1
|
von der Leyen MW, Holloway J, Ma Y, Campbell PT, Aboushelbaya R, Qian Q, Antoine AF, Balcazar M, Cardarelli J, Feng Q, Fitzgarrald R, Hou BX, Kalinchenko G, Latham J, Maksimchuk AM, McKelvey A, Nees J, Ouatu I, Paddock RW, Spiers B, Thomas AGR, Timmis R, Krushelnick K, Norreys PA. Observation of Monoenergetic Electrons from Two-Pulse Ionization Injection in Quasilinear Laser Wakefields. PHYSICAL REVIEW LETTERS 2023; 130:105002. [PMID: 36962018 DOI: 10.1103/physrevlett.130.105002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The generation of low emittance electron beams from laser-driven wakefields is crucial for the development of compact x-ray sources. Here, we show new results for the injection and acceleration of quasimonoenergetic electron beams in low amplitude wakefields experimentally and using simulations. This is achieved by using two laser pulses decoupling the wakefield generation from the electron trapping via ionization injection. The injection duration, which affects the beam charge and energy spread, is found to be tunable by adjusting the relative pulse delay. By changing the polarization of the injector pulse, reducing the ionization volume, the electron spectra of the accelerated electron bunches are improved.
Collapse
Affiliation(s)
- M W von der Leyen
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- John Adams Institute for Accelerator Science, Denys Wilkinson Building, Oxford OX1 3RH, United Kingdom
| | - J Holloway
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Y Ma
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - P T Campbell
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - R Aboushelbaya
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Q Qian
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - A F Antoine
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - M Balcazar
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - J Cardarelli
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Q Feng
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - R Fitzgarrald
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - B X Hou
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - G Kalinchenko
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - J Latham
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - A M Maksimchuk
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - A McKelvey
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - J Nees
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - I Ouatu
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - R W Paddock
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - B Spiers
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - A G R Thomas
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - R Timmis
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - K Krushelnick
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - P A Norreys
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- John Adams Institute for Accelerator Science, Denys Wilkinson Building, Oxford OX1 3RH, United Kingdom
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, OX11 0QX, United Kingdom
| |
Collapse
|
2
|
Li XF, Gibbon P, Hützen A, Büscher M, Weng SM, Chen M, Sheng ZM. Polarized proton acceleration in ultraintense laser interaction with near-critical-density plasmas. Phys Rev E 2021; 104:015216. [PMID: 34412274 DOI: 10.1103/physreve.104.015216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/08/2021] [Indexed: 11/07/2022]
Abstract
The production of polarized proton beams with multi-GeV energies in ultraintense laser interaction with targets is studied with three-dimensional particle-in-cell simulations. A near-critical density plasma target with prepolarized proton and tritium ions is considered for the proton acceleration. The prepolarized protons are initially accelerated by laser radiation pressure before injection and further acceleration in a bubblelike wakefield. The temporal dynamics of proton polarization is tracked via the Thomas-Bargmann-Michel-Telegdi equation and it is found that the proton polarization state can be altered by both the laser field and the magnetic component of the wakefield. The dependence of the proton acceleration and polarization on the ratio of the ion species is determined and it is found that the protons can be efficiently accelerated as long as their relative fraction is less than 20%, in which case the bubble size is large enough for the protons to obtain sufficient energy to overcome the bubble injection threshold.
Collapse
Affiliation(s)
- X F Li
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany.,Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - P Gibbon
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany.,Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - A Hützen
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany.,Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - M Büscher
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany.,Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - S M Weng
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - M Chen
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Z M Sheng
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China.,SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom.,Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|