1
|
Fardian-Melamed N, Skripka A, Ursprung B, Lee C, Darlington TP, Teitelboim A, Qi X, Wang M, Gerton JM, Cohen BE, Chan EM, Schuck PJ. Infrared nanosensors of piconewton to micronewton forces. Nature 2025; 637:70-75. [PMID: 39743607 DOI: 10.1038/s41586-024-08221-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/15/2024] [Indexed: 01/04/2025]
Abstract
Mechanical force is an essential feature for many physical and biological processes1-7, and remote measurement of mechanical signals with high sensitivity and spatial resolution is needed for diverse applications, including robotics8, biophysics9,10, energy storage11 and medicine12,13. Nanoscale luminescent force sensors excel at measuring piconewton forces, whereas larger sensors have proven powerful in probing micronewton forces14-16. However, large gaps remain in the force magnitudes that can be probed remotely from subsurface or interfacial sites, and no individual, non-invasive sensor is capable of measuring over the large dynamic range needed to understand many systems14,17. Here we demonstrate Tm3+-doped avalanching-nanoparticle18 force sensors that can be addressed remotely by deeply penetrating near-infrared light and can detect piconewton to micronewton forces with a dynamic range spanning more than four orders of magnitude. Using atomic force microscopy coupled with single-nanoparticle optical spectroscopy, we characterize the mechanical sensitivity of the photon-avalanching process and reveal its exceptional force responsiveness. By manipulating the Tm3+ concentrations and energy transfer within the nanosensors, we demonstrate different optical force-sensing modalities, including mechanobrightening and mechanochromism. The adaptability of these nanoscale optical force sensors, along with their multiscale-sensing capability, enable operation in the dynamic and versatile environments present in real-world, complex structures spanning biological organisms to nanoelectromechanical systems.
Collapse
Affiliation(s)
| | - Artiom Skripka
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autόnoma de Madrid, Madrid, Spain
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Benedikt Ursprung
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Changhwan Lee
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Thomas P Darlington
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Ayelet Teitelboim
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xiao Qi
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Maoji Wang
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA
| | - Jordan M Gerton
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Babar AN, Weis TAS, Tsoukalas K, Kadkhodazadeh S, Arregui G, Vosoughi Lahijani B, Stobbe S. Self-assembled photonic cavities with atomic-scale confinement. Nature 2023; 624:57-63. [PMID: 38057568 PMCID: PMC10700130 DOI: 10.1038/s41586-023-06736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/10/2023] [Indexed: 12/08/2023]
Abstract
Despite tremendous progress in research on self-assembled nanotechnological building blocks, such as macromolecules1, nanowires2 and two-dimensional materials3, synthetic self-assembly methods that bridge the nanoscopic to macroscopic dimensions remain unscalable and inferior to biological self-assembly. By contrast, planar semiconductor technology has had an immense technological impact, owing to its inherent scalability, yet it seems unable to reach the atomic dimensions enabled by self-assembly. Here, we use surface forces, including Casimir-van der Waals interactions4, to deterministically self-assemble and self-align suspended silicon nanostructures with void features well below the length scales possible with conventional lithography and etching5, despite using only conventional lithography and etching. The method is remarkably robust and the threshold for self-assembly depends monotonically on all the governing parameters across thousands of measured devices. We illustrate the potential of these concepts by fabricating nanostructures that are impossible to make with any other known method: waveguide-coupled high-Q silicon photonic cavities6,7 that confine telecom photons to 2 nm air gaps with an aspect ratio of 100, corresponding to mode volumes more than 100 times below the diffraction limit. Scanning transmission electron microscopy measurements confirm the ability to build devices with sub-nanometre dimensions. Our work constitutes the first steps towards a new generation of fabrication technology that combines the atomic dimensions enabled by self-assembly with the scalability of planar semiconductors.
Collapse
Affiliation(s)
- Ali Nawaz Babar
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Kongens Lyngby, Denmark.
- NanoPhoton - Center for Nanophotonics, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Thor August Schimmell Weis
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Konstantinos Tsoukalas
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shima Kadkhodazadeh
- NanoPhoton - Center for Nanophotonics, Technical University of Denmark, Kongens Lyngby, Denmark
- DTU Nanolab, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Guillermo Arregui
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Babak Vosoughi Lahijani
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- NanoPhoton - Center for Nanophotonics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Søren Stobbe
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Kongens Lyngby, Denmark.
- NanoPhoton - Center for Nanophotonics, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
3
|
Maffeo C, Quednau L, Wilson J, Aksimentiev A. DNA double helix, a tiny electromotor. NATURE NANOTECHNOLOGY 2023; 18:238-242. [PMID: 36564521 DOI: 10.1038/s41565-022-01285-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Flowing fluid past chiral objects has been used for centuries to power rotary motion in man-made machines. By contrast, rotary motion in nanoscale biological or chemical systems is produced by biasing Brownian motion through cyclic chemical reactions. Here we show that a chiral biological molecule, a DNA or RNA duplex rotates unidirectionally at billions of revolutions per minute when an electric field is applied along the duplex, with the rotation direction being determined by the chirality of the duplex. The rotation is found to be powered by the drag force of the electro-osmotic flow, realizing the operating principle of a macroscopic turbine at the nanoscale. The resulting torques are sufficient to power rotation of nanoscale beads and rods, offering an engineering principle for constructing nanoscale systems powered by electric field.
Collapse
Affiliation(s)
- Christopher Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lauren Quednau
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - James Wilson
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Callera Aguila MA, Esmenda JC, Wang JY, Lee TH, Yang CY, Lin KH, Chang-Liao KS, Kafanov S, Pashkin YA, Chen CD. Fabry-Perot interferometric calibration of van der Waals material-based nanomechanical resonators. NANOSCALE ADVANCES 2022; 4:502-509. [PMID: 36132699 PMCID: PMC9416946 DOI: 10.1039/d1na00794g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 06/16/2023]
Abstract
One of the challenges in integrating nanomechanical resonators made from van der Waals materials in optoelectromechanical technologies is characterizing their dynamic properties from vibrational displacement. Multiple calibration schemes using optical interferometry have tackled this challenge. However, these techniques are limited only to optically thin resonators with an optimal vacuum gap height and substrate for interferometric detection. Here, we address this limitation by implementing a modeling-based approach via multilayer thin-film interference for in situ, non-invasive determination of the resonator thickness, gap height, and motional amplitude. This method is demonstrated on niobium diselenide drumheads that are electromotively driven in their linear regime of motion. The laser scanning confocal configuration enables a resolution of hundreds of picometers in motional amplitude for circular and elliptical devices. The measured thickness and spacer height, determined to be in the order of tens and hundreds of nanometers, respectively, are in excellent agreement with profilometric measurements. Moreover, the transduction factor estimated from our method agrees with the result of other studies that resolved Brownian motion. This characterization method, which applies to both flexural and acoustic wave nanomechanical resonators, is robust because of its scalability to thickness and gap height, and any form of reflecting substrate.
Collapse
Affiliation(s)
- Myrron Albert Callera Aguila
- National Tsing Hua University Hsinchu 30013 Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Tsing Hua University Taiwan
- Institute of Physics, Academia Sinica Nangang 11529 Taiwan
| | - Joshoua Condicion Esmenda
- National Tsing Hua University Hsinchu 30013 Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Tsing Hua University Taiwan
- Institute of Physics, Academia Sinica Nangang 11529 Taiwan
| | - Jyh-Yang Wang
- Institute of Physics, Academia Sinica Nangang 11529 Taiwan
| | - Teik-Hui Lee
- Institute of Physics, Academia Sinica Nangang 11529 Taiwan
| | - Chi-Yuan Yang
- Institute of Physics, Academia Sinica Nangang 11529 Taiwan
| | - Kung-Hsuan Lin
- Institute of Physics, Academia Sinica Nangang 11529 Taiwan
| | | | - Sergey Kafanov
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
| | - Yuri A Pashkin
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
| | - Chii-Dong Chen
- Institute of Physics, Academia Sinica Nangang 11529 Taiwan
| |
Collapse
|
5
|
Chang B, Zhao D. Direct assembly of nanowires by electron beam-induced dielectrophoresis. NANOTECHNOLOGY 2021; 32:415602. [PMID: 33721856 DOI: 10.1088/1361-6528/abeeb5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Controllable self-assembly is an important tool to investigate interactions between nanoscale objects. Here we present an assembly strategy based on 3D aligned silicon nanowires. By illuminating the tips of nanowires locally by a focused electron beam, an attractive dielectrophoretic force can be induced, leading to elastic deformations and sticking between adjacent nanowires. The whole process is performed feasibly inside a vacuum environment free from capillary or hydrodynamic forces. Assembly mechanisms are discussed for nanowires in both one and two layers, and various ordered organizations are presented. With the help of moisture treatment, a hierarchical assembly can also be achieved. Notably, an unsynchronized assembly is observed in two layers of nanowires. This study helps with a better understanding of nanoscale sticking phenomena and electrostatic actuations in nanoelectromechanical systems, besides, it also provides possibilities to probe quantum effects like Casimir forces and phonon heat transport in a vacuum gap.
Collapse
Affiliation(s)
- Bingdong Chang
- DTU Nanolab, Technical University of Denmark, Ørsteds Plads, Building 347, DK-2800 Kgs. Lyngby, Denmark
| | - Ding Zhao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, People's Republic of China
| |
Collapse
|