1
|
Ishino S, Hu YC, Tanaka H. Microscopic structural origin of slow dynamics in glass-forming liquids. NATURE MATERIALS 2025; 24:268-277. [PMID: 39779961 DOI: 10.1038/s41563-024-02068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/31/2024] [Indexed: 01/11/2025]
Abstract
Supercooled liquids display sluggish dynamics, often attributed to their structural characteristics, yet the underlying mechanism remains elusive. Here we conduct numerical investigations into the structure-dynamics relationship in model glass-forming liquids, with a specific focus on an elementary particle rearrangement mode known as the 'T1 process'. We discover that the ability of a T1 process to preserve glassy structural order before and after is pivotal towards determining a liquid's fragility-whether it exhibits super-Arrhenius-like or Arrhenius-like behaviour. If a T1 process disrupts local structural order, it must occur independently without cooperativity, resulting in Arrhenius-like behaviour. By contrast, if it can maintain order, it sequentially propagates from disordered peripheries to the middle of high-structural-order regions, leading to cooperativity and super-Arrhenius-like behaviour. Our study establishes a microscopic link between liquid-structure ordering, dynamic cooperativity and super-Arrhenius-like dynamics, extending the understanding of the structure-dynamics relationships in supercooled liquids.
Collapse
Affiliation(s)
- Seiichiro Ishino
- Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Yuan-Chao Hu
- Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Tanaka H. Structural Origin of Dynamic Heterogeneity in Supercooled Liquids. J Phys Chem B 2025; 129:789-813. [PMID: 39793974 PMCID: PMC11770765 DOI: 10.1021/acs.jpcb.4c06392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 01/13/2025]
Abstract
As a liquid is supercooled toward the glass transition point, its dynamics slow significantly, provided that crystallization is avoided. With increased supercooling, the particle dynamics become more spatially heterogeneous, a phenomenon known as dynamic heterogeneity. Since its discovery, this characteristic of metastable supercooled liquids has garnered considerable attention in glass science. However, the precise physical origins of dynamic heterogeneity remain elusive and widely debated. In this perspective, we examine the relationship between dynamic heterogeneity and structural order, based on numerical simulations of fragile liquids with isotropic potentials and strong liquids with directional interactions. We demonstrate that angular ordering, arising from many-body steric interactions, plays a crucial role in the slow dynamics and dynamic cooperativity of fragile liquids. Additionally, we explore how the growth of static order correlates with slower dynamics. In fragile liquids exhibiting super-Arrhenius behavior, the spatial extent of regions with high angular order grows upon cooling, and the sequential propagation of particle rearrangements within these ordered regions increases the activation energy for particle motion. In contrast, strong liquids with spatially constrained local ordering display a distinct "two-state" dynamic characteristic, marked by a transition between two Arrhenius-type behaviors. We argue that dynamic heterogeneity, irrespective of a liquid's fragility, arises from underlying structural order, with its spatial extent determined by static ordering. This perspective aims to deepen our understanding of the interplay between structural and dynamic properties in metastable supercooled liquids.
Collapse
Affiliation(s)
- Hajime Tanaka
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Institute
of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
3
|
Sahu R, Sharma M, Schall P, Maitra Bhattacharyya S, Chikkadi V. Structural origin of relaxation in dense colloidal suspensions. Proc Natl Acad Sci U S A 2024; 121:e2405515121. [PMID: 39382997 PMCID: PMC11494359 DOI: 10.1073/pnas.2405515121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/22/2024] [Indexed: 10/11/2024] Open
Abstract
Amorphous solids relax via slow molecular rearrangement induced by thermal fluctuations or applied stress. Microscopic structural signatures predicting these structural relaxations have been long searched for but have so far only been found in dynamic quantities such as vibrational quasi-localized soft modes or with structurally trained neural networks. A physically meaningful structural quantity remains elusive. Here, we introduce a structural order parameter derived from the mean-field caging potential experienced by the particles due to their neighbors, which reliably predicts the occurrence of structural relaxations. The structural parameter, derived from density functional theory, provides a measure of susceptibility to particle rearrangements that can effectively identify weak or defect-like regions in disordered systems. Using experiments on dense colloidal suspensions, we demonstrate a strong correlation between this order parameter and the structural relaxations of the amorphous solid. In quiescent suspensions, this correlation increases with density, when particle rearrangements become rarer and more localized. In sheared suspensions, the order parameter reliably pinpoints shear transformations; the applied shear weakens the caging potential due to shear-induced structural distortions, causing the proliferation of plastic deformation at structurally weak regions. Our work paves the way to a structural understanding of the relaxation of a wide range of amorphous solids, from suspensions to metallic glasses.
Collapse
Affiliation(s)
- Ratimanasee Sahu
- Physics Division, Indian Institute of Science Education and Research Pune, Pune411008, India
| | - Mohit Sharma
- Polymer Science and Engineering Division, CSIR - National Chemical Laboratory, Pune411008, India
- Academy of Scientific and Innovative Research, Ghaziabad201002, India
| | - Peter Schall
- Institute of Physics, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Sarika Maitra Bhattacharyya
- Polymer Science and Engineering Division, CSIR - National Chemical Laboratory, Pune411008, India
- Academy of Scientific and Innovative Research, Ghaziabad201002, India
| | - Vijayakumar Chikkadi
- Physics Division, Indian Institute of Science Education and Research Pune, Pune411008, India
| |
Collapse
|
4
|
Mutneja A, Schweizer KS. Microscopic theory of the elastic shear modulus and length-scale-dependent dynamic re-entrancy phenomena in very dense sticky particle fluids. SOFT MATTER 2024; 20:7284-7299. [PMID: 39240214 DOI: 10.1039/d4sm00693c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
We apply the hybrid projectionless dynamic theory (hybrid PDT) formulation of the elastically collective nonlinear Langevin equation (ECNLE) activated dynamics approach to study dense fluids of sticky spheres interacting with short range attractions. Of special interest is the problem of non-monotonic evolution with short range attraction strength of the elastic modulus ("re-entrancy") at very high packing fractions far beyond the ideal mode coupling theory (MCT) nonergodicity boundary. The dynamic force constraints explicitly treat the bare attractive forces that drive transient physical bond formation, while a projection approximation is employed for the singular hard-sphere potential. The resultant interference between repulsive and attractive forces contribution to the dynamic vertex results in the prediction of localization length and elastic modulus re-entrancy, qualitatively consistent with experiments. The non-monotonic evolution of the structural (alpha) relaxation time predicted by the ECNLE theory with the hybrid PDT approach is explored in depth as a function of packing fraction, attraction strength, and attraction range. Isochronal dynamic arrest boundaries based on activated relaxation display the classic non-monotonic glass melting form. Comparisons of these results with the corresponding predictions of ideal MCT, and also the ECNLE and NLE activated theories based on projection, reveal large qualitative differences. The consequences of stochastic trajectory fluctuations on intra-cage single particle dynamics with variable strength of attractions are also studied. Large dynamical heterogeneity effects in attractive glasses are properly captured. These include a rapidly increasing amplitude of the non-Gaussian parameter with packing fraction and a non-monotonic evolution with attraction strength, in qualitative accord with recent simulations. Extension of the microscopic theoretical approach to treat double yielding in attractive glass nonlinear rheology is possible.
Collapse
Affiliation(s)
- Anoop Mutneja
- Department of Materials Science, University of Illinois, Urbana, Illinois, 61801, USA
- Department of Materials Research Laboratory, University of Illinois, Urbana, Illinois, 61801, USA
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois, 61801, USA
- Department of Materials Research Laboratory, University of Illinois, Urbana, Illinois, 61801, USA
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana, Illinois, 61801, USA
- Department of Chemistry, University of Illinois, Urbana, Illinois, 61801, USA.
| |
Collapse
|
5
|
Tang Z, Ma F, Li F, Yao Y, Zhou D. Fully Polarized Topological Isostatic Metamaterials in Three Dimensions. PHYSICAL REVIEW LETTERS 2024; 133:106101. [PMID: 39303238 DOI: 10.1103/physrevlett.133.106101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/05/2024] [Accepted: 07/19/2024] [Indexed: 09/22/2024]
Abstract
Topological surface states are unique to topological materials and are immune to disturbances. In isostatic lattices, mechanical topological floppy modes exhibit softness depending on the polarization relative to the terminating surface. However, in three dimensions, the polarization of topological floppy modes is disrupted by the ubiquitous mechanical Weyl lines. Here, we demonstrate, both theoretically and experimentally, the fully polarized topological mechanical phases free of Weyl lines. Floppy modes emerge exclusively on a particular surface of the three-dimensional isostatic structure, leading to the strongly asymmetric stiffness between opposing boundaries. Additionally, uniform soft strains can reversibly shift the lattice configuration to Weyl phases, switching the stiffness contrast to a trivially comparable level. Our work demonstrates the fully polarized topological mechanical phases in three dimensions, and paves the way towards engineering soft and adaptive metamaterials.
Collapse
|
6
|
Grzybowski A, Koperwas K, Paluch M. Role of anisotropy in understanding the molecular grounds for density scaling in dynamics of glass-forming liquids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:084501. [PMID: 38861964 DOI: 10.1088/1361-6633/ad569d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Molecular Dynamics (MD) simulations of glass-forming liquids play a pivotal role in uncovering the molecular nature of the liquid vitrification process. In particular, much focus was given to elucidating the interplay between the character of intermolecular potential and molecular dynamics behaviour. This has been tried to achieve by simulating the spherical particles interacting via isotropic potential. However, when simulation and experimental data are analysed in the same way by using the density scaling approaches, serious inconsistency is revealed between them. Similar scaling exponent values are determined by analysing the relaxation times and pVT data obtained from computer simulations. In contrast, these values differ significantly when the same analysis is carried out in the case of experimental data. As discussed thoroughly herein, the coherence between results of simulation and experiment can be achieved if anisotropy of intermolecular interactions is introduced to MD simulations. In practice, it has been realized in two different ways: (1) by using the anisotropic potential of the Gay-Berne type or (2) by replacing the spherical particles with quasi-real polyatomic anisotropic molecules interacting through isotropic Lenard-Jones potential. In particular, the last strategy has the potential to be used to explore the relationship between molecular architecture and molecular dynamics behaviour. Finally, we hope that the results presented in this review will also encourage others to explore how 'anisotropy' affects remaining aspects related to liquid-glass transition, like heterogeneity, glass transition temperature, glass forming ability, etc.
Collapse
Affiliation(s)
- A Grzybowski
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - K Koperwas
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - M Paluch
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| |
Collapse
|
7
|
Zhang H, Zhang Q, Liu F, Han Y. Anisotropic-Isotropic Transition of Cages at the Glass Transition. PHYSICAL REVIEW LETTERS 2024; 132:078201. [PMID: 38427876 DOI: 10.1103/physrevlett.132.078201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/03/2023] [Accepted: 01/12/2024] [Indexed: 03/03/2024]
Abstract
Characterizing the local structural evolution is an essential step in understanding the nature of glass transition. In this work, we probe the evolution of Voronoi cell geometry in simple glass models by simulations and colloid experiments, and find that the individual particle cages deform anisotropically in supercooled liquid and isotropically in glass. We introduce an anisotropy parameter k for each Voronoi cell, whose mean value exhibits a sharp change at the mode-coupling glass transition ϕ_{c}. Moreover, a power law of packing fraction ϕ∝q_{1}^{d} is discovered in the supercooled liquid regime with d>D, in contrast to d=D in the glass regime, where q_{1} is the first peak position of structure factor, and D is the space dimension. This power law is qualitatively explained by the change of k. The active motions in supercooled liquid are spatially correlated with long axes rather than short axes of Voronoi cells. In addition, the dynamic slowing down approaching the glass transition can be well characterized through a modified free-volume model based on k. These findings reveal that the structural parameter k is effective in identifying the structure-dynamics correlations and the glass transition in these systems.
Collapse
Affiliation(s)
- Huijun Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Qi Zhang
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Feng Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Yilong Han
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China
| |
Collapse
|
8
|
Xia Y, Yang X, Huang J, Liu R, Xu N, Yang M, Chen K. Orientational Order in Dense Colloidal Liquids and Glasses. PHYSICAL REVIEW LETTERS 2023; 131:128201. [PMID: 37802956 DOI: 10.1103/physrevlett.131.128201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023]
Abstract
We construct structural order parameters based on local angular and radial distribution functions in dense colloidal suspensions. All the order parameters show significant correlations to local dynamics in the supercooled and glass regime. In particular, the correlations between the orientational order and dynamical heterogeneity are consistently higher than those between the conventional two-body structural entropy and local dynamics. The structure-dynamics correlations can be explained by a excitation model with the energy barrier depending on local structural order. Our results suggest that in dense disordered packings, local orientational order is higher than translational order, and plays a more important role in determining the dynamics in glassy systems.
Collapse
Affiliation(s)
- Yiming Xia
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Xiunan Yang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Junchao Huang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Rui Liu
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Ning Xu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Science, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Science, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
9
|
Sharma M, Nandi MK, Maitra Bhattacharyya S. A comparative study of the correlation between the structure and the dynamics for systems interacting via attractive and repulsive potentials. J Chem Phys 2023; 159:104502. [PMID: 37694749 DOI: 10.1063/5.0165417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
We present the study of the structure-dynamics correlation for systems interacting via attractive Lennard-Jones (LJ) and its repulsive counterpart, the Weeks-Chandler-Andersen (WCA) potentials. The structural order parameter (SOP) is related to the microscopic mean-field caging potential. At a particle level, the SOP shows a distribution. Although the two systems have similar pair structures, their average SOP differs. However, this difference alone is insufficient to explain the well known slowing down of the dynamics in the LJ system at low temperatures. The slowing down can be explained in terms of a stronger coupling between the SOP and the dynamics. To understand the origin of this system specific coupling, we study the difference in the microscopic structure between the hard and soft particles. We find that for the LJ system, the structural differences of the hard and soft particles are more significant and have a much stronger temperature dependence compared to the WCA system. Thus, the study suggests that attractive interaction creates more structurally different communities. This broader difference in the structural communities is probably responsible for stronger coupling between the structure and dynamics. Thus, the system specific structure-dynamics correlation, which also leads to a faster slowing down in the dynamics, appears to have a structural origin. A comparison of the predictive power of our SOP with the local energy and two body excess entropy in determining the dynamics shows that in the LJ system, the enthalpy plays a dominant role and in the WCA system, the entropy plays a dominant role, and our SOP can capture both these contributions.
Collapse
Affiliation(s)
- Mohit Sharma
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manoj Kumar Nandi
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale, Stem Cell and Brain Research Institute, Bron 69500, France
| | - Sarika Maitra Bhattacharyya
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Patel P, Sharma M, Maitra Bhattacharyya S. Dynamic heterogeneity in polydisperse systems: A comparative study of the role of local structural order parameter and particle size. J Chem Phys 2023; 159:044501. [PMID: 37486056 DOI: 10.1063/5.0156794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
In polydisperse systems, describing the structure and any structural order parameter (SOP) is not trivial as it varies with the number of species we use to describe the system, M. Depending on the degree of polydispersity, there is an optimum value of M = M0 where we show that the mutual information of the system increases. However, surprisingly, the correlation between a recently proposed SOP and the dynamics is highest for M = 1. This effect increases with polydispersity. We find that the SOP at M = 1 is coupled with the particle size, σ, and this coupling increases with polydispersity and decreases with an increase in M. Careful analysis shows that at lower polydispersities, the SOP is a good predictor of the dynamics. However, at higher polydispersity, the dynamics is strongly dependent on σ. Since the coupling between the SOP and σ is higher for M = 1, it appears to be a better predictor of the dynamics. We also study the Vibrality, an order parameter independent of structural information. Compared to SOP, at high polydispersity, we find Vibrality to be a marginally better predictor of the dynamics. However, this high predictive power of Vibrality, which is not there at lower polydispersity, appears to be due to its stronger coupling with σ. Therefore, our study suggests that for systems with high polydispersity, the correlation of any order parameter and σ will affect the correlation between the order parameter and dynamics and need not project a generic predictive power of the order parameter.
Collapse
Affiliation(s)
- Palak Patel
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohit Sharma
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarika Maitra Bhattacharyya
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Huang H, Ivlev AV, Nosenko V, Yang W, Du CR. Dissipative solitary waves in a two-dimensional complex plasma: Amorphous versus crystalline. Phys Rev E 2023; 107:045205. [PMID: 37198834 DOI: 10.1103/physreve.107.045205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/22/2023] [Indexed: 05/19/2023]
Abstract
The propagation of a dissipative soliton was experimentally studied in a two-dimensional binary complex plasma. The crystallization was suppressed in the center of the particle suspension where two types of particles were mixed. The motions of individual particles were recorded using video microscopy, and the macroscopic properties of the solitons were measured in the amorphous binary mixture in the center and in the plasma crystal in the periphery. Although the overall shape and parameters of solitons propagating in amorphous and crystalline regions were quite similar, their velocity structures at small scales as well as the velocity distributions were profoundly distinct. Moreover, the local structure rearranged drastically in and behind the soliton, which was not observed in the plasma crystal. Langevin dynamics simulations were performed, and the results agreed with the experimental observations.
Collapse
Affiliation(s)
- He Huang
- College of Science, Donghua University, Shanghai 201620, People's Republic of China
| | - Alexei V Ivlev
- Max Plank Institute for Extraterrestrial Physics, Garching 85748, Germany
| | - Volodymyr Nosenko
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Cologne 51147, Germany
| | - Wei Yang
- College of Science, Donghua University, Shanghai 201620, People's Republic of China
| | - Cheng-Ran Du
- College of Science, Donghua University, Shanghai 201620, People's Republic of China
- Member of Magnetic Confinement Fusion Research Centre, Ministry of Education, Shanghai 201620, People's Republic of China
| |
Collapse
|
12
|
Lerbinger M, Barbot A, Vandembroucq D, Patinet S. Relevance of Shear Transformations in the Relaxation of Supercooled Liquids. PHYSICAL REVIEW LETTERS 2022; 129:195501. [PMID: 36399740 DOI: 10.1103/physrevlett.129.195501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 07/18/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
While deeply supercooled liquids exhibit divergent viscosity and increasingly heterogeneous dynamics as the temperature drops, their structure shows only seemingly marginal changes. Understanding the nature of relaxation processes in this dramatic slowdown is key for understanding the glass transition. Here, we show by atomistic simulations that the heterogeneous dynamics of glass-forming liquids strongly correlate with the local residual plastic strengths along soft directions computed in the initial inherent structures. The correlation increases with decreasing temperature and is maximum in the vicinity of the relaxation time. For the lowest temperature investigated, this maximum is comparable with the best values from the literature dealing with the structure-property relationship. However, the nonlinear probe of the local shear resistance in soft directions provides here a real-space picture of relaxation processes. Our detection method of thermal rearrangements allows us to investigate the first passage time statistics and to study the scaling between the activation energy barriers and the residual plastic strengths. These results shed new light on the nature of relaxations of glassy systems by emphasizing the analogy between the thermal relaxations in viscous liquids and the plastic shear transformation in amorphous solids.
Collapse
Affiliation(s)
- Matthias Lerbinger
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Armand Barbot
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Damien Vandembroucq
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Sylvain Patinet
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| |
Collapse
|
13
|
Cao X, Sun M. Influence of the interatomic repulsive hardness on the microstructure and dynamics of CuZr metallic glasses. J Mol Model 2022; 28:265. [DOI: 10.1007/s00894-022-05269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022]
|
14
|
Wu S, Soreide HS, Chen B, Bian J, Yang C, Li C, Zhang P, Cheng P, Zhang J, Peng Y, Liu G, Li Y, Roven HJ, Sun J. Freezing solute atoms in nanograined aluminum alloys via high-density vacancies. Nat Commun 2022; 13:3495. [PMID: 35715468 PMCID: PMC9206034 DOI: 10.1038/s41467-022-31222-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Low-temperature decomposition of supersaturated solid solution into unfavorable intergranular precipitates is a long-standing bottleneck limiting the practical applications of nanograined aluminum alloys that are prepared by severe plastic deformation. Minimizing the vacancy concentration is generally regarded as an effective approach in suppressing the decomposition process. Here we report a counterintuitive strategy to stabilize supersaturated solid solution in nanograined Al-Cu alloys via high-density vacancies in combination with Sc microalloying. By generating a two orders of magnitude higher concentration of vacancies bonded in strong (Cu, Sc, vacancy)-rich atomic complexes, a high thermal stability is achieved in an Al-Cu-Sc alloy that precipitation is nearly suppressed up to ~230 °C. The solute-vacancy complexes also enable the nanograined Al-Cu alloys with higher strength, greater strain hardening capability and ductility. These findings provide perspectives towards the great potentials of solute-vacancy interaction and the development of nanograined alloys with high stability and well-performed mechanical properties. Low-temperature decomposition and insufficient plastic deformability are bottlenecks that limit the practical applications of nanograined Al alloys. Here the authors utilize a high density vacancies in combination with Sc microalloying to stabilize nanograined Al-Cu alloys.
Collapse
Affiliation(s)
- Shenghua Wu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hanne S Soreide
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Bin Chen
- Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Jianjun Bian
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6/a, Padua, 35131, Italy
| | - Chong Yang
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chunan Li
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Peng Zhang
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Pengming Cheng
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinyu Zhang
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yong Peng
- Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Gang Liu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yanjun Li
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
| | - Hans J Roven
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
15
|
Banerjee A, Sevilla M, Rudzinski JF, Cortes-Huerto R. Finite-size scaling and thermodynamics of model supercooled liquids: long-range concentration fluctuations and the role of attractive interactions. SOFT MATTER 2022; 18:2373-2382. [PMID: 35258066 DOI: 10.1039/d2sm00089j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We compute partial structure factors, Kirkwood-Buff integrals (KBIs) and chemical potentials of model supercooled liquids with and without attractive interactions. We aim at investigating whether relatively small differences in the tail of the radial distribution functions result in contrasting thermodynamic properties. Our results suggest that the attractive potential favours the nucleation of long-range structures. Indeed, upon decreasing temperature, Bathia-Thornton structure factors display anomalous behaviour in the k→0 limit. KBIs extrapolated to the thermodynamic limit confirm this picture, and excess coordination numbers identify the anomaly with long-range concentration fluctuations. By contrast, the purely repulsive system remains perfectly miscible for the same temperature interval and only reveals qualitatively similar concentration fluctuations in the crystalline state. Furthermore, differences in both isothermal compressibilities and chemical potentials show that thermodynamics is not entirely governed by the short-range repulsive part of the interaction potential, emphasising the nonperturbative role of attractive interactions. Finally, at higher density, where both systems display nearly identical dynamical properties and repulsive interactions become dominant, the anomaly disappears, and both systems also exhibit similar thermodynamic properties.
Collapse
Affiliation(s)
- Atreyee Banerjee
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Mauricio Sevilla
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Joseph F Rudzinski
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
16
|
Katsumi S, Saigusa M, Ito F. Molecular Aggregation Dynamics via a Liquid-like Cluster Intermediate during Heterogeneous Evaporation as Revealed by Hyperspectral Camera Fluorescence Imaging. J Phys Chem B 2022; 126:976-984. [PMID: 35077181 DOI: 10.1021/acs.jpcb.1c09507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A hyperspectral camera (HSC) is a camera with great potential to obtain spectral information at each pixel, together with spatial imaging. HSC fluorescence imaging enables the molecular aggregation dynamics of the evaporative crystallization process to be followed in real-time. The key intermediate liquid-like cluster state for the two-step nucleation mechanism is visualized by the fluorescence color changes of mechanochromic luminescent dibenzoylmethanatoboron difluoride derivatives. Three types of emissive species (Crystal, BG-aggregates, and Amorphous) are generated from monomers in solution (low order and density) via liquid-like cluster (high density and low order) during solvent evaporation. These emissive species have partially different aggregated states based on fluorescence decay and fluorescence excitation spectral measurements. In terms of crystallization dynamics, our results indicate that it is important not only to generate supersaturated states but also to maintain the survival time of the liquid-like cluster. Moreover, we demonstrate that HSC fluorescence imaging can be a powerful tool for visualizing heterogeneous molecular aggregation processes.
Collapse
Affiliation(s)
- Shiho Katsumi
- Graduate School of Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda 386-8567, Japan
| | - Mai Saigusa
- Department of Chemistry, Institute of Education, Shinshu University, 6-ro, Nishinagano, Nagano 380-8544, Japan
| | - Fuyuki Ito
- Department of Chemistry, Institute of Education, Shinshu University, 6-ro, Nishinagano, Nagano 380-8544, Japan
| |
Collapse
|
17
|
Mutual Information in Molecular and Macromolecular Systems. Int J Mol Sci 2021; 22:ijms22179577. [PMID: 34502480 PMCID: PMC8430596 DOI: 10.3390/ijms22179577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 11/22/2022] Open
Abstract
The relaxation properties of viscous liquids close to their glass transition (GT) have been widely characterised by the statistical tool of time correlation functions. However, the strong influence of ubiquitous non-linearities calls for new, alternative tools of analysis. In this respect, information theory-based observables and, more specifically, mutual information (MI) are gaining increasing interest. Here, we report on novel, deeper insight provided by MI-based analysis of molecular dynamics simulations of molecular and macromolecular glass-formers on two distinct aspects of transport and relaxation close to GT, namely dynamical heterogeneity (DH) and secondary Johari–Goldstein (JG) relaxation processes. In a model molecular liquid with significant DH, MI reveals two populations of particles organised in clusters having either filamentous or compact globular structures that exhibit different mobility and relaxation properties. In a model polymer melt, MI provides clearer evidence of JG secondary relaxation and sharper insight into its DH. It is found that both DH and MI between the orientation and the displacement of the bonds reach (local) maxima at the time scales of the primary and JG secondary relaxation. This suggests that, in (macro)molecular systems, the mechanistic explanation of both DH and relaxation must involve rotation/translation coupling.
Collapse
|
18
|
Attia E, Dyre JC, Pedersen UR. Extreme case of density scaling: The Weeks-Chandler-Andersen system at low temperatures. Phys Rev E 2021; 103:062140. [PMID: 34271644 DOI: 10.1103/physreve.103.062140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/28/2021] [Indexed: 11/07/2022]
Abstract
This paper studies numerically the Weeks-Chandler-Andersen system, which is shown to obey hidden scale invariance with a density-scaling exponent that varies from below 5 to above 500. This unprecedented variation makes it advantageous to use the fourth-order Runge-Kutta algorithm for tracing out isomorphs. Good isomorph invariance of structure and dynamics is observed over more than three orders of magnitude temperature variation. For all state points studied, the virial potential-energy correlation coefficient and the density-scaling exponent are controlled mainly by the temperature. Based on the assumption of statistically independent pair interactions, a mean-field theory is developed that rationalizes this finding and provides an excellent fit to data at low temperatures.
Collapse
Affiliation(s)
- Eman Attia
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
| | - Ulf R Pedersen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
| |
Collapse
|
19
|
Singh A, Singh Y. How attractive and repulsive interactions affect structure ordering and dynamics of glass-forming liquids. Phys Rev E 2021; 103:052105. [PMID: 34134190 DOI: 10.1103/physreve.103.052105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/15/2021] [Indexed: 11/07/2022]
Abstract
The theory developed in our previous papers [Phys. Rev. E 99, 030101(R) (2019)10.1103/PhysRevE.99.030101; Phys. Rev. E 103, 032611 (2021)10.1103/PhysRevE.103.032611] is applied in this paper to investigate the dependence of slowing down of dynamics of glass-forming liquids on the attractive and repulsive parts of intermolecular interactions. Through an extensive comparison of the behavior of a Lennard-Jones glass-forming liquid and that of its WCA reduction to a model with truncated pair potential without attractive tail, we demonstrate why the two systems exhibit very different dynamics despite having nearly identical pair correlation functions. In particular, we show that local structures characterized by the number of mobile and immobile particles around a central particle markedly differ in the two systems at densities and temperatures where their dynamics show large difference and nearly identical where dynamics nearly overlap. We also show how the parameter ψ(T) that measures the role of fluctuations embedded in the system on size of the cooperatively reorganizing cluster (CRC) and the crossover temperature T_{a} depend on the intermolecular interactions. These parameters stemming from the intermolecular interactions characterize the temperature and density dependence of structural relaxation time τ_{α}. The quantitative and qualitative agreements found with simulation results for the two systems suggest that our theory brings out the underlying features that determine the dynamics of glass-forming liquids.
Collapse
Affiliation(s)
- Ankit Singh
- Department of Physics, Banaras Hindu University, Varanasi-221 005, India
| | - Yashwant Singh
- Department of Physics, Banaras Hindu University, Varanasi-221 005, India
| |
Collapse
|
20
|
Zhang M, Chen Y, Dai LH. Universal Scaling in the Temperature-Dependent Viscous Dynamics of Metallic Glasses. J Phys Chem B 2021; 125:3419-3425. [PMID: 33764771 DOI: 10.1021/acs.jpcb.1c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The essential query about glass formation is how to understand the sheer temperature dependence of viscous dynamics of glass-forming liquids near the liquid-to-glass-transition temperature Tg. In this work, we report a universal scaling in the temperature-dependent viscous dynamics of metallic glasses (MGs) in the form of the Williams-Landel-Ferry equation on the basis of compiled data on the temperature-dependent viscosity and structural relaxation times of 89 MGs ever-reported in the past decades. Implications of this universal scaling are illustrated in the framework of the Adam-Gibbs relation, suggesting a universal vitrification mechanism in MGs mediated by configurational entropy wherein configurational entropy vanishes universally for all supercooled metallic liquids after a further decrease in temperature of ∼170.7 K (whereas with a relatively large error of ±150 K) below Tg. This result corroborates the thermodynamic origin of glass formation and suggests that MGs are an ideal research subject for understanding in depth the nature of glass transition for their relatively simple molecular structures.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.,State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Chen
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan-Hong Dai
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
González-López K, Shivam M, Zheng Y, Ciamarra MP, Lerner E. Mechanical disorder of sticky-sphere glasses. I. Effect of attractive interactions. Phys Rev E 2021; 103:022605. [PMID: 33736046 DOI: 10.1103/physreve.103.022605] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/13/2021] [Indexed: 11/07/2022]
Abstract
Recent literature indicates that attractive interactions between particles of a dense liquid play a secondary role in determining its bulk mechanical properties. Here we show that, in contrast with their apparent unimportance to the bulk mechanics of dense liquids, attractive interactions can have a major effect on macro- and microscopic elastic properties of glassy solids. We study several broadly applicable dimensionless measures of stability and mechanical disorder in simple computer glasses, in which the relative strength of attractive interactions-referred to as "glass stickiness"-can be readily tuned. We show that increasing glass stickiness can result in the decrease of various quantifiers of mechanical disorder, on both macro- and microscopic scales, with a pair of intriguing exceptions to this rule. Interestingly, in some cases strong attractions can lead to a reduction of the number density of soft, quasilocalized modes, by up to an order of magnitude, and to a substantial decrease in their core size, similar to the effects of thermal annealing on elasticity observed in recent works. Contrary to the behavior of canonical glass models, we provide compelling evidence indicating that the stabilization mechanism in our sticky-sphere glasses stems predominantly from the self-organized depletion of interactions featuring large, negative stiffnesses. Finally, we establish a fundamental link between macroscopic and microscopic quantifiers of mechanical disorder, which we motivate via scaling arguments. Future research directions are discussed.
Collapse
Affiliation(s)
- Karina González-López
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Mahajan Shivam
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yuanjian Zheng
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Massimo Pica Ciamarra
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Naples, Italy
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Study the atomistic structure of monatomic vanadium under different cooling rates by molecular dynamics simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Gish CM, Nan K, Hoy RS. Does the Sastry transition control cavitation in simple liquids? J Chem Phys 2020; 153:184504. [DOI: 10.1063/5.0023236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Caitlin M. Gish
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Kai Nan
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Robert S. Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
24
|
Ojovan MI. On Viscous Flow in Glass-Forming Organic Liquids. Molecules 2020; 25:E4029. [PMID: 32899408 PMCID: PMC7504771 DOI: 10.3390/molecules25174029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022] Open
Abstract
The two-exponential Sheffield equation of viscosity η(T) = A1·T·[1 + A2·exp(Hm/RT)]·[1 + C·exp(Hd/RT)], where A1, A2, Hm, C, and Hm are material-specific constants, is used to analyze the viscous flows of two glass-forming organic materials-salol and α-phenyl-o-cresol. It is demonstrated that the viscosity equation can be simplified to a four-parameter version: η(T) = A·T·exp(Hm/RT)]·[1 + C·exp(Hd/RT)]. The Sheffield model gives a correct description of viscosity, with two exact Arrhenius-type asymptotes below and above the glass transition temperature, whereas near the Tg it gives practically the same results as well-known and widely used viscosity equations. It is revealed that the constants of the Sheffield equation are not universal for all temperature ranges and may need to be updated for very high temperatures, where changes occur in melt properties leading to modifications of A and Hm for both salol and α-phenyl-o-cresol.
Collapse
Affiliation(s)
- Michael I. Ojovan
- Department of Materials, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK; or ; Tel.: +44-747-828-9098
- Department of Radiochemistry, Moscow State University Named after M.V. Lomonosov, Leninskie Gory 1, Bd.3, 119991 Moscow, Russia
| |
Collapse
|