1
|
Wójcik P, Szafran B, Czarnecki J, Citro R, Zegrodnik M. Effect of electrostatic confinement on the dome-shaped superconducting phase diagram at the LaAlO 3/SrTiO 3 interface. Sci Rep 2024; 14:26177. [PMID: 39478102 PMCID: PMC11525793 DOI: 10.1038/s41598-024-77460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
The two-dimensional electron gas (2DEG) at the LaAlO[Formula: see text]/SrTiO[Formula: see text] (LAO/STO) interface exhibits gate-tunable superconductivity with a dome-like shape of critical temperature as a function of electron concentration. This behavior has not been unambiguously explained yet. Here, we develop a microscopic model based on the Schrödinger-Poisson approach to determine the electronic structure of the LAO/STO 2DEG, which we then apply to study the principal characteristics of the superconducting phase within the real-space pairing mean-field approach. For the electron concentrations reported in the experiment, we successfully reproduce the dome-like shape of the superconducting gap. According to our analysis such behavior results from the interplay between the Fermi surface topology and the gap symmetry, with the dominant extended s-wave contribution. Similarly as in the experimental report, we observe a bifurcation effect in the superconducting gap dependence on the electron density when the 2DEG is electrostatically doped either with the top gate or the bottom gate. Our findings explains the dome-shaped phase diagram of the considered heterostucture with good agreement with the experimental data which, in turn, strongly suggest the appearance of the extended s-wave symmetry of the gap in 2DEG at the LAO/STO interface.
Collapse
Affiliation(s)
- Paweł Wójcik
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Krakow, Poland.
| | - Bartłomiej Szafran
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Krakow, Poland
| | - Julian Czarnecki
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Krakow, Poland
| | - Roberta Citro
- Department of Physics E. R. Caianiello, University of Salerno and CNR-SPIN, Via Giovanni Paolo II 132, Fisciano, SA, Italy
| | - Michał Zegrodnik
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Krakow, Poland
| |
Collapse
|
2
|
Yin H, Wang S, Jin K. Enhanced Rashba Spin Orbit Coupling and Magnetic Behavior at Oxide Heterointerfaces by Optical Gating. J Phys Chem Lett 2023; 14:8684-8690. [PMID: 37733252 DOI: 10.1021/acs.jpclett.3c01811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Complex oxide heterointerfaces have been a hot research spot due to their rich physical phenomena and broad quantum coherence that respond to multiple external stimuli. Among these external stimuli, light is a very powerful one to manipulate properties such as carrier density and spin characteristics. However, achieving a light-magnetic correlation is in high demand for multifield responding devices, and its intrinsic mechanism remains unclear. Here, by illuminating Nd0.86Sr0.14Al0.86Ni0.14O3-SrTiO3 heterointerfaces using 360 nm light, we observe a series of interesting physical phenomena, like enhanced magnetoresistance (MR). More interestingly, a band splitting and strong Rashba spin-orbit coupling (SOC) effect occur after illumination, accompanied by a magnetic feature and thus leading to an anomalous Hall effect (AHE). Upon optical gating, the magnetism can be caused by Rashba SOC induced spin-orbit torque (SOT). The work will be sure to have great importance in both theoretical studies and all-oxide devices.
Collapse
Affiliation(s)
- Hang Yin
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuanhu Wang
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kexin Jin
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
3
|
Ferguson GM, Xiao R, Richardella AR, Low D, Samarth N, Nowack KC. Direct visualization of electronic transport in a quantum anomalous Hall insulator. NATURE MATERIALS 2023; 22:1100-1105. [PMID: 37537357 DOI: 10.1038/s41563-023-01622-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
A quantum anomalous Hall (QAH) insulator is characterized by quantized Hall and vanishing longitudinal resistances at zero magnetic field that are protected against local perturbations and independent of sample details. This insensitivity makes the microscopic details of the local current distribution inaccessible to global transport measurements. Accordingly, the current distributions that give rise to transport quantization are unknown. Here we use magnetic imaging to directly visualize the transport current in the QAH regime. As we tune through the QAH plateau by electrostatic gating, we clearly identify a regime in which the sample transports current primarily in the bulk rather than along the edges. Furthermore, we image the local response of equilibrium magnetization to electrostatic gating. Combined, these measurements suggest that the current flows through incompressible regions whose spatial structure can change throughout the QAH regime. Identification of the appropriate microscopic picture of electronic transport in QAH insulators and other topologically non-trivial states of matter is a crucial step towards realizing their potential in next-generation quantum devices.
Collapse
Affiliation(s)
- G M Ferguson
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, USA
| | - Run Xiao
- Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
| | - Anthony R Richardella
- Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
| | - David Low
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, USA
| | - Nitin Samarth
- Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
| | - Katja C Nowack
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
D'Antuono M, Chen Y, Caruso R, Jouault B, Salluzzo M, Stornaiuolo D. Tuning of the magnetotransport properties of a spin-polarized 2D electron system using visible light. Sci Rep 2023; 13:10050. [PMID: 37344495 DOI: 10.1038/s41598-023-36957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
We report on the effects of visible light on the low temperature electronic properties of the spin-polarized two dimensional electron system (2DES) formed at the interfaces between LaAlO[Formula: see text], EuTiO[Formula: see text] and (001) SrTiO[Formula: see text]. A strong, persistent modulation of both longitudinal and transverse conductivity was obtained using light emitting diodes (LEDs) with emissions at different wavelengths in the visible spectrum range. In particular, Hall effect data show that visible light induces a non-volatile electron filling of bands with mainly 3d[Formula: see text] character, and at the same time an enhancement of the anomalous Hall effect associated to the magnetic properties of the system. Accordingly, a suppression of the weak-anti localization corrections to the magneto-conductance is found, which correlates with an enhancement of the spin-polarization and of the ferromagnetic character of 2DES. The results establish the LED-induced photo-doping as a viable route for the control of the ground state properties of artificial spin-polarized oxide 2DES.
Collapse
Affiliation(s)
- Maria D'Antuono
- Department of Physics, University of Naples Federico II, via Cinthia, 80126, Naples, Italy
- CNR-SPIN, via Cinthia, 80126, Naples, Italy
| | - Yu Chen
- CNR-SPIN, via Cinthia, 80126, Naples, Italy
| | - Roberta Caruso
- Department of Physics, University of Naples Federico II, via Cinthia, 80126, Naples, Italy
- CNR-SPIN, via Cinthia, 80126, Naples, Italy
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Bldg. 480, P.O. Box 5000, Upton, NY, 11973-5000, USA
| | - Benoit Jouault
- Laboratoire Charles Coulomb, UMR 5221, CNRS, Université de Montpellier, 34095, Montpellier, France
| | | | - Daniela Stornaiuolo
- Department of Physics, University of Naples Federico II, via Cinthia, 80126, Naples, Italy.
- CNR-SPIN, via Cinthia, 80126, Naples, Italy.
| |
Collapse
|
5
|
Zheng D, Zhang J, He X, Wen Y, Li P, Wang Y, Ma Y, Bai H, Alshareef HN, Zhang XX. Electrically and optically erasable non-volatile two-dimensional electron gas memory. NANOSCALE 2022; 14:12339-12346. [PMID: 35971909 DOI: 10.1039/d2nr01582j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The high-mobility two-dimensional electron gas (2DEG) generated at the interface between two wide-band insulators, LaAlO3 (LAO) and SrTiO3 (STO), is an extensively researched topic. In this study, we have successfully realized reversible switching between metallic and insulating states of the 2DEG system via the application of optical illumination and positive pulse voltage induced by the introduction of oxygen vacancies as reservoirs for electrons. The positive pulse voltage irreversibly drives the electron to the defect energy level formed by the oxygen vacancies, which leads to the formation of the insulating state. Subsequently, the metallic state can be achieved via optical illumination, which excites the trapped electron back to the 2DEG potential well. The ON/OFF state is observed to be robust with a ratio exceeding 106; therefore, the interface can be used as an electrically and optically erasable non-volatile 2DEG memory.
Collapse
Affiliation(s)
- Dongxing Zheng
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia.
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Processing Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Junwei Zhang
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia.
- Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Xin He
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia.
| | - Yan Wen
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia.
| | - Peng Li
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia.
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuchen Wang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Processing Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yinchang Ma
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia.
| | - Haili Bai
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Processing Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Husam N Alshareef
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia.
| | - Xi-Xiang Zhang
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
6
|
Yu M, Liu C, Yang D, Yan X, Du Q, Fong DD, Bhattacharya A, Irvin P, Levy J. Nanoscale Control of the Metal-Insulator Transition at LaAlO 3/KTaO 3 Interfaces. NANO LETTERS 2022; 22:6062-6068. [PMID: 35862274 DOI: 10.1021/acs.nanolett.2c00673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent reports of superconductivity at KTaO3 (KTO) (110) and (111) interfaces have sparked intense interest due to the relatively high critical temperature as well as other properties that distinguish this system from the more extensively studied SrTiO3 (STO)-based heterostructures. Here, we report the reconfigurable creation of conducting structures at intrinsically insulating LaAlO3/KTO(110) and (111) interfaces. Devices are created using two distinct methods previously developed for STO-based heterostructures: (1) conductive atomic-force microscopy lithography and (2) ultralow-voltage electron-beam lithography. At low temperatures, KTO(110)-based devices show superconductivity that is tunable by an applied back gate. A one-dimensional nanowire device shows single-electron-transistor (SET) behavior. A KTO(111)-based device is metallic but does not become superconducting. These reconfigurable methods of creating nanoscale devices in KTO-based heterostructures offer new avenues for investigating mechanisms of superconductivity as well as development of quantum devices that incorporate strong spin-orbit interactions, superconducting behavior, and nanoscale dimensions.
Collapse
Affiliation(s)
- Muqing Yu
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Pittsburgh Quantum Institute, Pittsburgh, Pennsylvania 15260, United States
| | - Changjiang Liu
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Dengyu Yang
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Pittsburgh Quantum Institute, Pittsburgh, Pennsylvania 15260, United States
| | - Xi Yan
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Qianheng Du
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Dillon D Fong
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Anand Bhattacharya
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Patrick Irvin
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Pittsburgh Quantum Institute, Pittsburgh, Pennsylvania 15260, United States
| | - Jeremy Levy
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Pittsburgh Quantum Institute, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
7
|
Mikheev E, Zimmerling T, Estry A, Moll PJW, Goldhaber-Gordon D. Ionic Liquid Gating of SrTiO 3 Lamellas Fabricated with a Focused Ion Beam. NANO LETTERS 2022; 22:3872-3878. [PMID: 35576585 DOI: 10.1021/acs.nanolett.1c04447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we combine two previously incompatible techniques for defining electronic devices: shaping three-dimensional crystals by focused ion beam (FIB), and two-dimensional electrostatic accumulation of charge carriers. The principal challenge for this integration is nanometer-scale surface damage inherent to any FIB-based fabrication. We address this by using a sacrificial protective layer to preserve a selected pristine surface. The test case presented here is accumulation of 2D carriers by ionic liquid gating at the surface of a micron-scale SrTiO3 lamella. Preservation of surface quality is reflected in superconductivity of the accumulated carriers. This technique opens new avenues for realizing electrostatic charge tuning in materials that are not available as large or exfoliatable single crystals, and for patterning the geometry of the accumulated carriers.
Collapse
Affiliation(s)
- Evgeny Mikheev
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Tino Zimmerling
- Max-Planck-Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - Amelia Estry
- Max-Planck-Institute for Chemical Physics of Solids, 01187 Dresden, Germany
- Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Philip J W Moll
- Max-Planck-Institute for Chemical Physics of Solids, 01187 Dresden, Germany
- Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - David Goldhaber-Gordon
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
8
|
Kwak Y, Han W, Lee JS, Song J, Kim J. Hysteretic temperature dependence of resistance controlled by gate voltage in LaAlO 3/SrTiO 3 heterointerface electron system. Sci Rep 2022; 12:6458. [PMID: 35440752 PMCID: PMC9019089 DOI: 10.1038/s41598-022-10425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
For two-dimensional electron gas device applications, it is important to understand how electrical-transport properties are controlled by gate voltage. Here, we report gate voltage-controllable hysteresis in the resistance–temperature characteristics of two-dimensional electron gas at LaAlO3/SrTiO3 heterointerface. Electron channels made of the LaAlO3/SrTiO3 heterointerface showed hysteretic resistance–temperature behavior: the measured resistance was significantly higher during upward temperature sweeps in thermal cycling tests. Such hysteretic behavior was observed only after application of positive back-gate voltages below 50 K in the thermal cycle, and the magnitude of hysteresis increased with the applied back-gate voltage. To explain this gate-controlled resistance hysteresis, we propose a mechanism based on electron trapping at impurity sites, in conjunction with the strong temperature-dependent dielectric constant of the SrTiO3 substrate. Our model explains well the observed gate-controlled hysteresis of the resistance–temperature characteristics, and the mechanism should be also applicable to other SrTiO3-based oxide systems, paving the way to applications of oxide heterostructures to electronic devices.
Collapse
Affiliation(s)
- Yongsu Kwak
- Korea Research Institute of Standards and Science, Daejeon, 34113, South Korea.,Department of Physics, Chungnam National University, Daejeon, 34134, South Korea
| | - Woojoo Han
- Korea Research Institute of Standards and Science, Daejeon, 34113, South Korea.,Department of Nanoscience, University of Science and Technology, Daejeon, 34113, South Korea
| | - Joon Sung Lee
- Display and Semiconductor Physics, Korea University Sejong Campus, Sejong, 30019, South Korea
| | - Jonghyun Song
- Department of Physics, Chungnam National University, Daejeon, 34134, South Korea. .,Institute of Quantum Systems (IQS), Chungnam National University, Daejeon, 34134, South Korea.
| | - Jinhee Kim
- Korea Research Institute of Standards and Science, Daejeon, 34113, South Korea.
| |
Collapse
|
9
|
Niu W, Fang YW, Liu R, Wu Z, Chen Y, Gan Y, Zhang X, Zhu C, Wang L, Xu Y, Pu Y, Chen Y, Wang X. Fully Optical Modulation of the Two-Dimensional Electron Gas at the γ-Al 2O 3/SrTiO 3 Interface. J Phys Chem Lett 2022; 13:2976-2985. [PMID: 35343699 DOI: 10.1021/acs.jpclett.2c00384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional electron gas (2DEG) formed at the heterointerface between two oxide insulators hosts plenty of emergent phenomena and provides new opportunities for electronics and photoelectronics. However, despite being long sought after, on-demand properties controlled through a fully optical illumination remain far from being explored. Herein, a giant tunability of the 2DEG at the interface of γ-Al2O3/SrTiO3 through a fully optical gating is discovered. Specifically, photon-generated carriers lead to a delicate tunability of the carrier density and the underlying electronic structure, which is accompanied by the remarkable Lifshitz transition. Moreover, the 2DEG can be optically tuned to possess a maximum Rashba spin-orbit coupling, particularly at the crossing region of the sub-bands with different symmetries. First-principles calculations essentially well explain the optical modulation of γ-Al2O3/SrTiO3. Our fully optical gating opens a new pathway for manipulating emergent properties of the 2DEGs and is promising for on-demand photoelectric devices.
Collapse
Affiliation(s)
- Wei Niu
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Yue-Wen Fang
- Laboratory for Materials and Structures and Tokyo Tech World Research Hub Initiative (WRHI), Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- NYU-ECNU Institute of Physics, New York University Shanghai, Shanghai 200122, China
| | - Ruxin Liu
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Zhenqi Wu
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yongda Chen
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Yulin Gan
- Beijing National Laboratory for Condensed Matter and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoqian Zhang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chunhui Zhu
- College of Physics, Hebei Normal University, Shijiazhuang 050024, China
| | - Lixia Wang
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yongbing Xu
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Yong Pu
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yunzhong Chen
- Beijing National Laboratory for Condensed Matter and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuefeng Wang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
10
|
D'Antuono M, Kalaboukhov A, Caruso R, Wissberg S, Weitz Sobelman S, Kalisky B, Ausanio G, Salluzzo M, Stornaiuolo D. Nanopatterning of oxide 2-dimensional electron systems using low-temperature ion milling. NANOTECHNOLOGY 2021; 33:085301. [PMID: 34757952 DOI: 10.1088/1361-6528/ac385e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
We present a 'top-down' patterning technique based on ion milling performed at low-temperature, for the realization of oxide two-dimensional electron system devices with dimensions down to 160 nm. Using electrical transport and scanning Superconducting QUantum Interference Device measurements we demonstrate that the low-temperature ion milling process does not damage the 2DES properties nor creates oxygen vacancies-related conducting paths in the STO substrate. As opposed to other procedures used to realize oxide 2DES devices, the one we propose gives lateral access to the 2DES along the in-plane directions, finally opening the way to coupling with other materials, including superconductors.
Collapse
Affiliation(s)
- M D'Antuono
- University of Naples Federico II, Italy
- CNR-SPIN, Naples, Italy
| | - A Kalaboukhov
- Department of Microtechnology and Nanoscience MC2, Chalmers University of Technology, Gothenburg, Sweden
| | - R Caruso
- University of Naples Federico II, Italy
- CNR-SPIN, Naples, Italy
- Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Department, Bldg. 480, PO Box 5000 Upton, NY 11973-5000, United States of America
| | - S Wissberg
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat-Gan, Israel
| | - S Weitz Sobelman
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat-Gan, Israel
| | - B Kalisky
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat-Gan, Israel
| | - G Ausanio
- University of Naples Federico II, Italy
- CNR-SPIN, Naples, Italy
| | | | - D Stornaiuolo
- University of Naples Federico II, Italy
- CNR-SPIN, Naples, Italy
| |
Collapse
|
11
|
Lebedev N, Stehno M, Rana A, Reith P, Gauquelin N, Verbeeck J, Hilgenkamp H, Brinkman A, Aarts J. Gate-tuned anomalous Hall effect driven by Rashba splitting in intermixed LaAlO 3/GdTiO 3/SrTiO 3. Sci Rep 2021; 11:10726. [PMID: 34021190 PMCID: PMC8140084 DOI: 10.1038/s41598-021-89767-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/28/2021] [Indexed: 11/25/2022] Open
Abstract
The Anomalous Hall Effect (AHE) is an important quantity in determining the properties and understanding the behaviour of the two-dimensional electron system forming at the interface of SrTiO3-based oxide heterostructures. The occurrence of AHE is often interpreted as a signature of ferromagnetism, but it is becoming more and more clear that also paramagnets may contribute to AHE. We studied the influence of magnetic ions by measuring intermixed LaAlO3/GdTiO3/SrTiO3 at temperatures below 10 K. We find that, as function of gate voltage, the system undergoes a Lifshitz transition while at the same time an onset of AHE is observed. However, we do not observe clear signs of ferromagnetism. We argue the AHE to be due to the change in Rashba spin-orbit coupling at the Lifshitz transition and conclude that also paramagnetic moments which are easily polarizable at low temperatures and high magnetic fields lead to the presence of AHE, which needs to be taken into account when extracting carrier densities and mobilities.
Collapse
Affiliation(s)
- N Lebedev
- Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
| | - M Stehno
- Physikalisches Institut (EP 3), Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - A Rana
- Center for Advanced Materials and Devices, BML Munjal University (Hero Group), Gurgaon, 122413, India
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - P Reith
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - N Gauquelin
- Electron Microscopy for Materials Science, University of Antwerp, Campus Groenenborger Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - J Verbeeck
- Electron Microscopy for Materials Science, University of Antwerp, Campus Groenenborger Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - H Hilgenkamp
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - A Brinkman
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - J Aarts
- Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
12
|
Lebedev N, Stehno M, Rana A, Gauquelin N, Verbeeck J, Brinkman A, Aarts J. Inhomogeneous superconductivity and quasilinear magnetoresistance at amorphous LaTiO 3/SrTiO 3 interfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 33:055001. [PMID: 33169729 DOI: 10.1088/1361-648x/abc102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We have studied the transport properties of LaTiO3/SrTiO3 (LTO/STO) heterostructures. In spite of 2D growth observed in reflection high energy electron diffraction, transmission electron microscopy images revealed that the samples tend to amorphize. Still, we observe that the structures are conducting, and some of them exhibit high conductance and/or superconductivity. We established that conductivity arises mainly on the STO side of the interface, and shows all the signs of the two-dimensional electron gas usually observed at interfaces between STO and LTO or LaAlO3, including the presence of two electron bands and tunability with a gate voltage. Analysis of magnetoresistance (MR) and superconductivity indicates the presence of spatial fluctuations of the electronic properties in our samples. That can explain the observed quasilinear out-of-plane MR, as well as various features of the in-plane MR and the observed superconductivity.
Collapse
Affiliation(s)
- N Lebedev
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|