117543, Singapore, Singapore
| | - Mohammad Mujahid Aliyu
- Centre for Quantum Technologies, National University of Singapore, 117543, Singapore, Singapore
| | - Huanqian Loh
- Centre for Quantum Technologies, National University of Singapore, 117543, Singapore, Singapore.
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore.
| |
Collapse
|
13
|
Cesa F, Pichler H. Universal Quantum Computation in Globally Driven Rydberg Atom Arrays. PHYSICAL REVIEW LETTERS 2023; 131:170601. [PMID: 37955503 DOI: 10.1103/physrevlett.131.170601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023]
Abstract
We develop a model for quantum computation with Rydberg atom arrays, which only relies on global driving, without the need of local addressing of the qubits: any circuit is executed by a sequence of global, resonant laser pulses on a static atomic arrangement. We present two constructions: for the first, the circuit is imprinted in the trap positions of the atoms and executed by the pulses; for the second, the atom arrangement is circuit-independent, and the algorithm is entirely encoded in the global driving sequence. Our results show in particular that a quadratic overhead in atom number is sufficient to eliminate the need for local control to realize a universal quantum processor. We give explicit protocols for all steps of an arbitrary quantum computation, and discuss strategies for error suppression specific to our model. Our scheme is based on dual-species processors with atoms subjected to Rydberg blockade constraints, but it might be transposed to other setups as well.
Collapse
Affiliation(s)
- Francesco Cesa
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Department of Physics, University of Trieste, Strada Costiera 11, 34151 Trieste, Italy
- Istituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste, Italy
| | - Hannes Pichler
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck A-6020, Austria
| |
Collapse
|
14
|
Ma S, Liu G, Peng P, Zhang B, Jandura S, Claes J, Burgers AP, Pupillo G, Puri S, Thompson JD. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit. Nature 2023; 622:279-284. [PMID: 37821593 DOI: 10.1038/s41586-023-06438-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/14/2023] [Indexed: 10/13/2023]
Abstract
The development of scalable, high-fidelity qubits is a key challenge in quantum information science. Neutral atom qubits have progressed rapidly in recent years, demonstrating programmable processors1,2 and quantum simulators with scaling to hundreds of atoms3,4. Exploring new atomic species, such as alkaline earth atoms5-7, or combining multiple species8 can provide new paths to improving coherence, control and scalability. For example, for eventual application in quantum error correction, it is advantageous to realize qubits with structured error models, such as biased Pauli errors9 or conversion of errors into detectable erasures10. Here we demonstrate a new neutral atom qubit using the nuclear spin of a long-lived metastable state in 171Yb. The long coherence time and fast excitation to the Rydberg state allow one- and two-qubit gates with fidelities of 0.9990(1) and 0.980(1), respectively. Importantly, a large fraction of all gate errors result in decays out of the qubit subspace to the ground state. By performing fast, mid-circuit detection of these errors, we convert them into erasure errors; during detection, the induced error probability on qubits remaining in the computational space is less than 10-5. This work establishes metastable 171Yb as a promising platform for realizing fault-tolerant quantum computing.
Collapse
Affiliation(s)
- Shuo Ma
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - Genyue Liu
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
| | - Pai Peng
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
| | - Bichen Zhang
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
| | - Sven Jandura
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, Strasbourg, France
| | - Jahan Claes
- Department of Applied Physics, Yale University, New Haven, CT, USA
- Yale Quantum Institute, Yale University, New Haven, CT, USA
| | - Alex P Burgers
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
- Department of Electrical and Computer Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Guido Pupillo
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, Strasbourg, France
| | - Shruti Puri
- Department of Applied Physics, Yale University, New Haven, CT, USA
- Yale Quantum Institute, Yale University, New Haven, CT, USA
| | - Jeff D Thompson
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
15
|
Evered SJ, Bluvstein D, Kalinowski M, Ebadi S, Manovitz T, Zhou H, Li SH, Geim AA, Wang TT, Maskara N, Levine H, Semeghini G, Greiner M, Vuletić V, Lukin MD. High-fidelity parallel entangling gates on a neutral-atom quantum computer. Nature 2023; 622:268-272. [PMID: 37821591 PMCID: PMC10567572 DOI: 10.1038/s41586-023-06481-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2023] [Indexed: 10/13/2023]
Abstract
The ability to perform entangling quantum operations with low error rates in a scalable fashion is a central element of useful quantum information processing1. Neutral-atom arrays have recently emerged as a promising quantum computing platform, featuring coherent control over hundreds of qubits2,3 and any-to-any gate connectivity in a flexible, dynamically reconfigurable architecture4. The main outstanding challenge has been to reduce errors in entangling operations mediated through Rydberg interactions5. Here we report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel, surpassing the surface-code threshold for error correction6,7. Our method uses fast, single-pulse gates based on optimal control8, atomic dark states to reduce scattering9 and improvements to Rydberg excitation and atom cooling. We benchmark fidelity using several methods based on repeated gate applications10,11, characterize the physical error sources and outline future improvements. Finally, we generalize our method to design entangling gates involving a higher number of qubits, which we demonstrate by realizing low-error three-qubit gates12,13. By enabling high-fidelity operation in a scalable, highly connected system, these advances lay the groundwork for large-scale implementation of quantum algorithms14, error-corrected circuits7 and digital simulations15.
Collapse
Affiliation(s)
- Simon J Evered
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Dolev Bluvstein
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Sepehr Ebadi
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Tom Manovitz
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Hengyun Zhou
- Department of Physics, Harvard University, Cambridge, MA, USA
- QuEra Computing Inc., Boston, MA, USA
| | - Sophie H Li
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Tout T Wang
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Nishad Maskara
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Harry Levine
- Department of Physics, Harvard University, Cambridge, MA, USA
- AWS Center for Quantum Computing, Pasadena, CA, USA
| | - Giulia Semeghini
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Markus Greiner
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Vladan Vuletić
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mikhail D Lukin
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
16
|
Scholl P, Shaw AL, Tsai RBS, Finkelstein R, Choi J, Endres M. Erasure conversion in a high-fidelity Rydberg quantum simulator. Nature 2023; 622:273-278. [PMID: 37821592 PMCID: PMC10567575 DOI: 10.1038/s41586-023-06516-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/03/2023] [Indexed: 10/13/2023]
Abstract
Minimizing and understanding errors is critical for quantum science, both in noisy intermediate scale quantum (NISQ) devices1 and for the quest towards fault-tolerant quantum computation2,3. Rydberg arrays have emerged as a prominent platform in this context4 with impressive system sizes5,6 and proposals suggesting how error-correction thresholds could be significantly improved by detecting leakage errors with single-atom resolution7,8, a form of erasure error conversion9-12. However, two-qubit entanglement fidelities in Rydberg atom arrays13,14 have lagged behind competitors15,16 and this type of erasure conversion is yet to be realized for matter-based qubits in general. Here we demonstrate both erasure conversion and high-fidelity Bell state generation using a Rydberg quantum simulator5,6,17,18. When excising data with erasure errors observed via fast imaging of alkaline-earth atoms19-22, we achieve a Bell state fidelity of [Formula: see text], which improves to [Formula: see text] when correcting for remaining state-preparation errors. We further apply erasure conversion in a quantum simulation experiment for quasi-adiabatic preparation of long-range order across a quantum phase transition, and reveal the otherwise hidden impact of these errors on the simulation outcome. Our work demonstrates the capability for Rydberg-based entanglement to reach fidelities in the 0.999 regime, with higher fidelities a question of technical improvements, and shows how erasure conversion can be utilized in NISQ devices. These techniques could be translated directly to quantum-error-correction codes with the addition of long-lived qubits7,22-24.
Collapse
Affiliation(s)
- Pascal Scholl
- California Institute of Technology, Pasadena, CA, USA
| | - Adam L Shaw
- California Institute of Technology, Pasadena, CA, USA
| | | | | | - Joonhee Choi
- California Institute of Technology, Pasadena, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Manuel Endres
- California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
17
|
Liu YT, Wang K, Liu YD, Wang DS. A Survey of Universal Quantum von Neumann Architecture. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1187. [PMID: 37628217 PMCID: PMC10453143 DOI: 10.3390/e25081187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
The existence of universal quantum computers has been theoretically well established. However, building up a real quantum computer system not only relies on the theory of universality, but also needs methods to satisfy requirements on other features, such as programmability, modularity, scalability, etc. To this end, here we study the recently proposed model of quantum von Neumann architecture by putting it in a practical and broader setting, namely, the hierarchical design of a computer system. We analyze the structures of quantum CPU and quantum control units and draw their connections with computational advantages. We also point out that a recent demonstration of our model would require less than 20 qubits.
Collapse
Affiliation(s)
- Yuan-Ting Liu
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Wang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan-Dong Liu
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Sheng Wang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
18
|
Holland CM, Lu Y, Cheuk LW. Bichromatic Imaging of Single Molecules in an Optical Tweezer Array. PHYSICAL REVIEW LETTERS 2023; 131:053202. [PMID: 37595242 DOI: 10.1103/physrevlett.131.053202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 07/04/2023] [Indexed: 08/20/2023]
Abstract
We report on a novel bichromatic fluorescent imaging scheme for background-free detection of single CaF molecules trapped in an optical tweezer array. By collecting fluorescence on one optical transition while using another for laser cooling, we achieve an imaging fidelity of 97.7(2)% and a nondestructive detection fidelity of 95.5(6)%. Notably, these fidelities are achieved with a modest photon budget, suggesting that the method could be extended to more complex laser-coolable molecules with less favorable optical cycling properties. We also report on a framework and new methods to characterize various loss mechanisms that occur generally during fluorescent detection of trapped molecules, including two-photon decay and admixtures of higher excited states that are induced by the trapping light. In particular, we develop a novel method to dispersively measure transition matrix elements between electronically excited states. The method could also be used to measure arbitrarily small Franck-Condon factors between electronically excited states, which could significantly aid in ongoing efforts to laser cool complex polyatomic molecules.
Collapse
Affiliation(s)
- Connor M Holland
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yukai Lu
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Lawrence W Cheuk
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
19
|
Nikolov B, Diamond-Hitchcock E, Bass J, Spong NLR, Pritchard JD. Randomized Benchmarking Using Nondestructive Readout in a Two-Dimensional Atom Array. PHYSICAL REVIEW LETTERS 2023; 131:030602. [PMID: 37540850 DOI: 10.1103/physrevlett.131.030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/22/2023] [Indexed: 08/06/2023]
Abstract
Neutral atoms are a promising platform for scalable quantum computing, however, prior demonstration of high fidelity gates or low-loss readout methods have employed restricted numbers of qubits. Using randomized benchmarking of microwave-driven single-qubit gates, we demonstrate average gate errors of 7(2)×10^{-5} on a 225 site atom array using conventional, destructive readout. We further demonstrate a factor of 1.7 suppression of the primary measurement errors via low-loss, nondestructive, and state-selective readout on 49 sites while achieving gate errors of 2(9)×10^{-4}.
Collapse
Affiliation(s)
- B Nikolov
- Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - E Diamond-Hitchcock
- Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - J Bass
- Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - N L R Spong
- Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - J D Pritchard
- Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| |
Collapse
|
20
|
Guttridge A, Ruttley DK, Baldock AC, González-Férez R, Sadeghpour HR, Adams CS, Cornish SL. Observation of Rydberg Blockade Due to the Charge-Dipole Interaction between an Atom and a Polar Molecule. PHYSICAL REVIEW LETTERS 2023; 131:013401. [PMID: 37478436 DOI: 10.1103/physrevlett.131.013401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 07/23/2023]
Abstract
We demonstrate Rydberg blockade due to the charge-dipole interaction between a single Rb atom and a single RbCs molecule confined in optical tweezers. The molecule is formed by magnetoassociation of a Rb+Cs atom pair and subsequently transferred to the rovibrational ground state with an efficiency of 91(1)%. Species-specific tweezers are used to control the separation between the atom and molecule. The charge-dipole interaction causes blockade of the transition to the Rb(52s) Rydberg state, when the atom-molecule separation is set to 310(40) nm. The observed excitation dynamics are in good agreement with simulations using calculated interaction potentials. Our results open up the prospect of a hybrid platform where quantum information is transferred between individually trapped molecules using Rydberg atoms.
Collapse
Affiliation(s)
- Alexander Guttridge
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom
- Joint Quantum Centre Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Daniel K Ruttley
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom
- Joint Quantum Centre Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Archie C Baldock
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Rosario González-Férez
- Instituto Carlos I de Física Teórica y Computacional, and Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada, Spain
| | - H R Sadeghpour
- ITAMP, Center for Astrophysics | Harvard & Smithsonian, Cambridge, Massachusetts 02138, USA
| | - C S Adams
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom
- Joint Quantum Centre Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Simon L Cornish
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom
- Joint Quantum Centre Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
21
|
Singh K, Bradley CE, Anand S, Ramesh V, White R, Bernien H. Mid-circuit correction of correlated phase errors using an array of spectator qubits. Science 2023:eade5337. [PMID: 37228222 DOI: 10.1126/science.ade5337] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Scaling up invariably error-prone quantum processors is a formidable challenge. Although quantum error correction ultimately promises fault-tolerant operation, the required qubit overhead and error thresholds are daunting. In a complementary proposal, co-located, auxiliary 'spectator' qubits act as in-situ probes of noise, and enable real-time, coherent corrections of data qubit errors. We use an array of cesium spectator qubits to correct correlated phase errors on an array of rubidium data qubits. By combining in-sequence readout, data processing, and feed-forward operations, these correlated errors are suppressed within the execution of the quantum circuit. The protocol is broadly applicable to quantum information platforms, and establishes key tools for scaling neutral-atom quantum processors: mid-circuit readout of atom arrays, real-time processing and feed-forward, and coherent mid-circuit reloading of atomic qubits.
Collapse
Affiliation(s)
- K Singh
- Intelligence Community Postdoctoral Research Fellowship Program, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - C E Bradley
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - S Anand
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - V Ramesh
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - R White
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - H Bernien
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
22
|
Shaw AL, Scholl P, Finklestein R, Madjarov IS, Grinkemeyer B, Endres M. Dark-State Enhanced Loading of an Optical Tweezer Array. PHYSICAL REVIEW LETTERS 2023; 130:193402. [PMID: 37243641 DOI: 10.1103/physrevlett.130.193402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 05/29/2023]
Abstract
Neutral atoms and molecules trapped in optical tweezers have become a prevalent resource for quantum simulation, computation, and metrology. However, the maximum achievable system sizes of such arrays are often limited by the stochastic nature of loading into optical tweezers, with a typical loading probability of only 50%. Here we present a species-agnostic method for dark-state enhanced loading (DSEL) based on real-time feedback, long-lived shelving states, and iterated array reloading. We demonstrate this technique with a 95-tweezer array of ^{88}Sr atoms, achieving a maximum loading probability of 84.02(4)% and a maximum array size of 91 atoms in one dimension. Our protocol is complementary to, and compatible with, existing schemes for enhanced loading based on direct control over light-assisted collisions, and we predict it can enable close-to-unity filling for arrays of atoms or molecules.
Collapse
Affiliation(s)
- Adam L Shaw
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
| | - Pascal Scholl
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
| | - Ran Finklestein
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
| | - Ivaylo S Madjarov
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
| | - Brandon Grinkemeyer
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Manuel Endres
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
23
|
Hollerith S, Zeiher J. Rydberg Macrodimers: Diatomic Molecules on the Micrometer Scale. J Phys Chem A 2023; 127:3925-3939. [PMID: 36977279 PMCID: PMC10184126 DOI: 10.1021/acs.jpca.2c08454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Controlling molecular binding at the level of single atoms is one of the holy grails of quantum chemistry. Rydberg macrodimers─bound states between highly excited Rydberg atoms─provide a novel perspective in this direction. Resulting from binding potentials formed by the strong, long-range interactions of Rydberg states, Rydberg macrodimers feature bond lengths in the micrometer regime, exceeding those of conventional molecules by orders of magnitude. Using single-atom control in quantum gas microscopes, the unique properties of these exotic states can be studied with unprecedented control, including the response to magnetic fields or the polarization of light in their photoassociation. The high accuracy achieved in spectroscopic studies of macrodimers makes them an ideal testbed to benchmark Rydberg interactions, with direct relevance to quantum computing and information protocols where these are employed. This review provides a historic overview and summarizes the recent findings in the field of Rydberg macrodimers. Furthermore, it presents new data on interactions between macrodimers, leading to a phenomenon analogous to Rydberg blockade at the level of molecules, opening the path toward studying many-body systems of ultralong-range Rydberg molecules.
Collapse
Affiliation(s)
- Simon Hollerith
- Max-Planck-Institut
für Quantenoptik, 85748 Garching, Germany
| | - Johannes Zeiher
- Max-Planck-Institut
für Quantenoptik, 85748 Garching, Germany
- Munich
Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
| |
Collapse
|
24
|
Khazali M. All-optical quantum information processing via a single-step Rydberg blockade gate. OPTICS EXPRESS 2023; 31:13970-13980. [PMID: 37157271 DOI: 10.1364/oe.481256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
One of the critical elements in the realization of the quantum internet are deterministic two-photon gates. This CZ photonic gate also completes a set of universal gates for all-optical quantum information processing. This article discusses an approach to realize a high fidelity CZ photonic gate by storing both control and target photons within an atomic ensemble using non-Rydberg electromagnetically induced transparency (EIT) followed by a fast, single-step Rydberg excitation with global lasers. The proposed scheme operates by relative intensity modulation of two lasers used in Rydberg excitation. Circumventing the conventional π-gap-π schemes, the proposed operation features continuous laser protection of the Rydberg atoms from the environment noise. The complete spatial overlap of stored photons inside the blockade radius optimizes the optical depth and simplifies the experiment. The coherent operation here is performed in the region that was dissipative in the previous Rydberg EIT schemes. Encountering the main imperfection sources, i.e., the spontaneous emission of the Rydberg and intermediate levels, population rotation errors, Doppler broadening of the transition lines, storage/retrieval efficiency, and atomic thermal motion induced decoherence, this article concludes that with realistic experimental parameters 99.7% fidelity is achievable.
Collapse
|
25
|
Hallas C, Vilas NB, Anderegg L, Robichaud P, Winnicki A, Zhang C, Cheng L, Doyle JM. Optical Trapping of a Polyatomic Molecule in an ℓ-Type Parity Doublet State. PHYSICAL REVIEW LETTERS 2023; 130:153202. [PMID: 37115898 DOI: 10.1103/physrevlett.130.153202] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/13/2023] [Indexed: 06/19/2023]
Abstract
We report optical trapping of a polyatomic molecule, calcium monohydroxide (CaOH). CaOH molecules from a magneto-optical trap are sub-Doppler laser cooled to 20(3) μK in free space and loaded into an optical dipole trap. We attain an in-trap molecule number density of 3(1)×10^{9} cm^{-3} at a temperature of 57(8) μK. Trapped CaOH molecules are optically pumped into an excited vibrational bending mode, whose ℓ-type parity doublet structure is a potential resource for a wide range of proposed quantum science applications with polyatomic molecules. We measure the spontaneous, radiative lifetime of this bending mode state to be ∼0.7 s.
Collapse
Affiliation(s)
- Christian Hallas
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Nathaniel B Vilas
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Loïc Anderegg
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Paige Robichaud
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Andrew Winnicki
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
26
|
Khazali M, Lechner W. Scalable quantum processors empowered by the Fermi scattering of Rydberg electrons. COMMUNICATIONS PHYSICS 2023; 6:57. [PMID: 38665413 PMCID: PMC11041703 DOI: 10.1038/s42005-023-01174-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/16/2023] [Indexed: 04/28/2024]
Abstract
Quantum computing promises exponential speed-up compared to its classical counterpart. While the neutral atom processors are the pioneering platform in terms of scalability, the dipolar Rydberg gates impose the main bottlenecks on the scaling of these devices. This article presents an alternative scheme for neutral atom quantum processing, based on the Fermi scattering of a Rydberg electron from ground-state atoms in spin-dependent lattice geometries. Instead of relying on Rydberg pair-potentials, the interaction is controlled by engineering the electron cloud of a sole Rydberg atom. The present scheme addresses the scaling obstacles in Rydberg processors by exponentially suppressing the population of short-lived states and by operating in ultra-dense atomic lattices. The restoring forces in molecule type Rydberg-Fermi potential preserve the trapping over a long interaction period. Furthermore, the proposed scheme mitigates different competing infidelity criteria, eliminates unwanted cross-talks, and significantly suppresses the operation depth in running complicated quantum algorithms.
Collapse
Affiliation(s)
- Mohammadsadegh Khazali
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5531 Iran
- Department of Physics, University of Tehran, 14395-547 Tehran, Iran
| | - Wolfgang Lechner
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
- Parity Quantum Computing GmbH, A-6020 Innsbruck, Austria
| |
Collapse
|
27
|
Sola IR, Malinovsky VS, Ahn J, Shin S, Chang BY. Two-qubit atomic gates: spatio-temporal control of Rydberg interaction. NANOSCALE 2023; 15:4325-4333. [PMID: 36752322 DOI: 10.1039/d2nr04964c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
By controlling the temporal and spatial features of light, we propose a novel protocol to prepare two-qubit entangling gates on atoms trapped at close distance, which could potentially speed up the operation of the gate from the sub-micro to the nanosecond scale. The protocol is robust to variations in the pulse areas and the position of the atoms, by virtue of the coherent properties of a dark state, which is used to drive the population through Rydberg states. From the time-domain perspective, the protocol generalizes the one proposed by Jaksch and coworkers [Jaksch et al., Phys. Rev. Lett., 2000, 85, 2208], with three pulses that operate symmetrically in time, but with different pulse areas. From the spatial-domain perspective, it uses structured light. We analyze the map of the gate fidelity, which forms rotated and distorted lattices in the solution space. Finally, we study the effect of an additional qubit to the gate performance and propose generalizations that operate with multi-pulse sequences.
Collapse
Affiliation(s)
- Ignacio R Sola
- Departamento de Quimica Fisica I, Universidad Complutense, 28040 Madrid, Spain
| | - Vladimir S Malinovsky
- DEVCOM Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, USA
| | - Jaewook Ahn
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seokmin Shin
- School of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Bo Y Chang
- School of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
28
|
Sun Y. Off-resonant modulated driving gate protocols for two-photon ground-Rydberg transition and finite Rydberg blockade strength. OPTICS EXPRESS 2023; 31:3114-3121. [PMID: 36785309 DOI: 10.1364/oe.480513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Recently, the concept of two-qubit controlled phase gate via off-resonant modulated driving has been introduced into the neutral atom qubit platform, with respect to both single-photon and two-photon ground-Rydberg transitions. In order to reach a better performance practically, further developments are in need to overcome a few known limitations in previous discussions. Here, we thoroughly analyze a variety of modulation styles for two-photon transitions, demonstrating the versatility of off-resonant modulated driving protocols. Furthermore, we show that it is possible to refine the designing process for improved performances for specific finite Rydberg blockade strength values. In particular, a reduced requirement on the blockade strength can be directly linked to an improvement of connectivity in qubit array of neutral atoms. These progress are closely related to the core feature that the atomic wave function acquires a geometric phase from the time evolution, which begins and finishes at the same quantum state. Under reasonable experimental conditions readily available nowadays, we anticipate that the fidelity of such protocols can reach as high as the essential requirement of NISQ even if the effects of technical errors and cold atoms' nonzero temperatures are considered.
Collapse
|
29
|
Deist E, Lu YH, Ho J, Pasha MK, Zeiher J, Yan Z, Stamper-Kurn DM. Mid-Circuit Cavity Measurement in a Neutral Atom Array. PHYSICAL REVIEW LETTERS 2022; 129:203602. [PMID: 36462020 DOI: 10.1103/physrevlett.129.203602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/19/2022] [Accepted: 10/05/2022] [Indexed: 06/17/2023]
Abstract
Subsystem readout during a quantum process, or mid-circuit measurement, is crucial for error correction in quantum computation, simulation, and metrology. Ideal mid-circuit measurement should be faster than the decoherence of the system, high-fidelity, and nondestructive to the unmeasured qubits. Here, we use a strongly coupled optical cavity to read out the state of a single tweezer-trapped ^{87}Rb atom within a small tweezer array. Measuring either atomic fluorescence or the transmission of light through the cavity, we detect both the presence and the state of an atom in the tweezer, within only tens of microseconds, with state preparation and measurement infidelities of roughly 0.5% and atom loss probabilities of around 1%. Using a two-tweezer system, we find measurement on one atom within the cavity causes no observable hyperfine-state decoherence on a second atom located tens of microns from the cavity volume. This high-fidelity mid-circuit readout method is a substantial step toward quantum error correction in neutral atom arrays.
Collapse
Affiliation(s)
- Emma Deist
- Department of Physics, University of California, Berkeley, California 94720, USA
- Challenge Institute for Quantum Computation, University of California, Berkeley, California 94720, USA
| | - Yue-Hui Lu
- Department of Physics, University of California, Berkeley, California 94720, USA
- Challenge Institute for Quantum Computation, University of California, Berkeley, California 94720, USA
| | - Jacquelyn Ho
- Department of Physics, University of California, Berkeley, California 94720, USA
- Challenge Institute for Quantum Computation, University of California, Berkeley, California 94720, USA
| | - Mary Kate Pasha
- Department of Physics, University of California, Berkeley, California 94720, USA
- Challenge Institute for Quantum Computation, University of California, Berkeley, California 94720, USA
| | - Johannes Zeiher
- Department of Physics, University of California, Berkeley, California 94720, USA
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
| | - Zhenjie Yan
- Department of Physics, University of California, Berkeley, California 94720, USA
- Challenge Institute for Quantum Computation, University of California, Berkeley, California 94720, USA
| | - Dan M Stamper-Kurn
- Department of Physics, University of California, Berkeley, California 94720, USA
- Challenge Institute for Quantum Computation, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
30
|
McDonnell K, Keary LF, Pritchard JD. Demonstration of a Quantum Gate Using Electromagnetically Induced Transparency. PHYSICAL REVIEW LETTERS 2022; 129:200501. [PMID: 36461988 DOI: 10.1103/physrevlett.129.200501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate a native CNOT gate between two individually addressed neutral atoms based on electromagnetically induced transparency. This protocol utilizes the strong long-range interactions of Rydberg states to enable conditional state transfer on the target qubit when operated in the blockade regime. An advantage of this scheme is it enables implementation of multiqubit CNOT^{k} gates using a pulse sequence independent of qubit number, providing a simple gate for efficient implementation of digital quantum algorithms and stabilizer measurements for quantum error correction. We achieve a loss corrected gate fidelity of F_{CNOT}^{cor}=0.82(6), and prepare an entangled Bell state with F_{Bell}^{cor}=0.66(5), limited at present by laser power. We present a number of technical improvements to advance this to a level required for fault-tolerant scaling.
Collapse
Affiliation(s)
- K McDonnell
- EQOP, Department of Physics, University of Strathclyde, SUPA, Glasgow G4 0NG, United Kingdom
| | - L F Keary
- EQOP, Department of Physics, University of Strathclyde, SUPA, Glasgow G4 0NG, United Kingdom
| | - J D Pritchard
- EQOP, Department of Physics, University of Strathclyde, SUPA, Glasgow G4 0NG, United Kingdom
| |
Collapse
|
31
|
González-Cuadra D, Zache TV, Carrasco J, Kraus B, Zoller P. Hardware Efficient Quantum Simulation of Non-Abelian Gauge Theories with Qudits on Rydberg Platforms. PHYSICAL REVIEW LETTERS 2022; 129:160501. [PMID: 36306768 DOI: 10.1103/physrevlett.129.160501] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/12/2022] [Accepted: 09/27/2022] [Indexed: 05/02/2023]
Abstract
Non-Abelian gauge theories underlie our understanding of fundamental forces in nature, and developing tailored quantum hardware and algorithms to simulate them is an outstanding challenge in the rapidly evolving field of quantum simulation. Here we take an approach where gauge fields, discretized in spacetime, are represented by qudits and are time evolved in Trotter steps with multiqudit quantum gates. This maps naturally and hardware efficiently to an architecture based on Rydberg tweezer arrays, where long-lived internal atomic states represent qudits, and the required quantum gates are performed as holonomic operations supported by a Rydberg blockade mechanism. We illustrate our proposal for a minimal digitization of SU(2) gauge fields, demonstrating a significant reduction in circuit depth and gate errors in comparison to a traditional qubit-based approach, which puts simulations of non-Abelian gauge theories within reach of NISQ devices.
Collapse
Affiliation(s)
- Daniel González-Cuadra
- Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria
| | - Torsten V Zache
- Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria
| | - Jose Carrasco
- Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Barbara Kraus
- Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Peter Zoller
- Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria
| |
Collapse
|
32
|
Tang S, Yang C, Li D, Shao X. Implementation of Quantum Algorithms via Fast Three-Rydberg-Atom CCZ Gates. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1371. [PMID: 37420391 DOI: 10.3390/e24101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 07/09/2023]
Abstract
Multiqubit CCZ gates form one of the building blocks of quantum algorithms and have been involved in achieving many theoretical and experimental triumphs. Designing a simple and efficient multiqubit gate for quantum algorithms is still by no means trivial as the number of qubits increases. Here, by virtue of the Rydberg blockade effect, we propose a scheme to rapidly implement a three-Rydberg-atom CCZ gate via a single Rydberg pulse, and successfully apply the gate to realize the three-qubit refined Deutsch-Jozsa algorithm and three-qubit Grover search. The logical states of the three-qubit gate are encoded to the same ground states to avoid an adverse effect of the atomic spontaneous emission. Furthermore, there is no requirement for individual addressing of atoms in our protocol.
Collapse
Affiliation(s)
- Shiqing Tang
- College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China
| | - Chong Yang
- College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Dongxiao Li
- College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Xiaoqiang Shao
- Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
33
|
Yan ZZ, Spar BM, Prichard ML, Chi S, Wei HT, Ibarra-García-Padilla E, Hazzard KRA, Bakr WS. Two-Dimensional Programmable Tweezer Arrays of Fermions. PHYSICAL REVIEW LETTERS 2022; 129:123201. [PMID: 36179199 DOI: 10.1103/physrevlett.129.123201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
We prepare high-filling two-component arrays of tens of fermionic ^{6}Li atoms in optical tweezers, with the atoms in the ground motional state of each tweezer. Using a stroboscopic technique, we configure the arrays in various two-dimensional geometries with negligible Floquet heating. A full spin- and density-resolved readout of individual sites allows us to postselect near-zero entropy initial states for fermionic quantum simulation. We prepare a correlated state in a two-by-two tunnel-coupled Hubbard plaquette, demonstrating all the building blocks for realizing a programmable fermionic quantum simulator.
Collapse
Affiliation(s)
- Zoe Z Yan
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Benjamin M Spar
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Max L Prichard
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Sungjae Chi
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Hao-Tian Wei
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA
| | - Eduardo Ibarra-García-Padilla
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA
| | - Kaden R A Hazzard
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA
| | - Waseem S Bakr
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
34
|
Young AW, Eckner WJ, Schine N, Childs AM, Kaufman AM. Tweezer-programmable 2D quantum walks in a Hubbard-regime lattice. Science 2022; 377:885-889. [PMID: 35981010 DOI: 10.1126/science.abo0608] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Quantum walks provide a framework for designing quantum algorithms that is both intuitive and universal. To leverage the computational power of these walks, it is important to be able to programmably modify the graph a walker traverses while maintaining coherence. We do this by combining the fast, programmable control provided by optical tweezers with the scalable, homogeneous environment of an optical lattice. With these tools we study continuous-time quantum walks of single atoms on a square lattice and perform proof-of-principle demonstrations of spatial search with these walks. When scaled to more particles, the capabilities demonstrated can be extended to study a variety of problems in quantum information science, including performing more effective versions of spatial search using a larger graph with increased connectivity.
Collapse
Affiliation(s)
- Aaron W Young
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - William J Eckner
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Nathan Schine
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Andrew M Childs
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA.,Institute for Advanced Computer Studies and Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD 20742, USA
| | - Adam M Kaufman
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
35
|
Wu Y, Kolkowitz S, Puri S, Thompson JD. Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays. Nat Commun 2022; 13:4657. [PMID: 35945218 PMCID: PMC9363413 DOI: 10.1038/s41467-022-32094-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
Executing quantum algorithms on error-corrected logical qubits is a critical step for scalable quantum computing, but the requisite numbers of qubits and physical error rates are demanding for current experimental hardware. Recently, the development of error correcting codes tailored to particular physical noise models has helped relax these requirements. In this work, we propose a qubit encoding and gate protocol for 171Yb neutral atom qubits that converts the dominant physical errors into erasures, that is, errors in known locations. The key idea is to encode qubits in a metastable electronic level, such that gate errors predominantly result in transitions to disjoint subspaces whose populations can be continuously monitored via fluorescence. We estimate that 98% of errors can be converted into erasures. We quantify the benefit of this approach via circuit-level simulations of the surface code, finding a threshold increase from 0.937% to 4.15%. We also observe a larger code distance near the threshold, leading to a faster decrease in the logical error rate for the same number of physical qubits, which is important for near-term implementations. Erasure conversion should benefit any error correcting code, and may also be applied to design new gates and encodings in other qubit platforms. In quantum computing, realistic error models can allow tailored correction schemes for specific platforms. Here, while considering the case of qubits encoded in metastable electronic levels of atomic arrays, the authors propose a way to convert a large fraction of occurring errors into detectable leakages, or erasure errors, which are vastly easier to correct.
Collapse
Affiliation(s)
- Yue Wu
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA
| | - Shimon Kolkowitz
- Department of Physics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shruti Puri
- Department of Applied Physics, Yale University, New Haven, CT, 06520, USA
| | - Jeff D Thompson
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
36
|
Katz O, Cetina M, Monroe C. N-Body Interactions between Trapped Ion Qubits via Spin-Dependent Squeezing. PHYSICAL REVIEW LETTERS 2022; 129:063603. [PMID: 36018637 DOI: 10.1103/physrevlett.129.063603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
We describe a simple protocol for the single-step generation of N-body entangling interactions between trapped atomic ion qubits. We show that qubit state-dependent squeezing operations and displacement forces on the collective atomic motion can generate full N-body interactions. Similar to the Mølmer-Sørensen two-body Ising interaction at the core of most trapped ion quantum computers and simulators, the proposed operation is relatively insensitive to the state of motion. We show how this N-body gate operation allows for the single-step implementation of a family of N-bit gate operations such as the powerful N-Toffoli gate, which flips a single qubit if and only if all other N-1 qubits are in a particular state.
Collapse
Affiliation(s)
- Or Katz
- Duke Quantum Center, Duke University, Durham, North Carolina 27701, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Marko Cetina
- Duke Quantum Center, Duke University, Durham, North Carolina 27701, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Christopher Monroe
- Duke Quantum Center, Duke University, Durham, North Carolina 27701, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
- IonQ, Inc., College Park, Maryland 20740, USA
| |
Collapse
|
37
|
Sauvage F, Mintert F. Optimal Control of Families of Quantum Gates. PHYSICAL REVIEW LETTERS 2022; 129:050507. [PMID: 35960583 DOI: 10.1103/physrevlett.129.050507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Quantum optimal control (QOC) enables the realization of accurate operations, such as quantum gates, and supports the development of quantum technologies. To date, many QOC frameworks have been developed, but those remain only naturally suited to optimize a single targeted operation at a time. We extend this concept to optimal control with a continuous family of targets, and demonstrate that an optimization based on neural networks can find families of time-dependent Hamiltonians realizing desired classes of quantum gates in minimal time.
Collapse
Affiliation(s)
- Frédéric Sauvage
- Physics Department, Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2BW, United Kingdom
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Florian Mintert
- Physics Department, Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2BW, United Kingdom
| |
Collapse
|
38
|
Spar BM, Guardado-Sanchez E, Chi S, Yan ZZ, Bakr WS. Realization of a Fermi-Hubbard Optical Tweezer Array. PHYSICAL REVIEW LETTERS 2022; 128:223202. [PMID: 35714242 DOI: 10.1103/physrevlett.128.223202] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
We use lithium-6 atoms in an optical tweezer array to realize an eight-site Fermi-Hubbard chain near half filling. We achieve single site detection by combining the tweezer array with a quantum gas microscope. By reducing disorder in the energy offsets to less than the tunneling energy, we observe Mott insulators with strong antiferromagnetic correlations. The measured spin correlations allow us to put an upper bound on the entropy of 0.26(4)k_{B} per atom, comparable to the lowest entropies achieved with optical lattices. Additionally, we establish the flexibility of the tweezer platform by initializing atoms on one tweezer and observing tunneling dynamics across the array for uniform and staggered 1D geometries.
Collapse
Affiliation(s)
- Benjamin M Spar
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | | | - Sungjae Chi
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Zoe Z Yan
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Waseem S Bakr
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
39
|
Vilas NB, Hallas C, Anderegg L, Robichaud P, Winnicki A, Mitra D, Doyle JM. Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule. Nature 2022; 606:70-74. [PMID: 35650357 DOI: 10.1038/s41586-022-04620-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/04/2022] [Indexed: 11/09/2022]
Abstract
Laser cooling and trapping1,2, and magneto-optical trapping methods in particular2, have enabled groundbreaking advances in science, including Bose-Einstein condensation3-5, quantum computation with neutral atoms6,7 and high-precision optical clocks8. Recently, magneto-optical traps (MOTs) of diatomic molecules have been demonstrated9-12, providing access to research in quantum simulation13 and searches for physics beyond the standard model14. Compared with diatomic molecules, polyatomic molecules have distinct rotational and vibrational degrees of freedom that promise a variety of transformational possibilities. For example, ultracold polyatomic molecules would be uniquely suited to applications in quantum computation and simulation15-17, ultracold collisions18, quantum chemistry19 and beyond-the-standard-model searches20,21. However, the complexity of these molecules has so far precluded the realization of MOTs for polyatomic species. Here we demonstrate magneto-optical trapping of a polyatomic molecule, calcium monohydroxide (CaOH). After trapping, the molecules are laser cooled in a blue-detuned optical molasses to a temperature of 110 μK, which is below the Doppler cooling limit. The temperatures and densities achieved here make CaOH a viable candidate for a wide variety of quantum science applications, including quantum simulation and computation using optical tweezer arrays15,17,22,23. This work also suggests that laser cooling and magneto-optical trapping of many other polyatomic species24-27 will be both feasible and practical.
Collapse
Affiliation(s)
- Nathaniel B Vilas
- Department of Physics, Harvard University, Cambridge, MA, USA. .,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA.
| | - Christian Hallas
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Loïc Anderegg
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Paige Robichaud
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Andrew Winnicki
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Debayan Mitra
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA.,Department of Physics, Columbia University, New York, NY, USA
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| |
Collapse
|
40
|
Bluvstein D, Levine H, Semeghini G, Wang TT, Ebadi S, Kalinowski M, Keesling A, Maskara N, Pichler H, Greiner M, Vuletić V, Lukin MD. A quantum processor based on coherent transport of entangled atom arrays. Nature 2022; 604:451-456. [PMID: 35444318 PMCID: PMC9021024 DOI: 10.1038/s41586-022-04592-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 11/23/2022]
Abstract
The ability to engineer parallel, programmable operations between desired qubits within a quantum processor is key for building scalable quantum information systems1,2. In most state-of-the-art approaches, qubits interact locally, constrained by the connectivity associated with their fixed spatial layout. Here we demonstrate a quantum processor with dynamic, non-local connectivity, in which entangled qubits are coherently transported in a highly parallel manner across two spatial dimensions, between layers of single- and two-qubit operations. Our approach makes use of neutral atom arrays trapped and transported by optical tweezers; hyperfine states are used for robust quantum information storage, and excitation into Rydberg states is used for entanglement generation3–5. We use this architecture to realize programmable generation of entangled graph states, such as cluster states and a seven-qubit Steane code state6,7. Furthermore, we shuttle entangled ancilla arrays to realize a surface code state with thirteen data and six ancillary qubits8 and a toric code state on a torus with sixteen data and eight ancillary qubits9. Finally, we use this architecture to realize a hybrid analogue–digital evolution2 and use it for measuring entanglement entropy in quantum simulations10–12, experimentally observing non-monotonic entanglement dynamics associated with quantum many-body scars13,14. Realizing a long-standing goal, these results provide a route towards scalable quantum processing and enable applications ranging from simulation to metrology. A quantum processer is realized using arrays of neutral atoms that are transported in a parallel manner by optical tweezers during computations, and used for quantum error correction and simulations.
Collapse
Affiliation(s)
- Dolev Bluvstein
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Harry Levine
- Department of Physics, Harvard University, Cambridge, MA, USA.,AWS Center for Quantum Computing, Pasadena, CA, USA
| | | | - Tout T Wang
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Sepehr Ebadi
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Alexander Keesling
- Department of Physics, Harvard University, Cambridge, MA, USA.,QuEra Computing Inc., Boston, MA, USA
| | - Nishad Maskara
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Hannes Pichler
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck, Austria.,Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck, Austria
| | - Markus Greiner
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Vladan Vuletić
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mikhail D Lukin
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
41
|
Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature 2022; 604:457-462. [PMID: 35444321 DOI: 10.1038/s41586-022-04603-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/02/2022] [Indexed: 11/08/2022]
Abstract
Gate-model quantum computers promise to solve currently intractable computational problems if they can be operated at scale with long coherence times and high-fidelity logic. Neutral-atom hyperfine qubits provide inherent scalability owing to their identical characteristics, long coherence times and ability to be trapped in dense, multidimensional arrays1. Combined with the strong entangling interactions provided by Rydberg states2-4, all the necessary characteristics for quantum computation are available. Here we demonstrate several quantum algorithms on a programmable gate-model neutral-atom quantum computer in an architecture based on individual addressing of single atoms with tightly focused optical beams scanned across a two-dimensional array of qubits. Preparation of entangled Greenberger-Horne-Zeilinger (GHZ) states5 with up to six qubits, quantum phase estimation for a chemistry problem6 and the quantum approximate optimization algorithm (QAOA)7 for the maximum cut (MaxCut) graph problem are demonstrated. These results highlight the emergent capability of neutral-atom qubit arrays for universal, programmable quantum computation, as well as preparation of non-classical states of use for quantum-enhanced sensing.
Collapse
|
42
|
Dlaska C, Ender K, Mbeng GB, Kruckenhauser A, Lechner W, van Bijnen R. Quantum Optimization via Four-Body Rydberg Gates. PHYSICAL REVIEW LETTERS 2022; 128:120503. [PMID: 35394305 DOI: 10.1103/physrevlett.128.120503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
A large ongoing research effort focuses on obtaining a quantum advantage in the solution of combinatorial optimization problems on near-term quantum devices. A particularly promising platform implementing quantum optimization algorithms are arrays of trapped neutral atoms, laser coupled to highly excited Rydberg states. However, encoding combinatorial optimization problems in atomic arrays is challenging due to limited interqubit connectivity of the native finite-range interactions. Here, we present a four-body Rydberg parity gate, enabling a direct and straightforward implementation of the parity architecture, a scalable architecture for encoding arbitrarily connected interaction graphs. Our gate relies on adiabatic laser pulses and is fully programmable by adjusting two hold times during operation. We numerically demonstrate implementations of the quantum approximate optimization algorithm (QAOA) for small-scale test problems. Variational optimization steps can be implemented with a constant number of system manipulations, paving the way for experimental investigations of QAOA beyond the reach of numerical simulations.
Collapse
Affiliation(s)
- Clemens Dlaska
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
| | - Kilian Ender
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
- Parity Quantum Computing GmbH, A-6020 Innsbruck, Austria
| | - Glen Bigan Mbeng
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Andreas Kruckenhauser
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
- Center for Quantum Physics, Faculty of Mathematics, Computer Science and Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Wolfgang Lechner
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
- Parity Quantum Computing GmbH, A-6020 Innsbruck, Austria
| | - Rick van Bijnen
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
- Center for Quantum Physics, Faculty of Mathematics, Computer Science and Physics, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
43
|
Hollerith S, Srakaew K, Wei D, Rubio-Abadal A, Adler D, Weckesser P, Kruckenhauser A, Walther V, van Bijnen R, Rui J, Gross C, Bloch I, Zeiher J. Realizing Distance-Selective Interactions in a Rydberg-Dressed Atom Array. PHYSICAL REVIEW LETTERS 2022; 128:113602. [PMID: 35363010 DOI: 10.1103/physrevlett.128.113602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Measurement-based quantum computing relies on the rapid creation of large-scale entanglement in a register of stable qubits. Atomic arrays are well suited to store quantum information, and entanglement can be created using highly-excited Rydberg states. Typically, isolating pairs during gate operation is difficult because Rydberg interactions feature long tails at large distances. Here, we engineer distance-selective interactions that are strongly peaked in distance through off-resonant laser coupling of molecular potentials between Rydberg atom pairs. Employing quantum gas microscopy, we verify the dressed interactions by observing correlated phase evolution using many-body Ramsey interferometry. We identify atom loss and coupling to continuum modes as a limitation of our present scheme and outline paths to mitigate these effects, paving the way towards the creation of large-scale entanglement.
Collapse
Affiliation(s)
- Simon Hollerith
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
| | - Kritsana Srakaew
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
| | - David Wei
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
| | - Antonio Rubio-Abadal
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
| | - Daniel Adler
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Pascal Weckesser
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
| | - Andreas Kruckenhauser
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciencies, Innsbruck, Austria
- Center of Quantum Physics, University of Innsbruck, Innsbruck, Austria
| | - Valentin Walther
- ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Rick van Bijnen
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciencies, Innsbruck, Austria
- Center of Quantum Physics, University of Innsbruck, Innsbruck, Austria
| | - Jun Rui
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Christian Gross
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
- Physikalisches Institut, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Immanuel Bloch
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Johannes Zeiher
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
| |
Collapse
|
44
|
Sheng C, Hou J, He X, Wang K, Guo R, Zhuang J, Mamat B, Xu P, Liu M, Wang J, Zhan M. Defect-Free Arbitrary-Geometry Assembly of Mixed-Species Atom Arrays. PHYSICAL REVIEW LETTERS 2022; 128:083202. [PMID: 35275661 DOI: 10.1103/physrevlett.128.083202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Optically trapped mixed-species single atom arrays with arbitrary geometry are an attractive and promising platform for various applications, because tunable quantum systems with multiple components provide extra degrees of freedom for experimental control. Here, we report the first demonstration of two-dimensional 6×4 dual-species atom assembly of ^{85}Rb (^{87}Rb) atoms with a filling fraction of 0.88 (0.89). This mixed-species atomic synthesis is achieved via rearranging initially randomly distributed atoms by a sorting algorithm (heuristic heteronuclear algorithm) which is designed for bottom-up atom assembly with both user-defined geometries and two-species atom number ratios. Our fully tunable hybrid-atom systems with scalable advantages are a good starting point for high-fidelity quantum logic, many-body quantum simulation, and single molecule array formation.
Collapse
Affiliation(s)
- Cheng Sheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiayi Hou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Kunpeng Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ruijun Guo
- School of Information Engineering and Henan Key Laboratory of Laser and Opto-Electric Information Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Jun Zhuang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bahtiyar Mamat
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Min Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jin Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Mingsheng Zhan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
45
|
Deist E, Gerber JA, Lu YH, Zeiher J, Stamper-Kurn DM. Superresolution Microscopy of Optical Fields Using Tweezer-Trapped Single Atoms. PHYSICAL REVIEW LETTERS 2022; 128:083201. [PMID: 35275676 DOI: 10.1103/physrevlett.128.083201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/11/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
We realize a scanning probe microscope using single trapped ^{87}Rb atoms to measure optical fields with subwavelength spatial resolution. Our microscope operates by detecting fluorescence from a single atom driven by near-resonant light and determining the ac Stark shift of an atomic transition from other local optical fields via the change in the fluorescence rate. We benchmark the microscope by measuring two standing-wave Gaussian modes of a Fabry-Pérot resonator with optical wavelengths of 1560 and 781 nm. We attain a spatial resolution of 300 nm, which is superresolving compared to the limit set by the 780 nm wavelength of the detected light. Sensitivity to short length scale features is enhanced by adapting the sensor to characterize an optical field via the force it exerts on the atom.
Collapse
Affiliation(s)
- Emma Deist
- Department of Physics, University of California, Berkeley, California 94720, USA
- Challenge Institute for Quantum Computation, University of California, Berkeley, California 94720, USA
| | - Justin A Gerber
- Department of Physics, University of California, Berkeley, California 94720, USA
- Challenge Institute for Quantum Computation, University of California, Berkeley, California 94720, USA
| | - Yue-Hui Lu
- Department of Physics, University of California, Berkeley, California 94720, USA
- Challenge Institute for Quantum Computation, University of California, Berkeley, California 94720, USA
| | - Johannes Zeiher
- Department of Physics, University of California, Berkeley, California 94720, USA
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
| | - Dan M Stamper-Kurn
- Department of Physics, University of California, Berkeley, California 94720, USA
- Challenge Institute for Quantum Computation, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
46
|
Hartke T, Oreg B, Jia N, Zwierlein M. Quantum register of fermion pairs. Nature 2022; 601:537-541. [PMID: 35082420 DOI: 10.1038/s41586-021-04205-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022]
Abstract
Quantum control of motion is central for modern atomic clocks1 and interferometers2. It enables protocols to process and distribute quantum information3,4, and allows the probing of entanglement in correlated states of matter5. However, the motional coherence of individual particles can be fragile to maintain, as external degrees of freedom couple strongly to the environment. Systems in nature with robust motional coherence instead often involve pairs of particles, from the electrons in helium, to atom pairs6, molecules7 and Cooper pairs. Here we demonstrate long-lived motional coherence and entanglement of pairs of fermionic atoms in an optical lattice array. The common and relative motion of each pair realize a robust qubit, protected by exchange symmetry. The energy difference between the two motional states is set by the atomic recoil energy, is dependent on only the mass and the lattice wavelength, and is insensitive to the noise of the confining potential. We observe quantum coherence beyond ten seconds. Modulation of the interactions between the atoms provides universal control of the motional qubit. The methods presented here will enable coherently programmable quantum simulators of many-fermion systems8, precision metrology based on atom pairs and molecules9,10 and, by implementing further advances11-13, digital quantum computation using fermion pairs14.
Collapse
Affiliation(s)
- Thomas Hartke
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, MIT, Cambridge, MA, USA.
| | - Botond Oreg
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, MIT, Cambridge, MA, USA
| | - Ningyuan Jia
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, MIT, Cambridge, MA, USA
| | - Martin Zwierlein
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, MIT, Cambridge, MA, USA.
| |
Collapse
|
47
|
Wilson JT, Saskin S, Meng Y, Ma S, Dilip R, Burgers AP, Thompson JD. Trapping Alkaline Earth Rydberg Atoms Optical Tweezer Arrays. PHYSICAL REVIEW LETTERS 2022; 128:033201. [PMID: 35119888 DOI: 10.1103/physrevlett.128.033201] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 11/16/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Neutral atom qubits with Rydberg-mediated interactions are a leading platform for developing large-scale coherent quantum systems. In the majority of experiments to date, the Rydberg states are not trapped by the same potential that confines ground state atoms, resulting in atom loss and constraints on the achievable interaction time. In this Letter, we demonstrate that the Rydberg states of an alkaline earth atom, ytterbium, can be stably trapped by the same red-detuned optical tweezer that also confines the ground state, by leveraging the polarizability of the Yb^{+} ion core. Using the previously unobserved ^{3}S_{1} series, we demonstrate trapped Rydberg atom lifetimes exceeding 100 μs, and observe no evidence of auto- or photoionization from the trap light for these states. We measure a coherence time of T_{2}=59 μs between two Rydberg levels, exceeding the 28 μs lifetime of untrapped Rydberg atoms under the same conditions. These results are promising for extending the interaction time of Rydberg atom arrays for quantum simulation and computing, and are vital to capitalize on the extended Rydberg lifetimes in circular states or cryogenic environments.
Collapse
Affiliation(s)
- J T Wilson
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540, USA
| | - S Saskin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540, USA
- Department of Physics, Princeton University, Princeton, New Jersey 08540, USA
| | - Y Meng
- Vienna Center for Quantum Science and Technology, TU Wien, Atominstitut, Stadionallee 2, 1020 Vienna, Austria
| | - S Ma
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540, USA
- Department of Physics, Princeton University, Princeton, New Jersey 08540, USA
| | - R Dilip
- Department of Physics, Princeton University, Princeton, New Jersey 08540, USA
| | - A P Burgers
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540, USA
| | - J D Thompson
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540, USA
| |
Collapse
|
48
|
Liu F, Yang ZC, Bienias P, Iadecola T, Gorshkov AV. Localization and Criticality in Antiblockaded Two-Dimensional Rydberg Atom Arrays. PHYSICAL REVIEW LETTERS 2022; 128:013603. [PMID: 35061449 DOI: 10.1103/physrevlett.128.013603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 10/30/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Controllable Rydberg atom arrays have provided new insights into fundamental properties of quantum matter both in and out of equilibrium. In this work, we study the effect of experimentally relevant positional disorder on Rydberg atoms trapped in a 2D square lattice under antiblockade (facilitation) conditions. We show that the facilitation conditions lead the connectivity graph of a particular subspace of the full Hilbert space to form a 2D Lieb lattice, which features a singular flat band. Remarkably, we find three distinct regimes as the disorder strength is varied: a critical regime, a delocalized but nonergodic regime, and a regime with a disorder-induced flat band. The critical regime's existence depends crucially upon the singular flat band in our model, and is absent in any 1D array or ladder system. We propose to use quench dynamics to probe the three different regimes experimentally.
Collapse
Affiliation(s)
- Fangli Liu
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Zhi-Cheng Yang
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Przemyslaw Bienias
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Thomas Iadecola
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Alexey V Gorshkov
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
49
|
Qian ZH, Cui JM, Luo XW, Zheng YX, Huang YF, Ai MZ, He R, Li CF, Guo GC. Super-resolved Imaging of a Single Cold Atom on a Nanosecond Timescale. PHYSICAL REVIEW LETTERS 2021; 127:263603. [PMID: 35029497 DOI: 10.1103/physrevlett.127.263603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/03/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
In cold atomic systems, fast and high-resolution microscopy of individual atoms is crucial, since it can provide direct information on the dynamics and correlations of the system. Here, we demonstrate nanosecond-scale two-dimensional stroboscopic pictures of a single trapped ion beyond the optical diffraction limit, by combining the main idea of ground-state depletion microscopy with quantum-state transition control in cold atoms. We achieve a spatial resolution up to 175 nm using a NA=0.1 objective in the experiment, which represents a more than tenfold improvement compared with direct fluorescence imaging. To show the potential of this method, we apply it to observe the secular motion of the trapped ion; we demonstrate a temporal resolution up to 50 ns with a displacement detection sensitivity of 10 nm. Our method provides a powerful tool for probing particle positions, momenta, and correlations, as well as their dynamics in cold atomic systems.
Collapse
Affiliation(s)
- Zhong-Hua Qian
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Jin-Ming Cui
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Xi-Wang Luo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Yong-Xiang Zheng
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Yun-Feng Huang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Ming-Zhong Ai
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Ran He
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Chuan-Feng Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
50
|
Young JT, Bienias P, Belyansky R, Kaufman AM, Gorshkov AV. Asymmetric Blockade and Multiqubit Gates via Dipole-Dipole Interactions. PHYSICAL REVIEW LETTERS 2021; 127:120501. [PMID: 34597076 DOI: 10.1103/physrevlett.127.120501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 05/11/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Because of their strong and tunable interactions, Rydberg atoms can be used to realize fast two-qubit entangling gates. We propose a generalization of a generic two-qubit Rydberg-blockade gate to multiqubit Rydberg-blockade gates that involve both many control qubits and many target qubits simultaneously. This is achieved by using strong microwave fields to dress nearby Rydberg states, leading to asymmetric blockade in which control-target interactions are much stronger than control-control and target-target interactions. The implementation of these multiqubit gates can drastically simplify both quantum algorithms and state preparation. To illustrate this, we show that a 25-atom Greenberger-Horne-Zeilinger state can be created using only three gates with an error of 5.8%.
Collapse
Affiliation(s)
- Jeremy T Young
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742 USA
| | - Przemyslaw Bienias
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742 USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742 USA
| | - Ron Belyansky
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742 USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742 USA
| | - Adam M Kaufman
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Alexey V Gorshkov
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742 USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742 USA
| |
Collapse
|