1
|
Aumann T, Bertulani CA, Duer M, Galatyuk T, Obertelli A, Panin V, Rodríguez-Sánchez JL, Roth R, Stroth J. Nuclear structure opportunities with GeV radioactive beams at FAIR. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230121. [PMID: 38910400 DOI: 10.1098/rsta.2023.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/10/2024] [Indexed: 06/25/2024]
Abstract
The Facility for Antiproton and Ion Research (FAIR) is in its final construction stage next to the campus of the Gesellschaft für Schwerionenforschung Helmholtzzentrum for heavy-ion research in Darmstadt, Germany. Once it starts its operation, it will be the main nuclear physics research facility in many basic sciences and their applications in Europe for the coming decades. Owing to the ability of the new fragment separator, Super-FRagment Separator, to produce high-intensity radioactive ion beams in the energy range up to about 2 GeV/nucleon, these can be used in various nuclear reactions. This opens a unique opportunity for various nuclear structure studies across a range of fields and scales: from low-energy physics via the investigation of multi-neutron systems and halos to high-density nuclear matter and the equation of state, following heavy-ion collisions, fission and study of short-range correlations in nuclei and hypernuclei. The newly developed reactions with relativistic radioactive beams (R3B) set up at FAIR would be the most suitable and versatile for such studies. An overview of highlighted physics cases foreseen at R3B is given, along with possible future opportunities, at FAIR. This article is part of the theme issue 'The liminal position of Nuclear Physics: from hadrons to neutron stars'.
Collapse
Affiliation(s)
- T Aumann
- Institut für Kernphysik, Technische Universität Darmstadt , Darmstadt 64289, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1 , Darmstadt 64291, Germany
- Helmholtz Forschungsakademie Hessen für FAIR (HFHF) , Darmstadt 64291, Germany
| | - C A Bertulani
- Helmholtz Forschungsakademie Hessen für FAIR (HFHF) , Darmstadt 64291, Germany
- Texas A&M University-Commerce , Commerce, TX 75429, USA
| | - M Duer
- Institut für Kernphysik, Technische Universität Darmstadt , Darmstadt 64289, Germany
| | - T Galatyuk
- Institut für Kernphysik, Technische Universität Darmstadt , Darmstadt 64289, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1 , Darmstadt 64291, Germany
- Helmholtz Forschungsakademie Hessen für FAIR (HFHF) , Darmstadt 64291, Germany
| | - A Obertelli
- Institut für Kernphysik, Technische Universität Darmstadt , Darmstadt 64289, Germany
- Helmholtz Forschungsakademie Hessen für FAIR (HFHF) , Darmstadt 64291, Germany
| | - V Panin
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1 , Darmstadt 64291, Germany
| | | | - R Roth
- Institut für Kernphysik, Technische Universität Darmstadt , Darmstadt 64289, Germany
- Helmholtz Forschungsakademie Hessen für FAIR (HFHF) , Darmstadt 64291, Germany
| | - J Stroth
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1 , Darmstadt 64291, Germany
- Helmholtz Forschungsakademie Hessen für FAIR (HFHF) , Darmstadt 64291, Germany
- Institut für Kernphysik, Johann Wolfgang Goethe-Universität , Frankfurt 60438, Germany
| |
Collapse
|
2
|
Dalal R, Douglas MacGregor IJ. Nucleon-nucleon correlations inside atomic nuclei: synergies, observations and theoretical models. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:034301. [PMID: 38335543 DOI: 10.1088/1361-6633/ad27dd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
While the main features of atomic nuclei are well described by nuclear mean-field models, there is a large and growing body of evidence which indicates an important additional role played by spatially-correlated nucleon-nucleon structures. The role of nucleonic structures was first suggested by Heidmann in 1950 to explain the pick-up reactions of energetic nucleons. Since then, a steady flux of new experimental evidence has confirmed the presence of similar structures inside atomic nuclei, dominated by correlations between pairs of nucleons. The role of these internal nucleon-nucleon correlations has been established using various energetic probes like photons, pions, leptons and hadrons. These correlated structures are essential for understanding the interaction of particles with nuclei and their presence provides an explanation of many specific nuclear phenomena, including backscattered protons, copious deuteron production, sub-threshold particle production, neutrino interactions with nuclei and the European Muon Collaboration effect. On the theoretical side, these measurements have stimulated a large number of phenomenological models specifically devised to address these enigmatic observations. While reviews exist for specific interactions, there is currently no published commentary which systematically encompasses the wide range of experimental signatures and theoretical frameworks developed thus far. The present review draws together the synergies between a wide range of different experimental and theoretical studies, summarizes progress in this area and highlights outstanding issues for further study.
Collapse
Affiliation(s)
- Ranjeet Dalal
- Guru Jambheshwar University of Science and Technology, Hisar, India
| | - I J Douglas MacGregor
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|