1
|
Usachov DY, Glazkova D, Tarasov AV, Schulz S, Poelchen G, Bokai KA, Vilkov OY, Dudin P, Kummer K, Kliemt K, Krellner C, Vyalikh DV. Estimating the Orientation of 4f Magnetic Moments by Classical Photoemission. J Phys Chem Lett 2022; 13:7861-7869. [PMID: 35977384 DOI: 10.1021/acs.jpclett.2c02203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To use efficiently the magnetic functionalities emerging at the surfaces or interfaces of novel lanthanides-based materials, there is a need for complementary methods to probe the atomic-layer resolved magnetic properties. Here, we show that 4f photoelectron spectroscopy is highly sensitive to the collective orientation of 4f magnetic moments and, thus, a powerful tool for characterizing the related properties. To demonstrate this, we present the results of systematic study of a family of layered crystalline 4f-materials, which are crystallized in the body-centered tetragonal ThCr2Si2 structure. Analysis of 4f spectra indicates that the 4f moments at the surface experience a strong reorientation with respect to the bulk, caused by changes of the crystal-electric field. The presented database of the computed 4f spectra for all trivalent rare-earth ions in their different MJ states will facilitate the estimation of the orientation of the 4f magnetic moments in the layered 4f-systems for efficient control of their magnetic properties.
Collapse
Affiliation(s)
- Dmitry Yu Usachov
- St. Petersburg State University, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| | - Daria Glazkova
- St. Petersburg State University, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| | - Artem V Tarasov
- St. Petersburg State University, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| | - Susanne Schulz
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Georg Poelchen
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, D-01062 Dresden, Germany
- European Synchrotron Radiation Facility (ESRF), 38043 Grenoble, France
| | - Kirill A Bokai
- St. Petersburg State University, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| | - Oleg Yu Vilkov
- St. Petersburg State University, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| | - Pavel Dudin
- Synchrotron-SOLEIL, Saint-Aubin, BP48, 91192 Gif-sur-Yvette, France
| | - Kurt Kummer
- European Synchrotron Radiation Facility (ESRF), 38043 Grenoble, France
| | - Kristin Kliemt
- Kristall-und Materiallabor, Physikalisches Institut, Goethe-Universität Frankfurt, Max-von-Laue Strasse 1, D-60438 Frankfurt am Main, Germany
| | - Cornelius Krellner
- Kristall-und Materiallabor, Physikalisches Institut, Goethe-Universität Frankfurt, Max-von-Laue Strasse 1, D-60438 Frankfurt am Main, Germany
| | - Denis V Vyalikh
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
2
|
Poelchen G, Rusinov IP, Schulz S, Güttler M, Mende M, Generalov A, Usachov DY, Danzenbächer S, Hellwig J, Peters M, Kliemt K, Kucherenko Y, Antonov VN, Laubschat C, Chulkov EV, Ernst A, Kummer K, Krellner C, Vyalikh DV. Interlayer Coupling of a Two-Dimensional Kondo Lattice with a Ferromagnetic Surface in the Antiferromagnet CeCo 2P 2. ACS NANO 2022; 16:3573-3581. [PMID: 35156797 DOI: 10.1021/acsnano.1c10705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The f-driven temperature scales at the surfaces of strongly correlated materials have increasingly come into the focus of research efforts. Here, we unveil the emergence of a two-dimensional Ce Kondo lattice, which couples ferromagnetically to the ordered Co lattice below the P-terminated surface of the antiferromagnet CeCo2P2. In its bulk, Ce is passive and behaves tetravalently. However, because of symmetry breaking and an effective magnetic field caused by an uncompensated ferromagnetic Co layer, the Ce 4f states become partially occupied and spin-polarized near the surface. The momentum-resolved photoemission measurements indicate a strong admixture of the Ce 4f states to the itinerant bands near the Fermi level including surface states that are split by exchange interaction with Co. The temperature-dependent measurements reveal strong changes of the 4f intensity at the Fermi level in accordance with the Kondo scenario. Our findings show how rich and diverse the f-driven properties can be at the surface of materials without f-physics in the bulk.
Collapse
Affiliation(s)
- Georg Poelchen
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01062 Dresden, Germany
| | - Igor P Rusinov
- Tomsk State University, 634050 Tomsk, Russia
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Susanne Schulz
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01062 Dresden, Germany
| | - Monika Güttler
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01062 Dresden, Germany
| | - Max Mende
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01062 Dresden, Germany
| | | | - Dmitry Yu Usachov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Steffen Danzenbächer
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01062 Dresden, Germany
| | - Johannes Hellwig
- Kristall- und Materiallabor, Physikalisches Institut, Goethe-Universität Frankfurt, Max-von-Laue Strasse 1, 60438 Frankfurt am Main, Germany
| | - Marius Peters
- Kristall- und Materiallabor, Physikalisches Institut, Goethe-Universität Frankfurt, Max-von-Laue Strasse 1, 60438 Frankfurt am Main, Germany
| | - Kristin Kliemt
- Kristall- und Materiallabor, Physikalisches Institut, Goethe-Universität Frankfurt, Max-von-Laue Strasse 1, 60438 Frankfurt am Main, Germany
| | - Yuri Kucherenko
- G. V. Kurdyumov Institute for Metal Physics, National Academy of Science of Ukraine, 03142 Kiev, Ukraine
| | - Victor N Antonov
- G. V. Kurdyumov Institute for Metal Physics, National Academy of Science of Ukraine, 03142 Kiev, Ukraine
| | - Clemens Laubschat
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01062 Dresden, Germany
| | - Evgueni V Chulkov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
- Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Ciencias Químicas, Universidad del País Vasco UPV/EHU, 20080 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
| | - Arthur Ernst
- Institut für Theoretische Physik, Johannes Kepler Universität, 4040 Linz, Austria
- Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany
| | - Kurt Kummer
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Cornelius Krellner
- Kristall- und Materiallabor, Physikalisches Institut, Goethe-Universität Frankfurt, Max-von-Laue Strasse 1, 60438 Frankfurt am Main, Germany
| | - Denis V Vyalikh
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
3
|
Schrunk B, Kushnirenko Y, Kuthanazhi B, Ahn J, Wang LL, O'Leary E, Lee K, Eaton A, Fedorov A, Lou R, Voroshnin V, Clark OJ, Sánchez-Barriga J, Bud'ko SL, Slager RJ, Canfield PC, Kaminski A. Emergence of Fermi arcs due to magnetic splitting in an antiferromagnet. Nature 2022; 603:610-615. [PMID: 35322253 DOI: 10.1038/s41586-022-04412-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/08/2022] [Indexed: 11/09/2022]
Abstract
The Fermi surface plays an important role in controlling the electronic, transport and thermodynamic properties of materials. As the Fermi surface consists of closed contours in the momentum space for well-defined energy bands, disconnected sections known as Fermi arcs can be signatures of unusual electronic states, such as a pseudogap1. Another way to obtain Fermi arcs is to break either the time-reversal symmetry2 or the inversion symmetry3 of a three-dimensional Dirac semimetal, which results in formation of pairs of Weyl nodes that have opposite chirality4, and their projections are connected by Fermi arcs at the bulk boundary3,5-12. Here, we present experimental evidence that pairs of hole- and electron-like Fermi arcs emerge below the Neel temperature (TN) in the antiferromagnetic state of cubic NdBi due to a new magnetic splitting effect. The observed magnetic splitting is unusual, as it creates bands of opposing curvature, which change with temperature and follow the antiferromagnetic order parameter. This is different from previous theoretically considered13,14 and experimentally reported cases15,16 of magnetic splitting, such as traditional Zeeman and Rashba, in which the curvature of the bands is preserved. Therefore, our findings demonstrate a type of magnetic band splitting in the presence of a long-range antiferromagnetic order that is not readily explained by existing theoretical ideas.
Collapse
Affiliation(s)
| | - Yevhen Kushnirenko
- Ames Laboratory, Ames, Iowa, USA.,Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
| | - Brinda Kuthanazhi
- Ames Laboratory, Ames, Iowa, USA.,Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
| | - Junyeong Ahn
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Evan O'Leary
- Ames Laboratory, Ames, Iowa, USA.,Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
| | - Kyungchan Lee
- Ames Laboratory, Ames, Iowa, USA.,Department of Physics and Astronomy, Iowa State University, Ames, IA, USA.,Physikalisches Institut, Universität Würzburg, Würzburg, Germany.,Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Würzburg, Germany
| | - Andrew Eaton
- Ames Laboratory, Ames, Iowa, USA.,Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
| | - Alexander Fedorov
- Leibniz Institute for Solid State and Materials Research, Dresden, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Rui Lou
- Leibniz Institute for Solid State and Materials Research, Dresden, Germany.,School of Physical Science and Technology, Lanzhou University, Lanzhou, China
| | | | - Oliver J Clark
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | | | - Sergey L Bud'ko
- Ames Laboratory, Ames, Iowa, USA.,Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
| | - Robert-Jan Slager
- Department of Physics, Harvard University, Cambridge, MA, USA. .,TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Paul C Canfield
- Ames Laboratory, Ames, Iowa, USA. .,Department of Physics and Astronomy, Iowa State University, Ames, IA, USA.
| | - Adam Kaminski
- Ames Laboratory, Ames, Iowa, USA. .,Department of Physics and Astronomy, Iowa State University, Ames, IA, USA.
| |
Collapse
|
4
|
Sino PAL, Feng LY, Villaos RAB, Cruzado HN, Huang ZQ, Hsu CH, Chuang FC. Anisotropic Rashba splitting in Pt-based Janus monolayers PtXY (X,Y = S, Se, or Te). NANOSCALE ADVANCES 2021; 3:6608-6616. [PMID: 36132660 PMCID: PMC9419079 DOI: 10.1039/d1na00334h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Recent studies have demonstrated the feasibility of synthesizing two-dimensional (2D) Janus materials which possess intrinsic structural asymmetry. Hence, we performed a systematic first-principles study of 2D Janus transition metal dichalcogenide (TMD) monolayers based on PtXY (X,Y = S, Se, or Te). Our calculated formation energies show that these monolayer Janus structures retain the 1T phase. Furthermore, phonon spectral calculations confirm that these Janus TMD monolayers are thermodynamically stable. We found that PtSSe, PtSTe, and PtSeTe exhibit an insulating phase with indirect band gaps of 2.108, 1.335, and 1.221 eV, respectively, from hybrid functional calculations. Due to the breaking of centrosymmetry in the crystal structure, the spin-orbit coupling (SOC)-induced anisotropic Rashba splitting is observed around the M point. The calculated Rashba strengths from M to Γ (α M-Γ R) are 1.654, 1.103, and 0.435 eV Å-1, while the calculated values from M to K (α M-K R) are 1.333, 1.244, and 0.746 eV Å-1, respectively, for PtSSe, PtSTe, and PtSeTe. Interestingly, the spin textures reveal that the spin-splitting is mainly attributed to the Rashba effect. However, a Dresselhaus-like contribution also plays a secondary role. Finally, we found that the band gaps and the strength of the Rashba effect can be further tuned through biaxial strain. Our findings indeed show that Pt-based Janus TMDs demonstrate the potential for spintronics applications.
Collapse
Affiliation(s)
- Paul Albert L Sino
- Department of Physics, National Sun Yat-sen University 70 Lienhai Rd. Kaohsiung 80424 Taiwan +886-7-5253733
| | - Liang-Ying Feng
- Department of Physics, National Sun Yat-sen University 70 Lienhai Rd. Kaohsiung 80424 Taiwan +886-7-5253733
| | - Rovi Angelo B Villaos
- Department of Physics, National Sun Yat-sen University 70 Lienhai Rd. Kaohsiung 80424 Taiwan +886-7-5253733
| | - Harvey N Cruzado
- Department of Physics, National Sun Yat-sen University 70 Lienhai Rd. Kaohsiung 80424 Taiwan +886-7-5253733
- Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, College Laguna 4031 Philippines
| | - Zhi-Quan Huang
- Department of Physics, National Sun Yat-sen University 70 Lienhai Rd. Kaohsiung 80424 Taiwan +886-7-5253733
| | - Chia-Hsiu Hsu
- Department of Physics, National Sun Yat-sen University 70 Lienhai Rd. Kaohsiung 80424 Taiwan +886-7-5253733
- Department of Physics, National Tsing Hua University Hsinchu 30013 Taiwan
| | - Feng-Chuan Chuang
- Department of Physics, National Sun Yat-sen University 70 Lienhai Rd. Kaohsiung 80424 Taiwan +886-7-5253733
- Physics Division, National Center for Theoretical Sciences Taipei 10617 Taiwan
- Department of Physics, National Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
5
|
Céspedes-Berrocal D, Damas H, Petit-Watelot S, Maccariello D, Tang P, Arriola-Córdova A, Vallobra P, Xu Y, Bello JL, Martin E, Migot S, Ghanbaja J, Zhang S, Hehn M, Mangin S, Panagopoulos C, Cros V, Fert A, Rojas-Sánchez JC. Current-Induced Spin Torques on Single GdFeCo Magnetic Layers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007047. [PMID: 33604960 DOI: 10.1002/adma.202007047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Spintronics exploit spin-orbit coupling (SOC) to generate spin currents, spin torques, and, in the absence of inversion symmetry, Rashba and Dzyaloshinskii-Moriya interactions. The widely used magnetic materials, based on 3d metals such as Fe and Co, possess a small SOC. To circumvent this shortcoming, the common practice has been to utilize the large SOC of nonmagnetic layers of 5d heavy metals (HMs), such as Pt, to generate spin currents and, in turn, exert spin torques on the magnetic layers. Here, a new class of material architectures is introduced, excluding nonmagnetic 5d HMs, for high-performance spintronics operations. Very strong current-induced torques exerted on single ferrimagnetic GdFeCo layers, due to the combination of large SOC of the Gd 5d states and inversion symmetry breaking mainly engineered by interfaces, are demonstrated. These "self-torques" are enhanced around the magnetization compensation temperature and can be tuned by adjusting the spin absorption outside the GdFeCo layer. In other measurements, the very large emission of spin current from GdFeCo, 80% (20%) of spin anomalous Hall effect (spin Hall effect) symmetry is determined. This material platform opens new perspectives to exert "self-torques" on single magnetic layers as well as to generate spin currents from a magnetic layer.
Collapse
Affiliation(s)
- David Céspedes-Berrocal
- Institute Jean Lamour, Université de Lorraine, CNRS, Nancy, F-54000, France
- Facultad de Ciencias, Universidad Nacional de Ingeniería, Rímac, Lima, 15333, Peru
| | - Heloïse Damas
- Institute Jean Lamour, Université de Lorraine, CNRS, Nancy, F-54000, France
| | | | - Davide Maccariello
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, 91767, France
| | - Ping Tang
- Department of Physics, University of Arizona, Tucson, AZ, 85721, USA
| | - Aldo Arriola-Córdova
- Institute Jean Lamour, Université de Lorraine, CNRS, Nancy, F-54000, France
- Facultad de Ciencias, Universidad Nacional de Ingeniería, Rímac, Lima, 15333, Peru
| | - Pierre Vallobra
- Institute Jean Lamour, Université de Lorraine, CNRS, Nancy, F-54000, France
| | - Yong Xu
- Institute Jean Lamour, Université de Lorraine, CNRS, Nancy, F-54000, France
| | - Jean-Loïs Bello
- Institute Jean Lamour, Université de Lorraine, CNRS, Nancy, F-54000, France
| | - Elodie Martin
- Institute Jean Lamour, Université de Lorraine, CNRS, Nancy, F-54000, France
| | - Sylvie Migot
- Institute Jean Lamour, Université de Lorraine, CNRS, Nancy, F-54000, France
| | - Jaafar Ghanbaja
- Institute Jean Lamour, Université de Lorraine, CNRS, Nancy, F-54000, France
| | - Shufeng Zhang
- Department of Physics, University of Arizona, Tucson, AZ, 85721, USA
| | - Michel Hehn
- Institute Jean Lamour, Université de Lorraine, CNRS, Nancy, F-54000, France
| | - Stéphane Mangin
- Institute Jean Lamour, Université de Lorraine, CNRS, Nancy, F-54000, France
| | - Christos Panagopoulos
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Vincent Cros
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, 91767, France
| | - Albert Fert
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, 91767, France
| | | |
Collapse
|
6
|
Zhao HJ, Nakamura H, Arras R, Paillard C, Chen P, Gosteau J, Li X, Yang Y, Bellaiche L. Purely Cubic Spin Splittings with Persistent Spin Textures. PHYSICAL REVIEW LETTERS 2020; 125:216405. [PMID: 33275000 DOI: 10.1103/physrevlett.125.216405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Purely cubic spin splittings in the band structure of bulk insulators have not been extensively investigated yet despite the fact that they may pave the way for novel spin-orbitronic applications and can also result in a variety of promising spin phenomena. By symmetry analysis and first-principles simulations, we report symmetry-enforced purely cubic spin splittings (SEPCSS) that can even lead to persistent spin textures. In particular, these SEPCSS can be thought to be complementary to the cubic Rashba and cubic Dresselhaus types of spin splittings. Strikingly, the presently discovered SEPCSS are expected to exist in the large family of materials crystallizing in the 6[over ¯]m2 and 6[over ¯] point groups, including the Ge_{3}Pb_{5}O_{11}, Pb_{7}Br_{2}F_{12}, and Pb_{7}Cl_{2}F_{12} compounds.
Collapse
Affiliation(s)
- Hong Jian Zhao
- Physics Department, University of Arkansas, Fayetteville, Arkansas 72701, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Hiro Nakamura
- Physics Department, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Rémi Arras
- CEMES, Université de Toulouse, CNRS, UPS, 29 Rue Jeanne Marvig, F-31055 Toulouse, France
| | - Charles Paillard
- Physics Department, University of Arkansas, Fayetteville, Arkansas 72701, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
- Laboratoire SPMS, CentraleSuplec/CNRS UMR8580, Université Paris-Saclay, 8-10 Rue Joliot-Curie, 91190 Gif-sur-Yvette, France
| | - Peng Chen
- Physics Department, University of Arkansas, Fayetteville, Arkansas 72701, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Julien Gosteau
- CEMES, Université de Toulouse, CNRS, UPS, 29 Rue Jeanne Marvig, F-31055 Toulouse, France
| | - Xu Li
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurong Yang
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Laurent Bellaiche
- Physics Department, University of Arkansas, Fayetteville, Arkansas 72701, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|