1
|
Wang J, Wang X, Wu Z, Zhao X, Wu S, Shi L, Kivshar Y, Zi J. Inherent Spin-Orbit Locking in Topological Lasing via Bound State in the Continuum. PHYSICAL REVIEW LETTERS 2025; 134:133802. [PMID: 40250348 DOI: 10.1103/physrevlett.134.133802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/03/2025] [Indexed: 04/20/2025]
Abstract
Bound states in the continuum (BICs) are exotic optical topological singularities that defy the typical radiation within the continuum of radiative modes and carry topological polarization vortices in momentum space. Enabling ultrahigh quality factors, BICs have been applied in realizing lasing and Bose-Einstein condensation, and their momentum-space vortex topologies have been exploited in passive systems, revealing novel spin-orbit photonic effects. Here, we demonstrate the inherent spin-orbit locking in topological BIC lasing. Utilizing C_{4v} and C_{6v} photonic crystal slabs, we achieve distinct spin-orbit locking combinations in BIC lasing of +1 and -2 topological charges. Spin-orbit locking phenomena are directly observed by momentum-space spin-dependent self-interference patterns. Real-space spin separations, as a counterpart of the momentum-space spin-orbit locking, are also revealed. Our results reveal new spin-orbit locking phenomena in BIC lasing, presenting significant potential for advancements in topological photonic source applications.
Collapse
Affiliation(s)
- Jiajun Wang
- Fudan University, State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Shanghai 200433, China
| | - Xinhao Wang
- Fudan University, State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Shanghai 200433, China
| | - Zhaochen Wu
- Fudan University, State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Shanghai 200433, China
| | - Xingqi Zhao
- Fudan University, State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Shanghai 200433, China
| | - Shunben Wu
- Fudan University, State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Shanghai 200433, China
| | - Lei Shi
- Fudan University, State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Shanghai 200433, China
- Fudan University, Institute for Nanoelectronic Devices and Quantum Computing, Shanghai 200438, China
- Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Yuri Kivshar
- The Australian National University, Nonlinear Physics Centre, Research School of Physics, Canberra ACT 2601, Australia
| | - Jian Zi
- Fudan University, State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Shanghai 200433, China
- Fudan University, Institute for Nanoelectronic Devices and Quantum Computing, Shanghai 200438, China
- Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
2
|
Hu Z, Bongiovanni D, Wang Z, Wang X, Song D, Xu J, Morandotti R, Buljan H, Chen Z. Topological orbital angular momentum extraction and twofold protection of vortex transport. NATURE PHOTONICS 2024; 19:162-169. [PMID: 39926337 PMCID: PMC11802459 DOI: 10.1038/s41566-024-01564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/07/2024] [Indexed: 02/11/2025]
Abstract
Vortex phenomena are ubiquitous in nature. In optics, despite the availability of numerous techniques for vortex generation and detection, topological protection of vortex transport with desired orbital angular momentum (OAM) remains a challenge. Here, by use of topological disclination, we demonstrate a scheme to confine and guide vortices featuring arbitrary high-order charges. Such a scheme relies on twofold topological protection: a non-trivial winding in momentum space due to chiral symmetry, and a non-trivial winding in real space due to the complex coupling of OAM modes across the disclination structure. We unveil a vorticity-coordinated rotational symmetry, which sets up a universal relation between the vortex topological charge and the rotational symmetry order of the system. As an example, we construct photonic disclination lattices with a single core but different C n symmetries and achieve robust transport of an optical vortex with preserved OAM solely corresponding to one selected zero-energy vortex mode at the mid-gap. Furthermore, we show that such topological structures can be used for vortex filtering to extract a chosen OAM mode from mixed excitations. Our results illustrate the fundamental interplay of vorticity, disclination and higher-order topology, which may open a new pathway for the development of OAM-based photonic devices such as vortex guides, fibres and lasers.
Collapse
Affiliation(s)
- Zhichan Hu
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, China
| | - Domenico Bongiovanni
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, China
- INRS-EMT, Varennes, Quebec Canada
| | - Ziteng Wang
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, China
| | - Xiangdong Wang
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, China
| | - Daohong Song
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
| | - Jingjun Xu
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, China
| | | | - Hrvoje Buljan
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, China
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Zhigang Chen
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
| |
Collapse
|
3
|
Huang Y, Yang C, Yuan W, Zhang Y, Pan Y, Yang F, Zhong Z, Zhao J, Wright OB, Ren J. Parity-Frequency-Space Elastic Spin Control of Wave Routing in Topological Phononic Circuits. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404839. [PMID: 39083318 PMCID: PMC11423203 DOI: 10.1002/advs.202404839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/06/2024] [Indexed: 09/26/2024]
Abstract
Topological phononic cavities, such as ring resonators with topological whispering gallery modes (TWGMs), offer a flexible platform for the realization of robust phononic circuits. However, the chiral mechanism governing TWGMs and their selective routing in integrated phononic circuits remain unclear. This work reveals, both experimentally and theoretically, that at a phononic topological interface, the elastic spin texture is intricately linked to, and can be explained through a knowledge of, the phonon eigenmodes inside each unit cell. Furthermore, for paired, counterpropagating TWGMs based on such interfaces in a waveguide resonator, this study demonstrates that the elastic spin exhibits locking at discrete frequencies. Backed up by theory, experiments on kHz TWGMs in thin honeycomb-lattice aluminum plates bored with clover-leaf shaped holes show that together with this spin-texture related angular-momentum locking mechanism at a single topological interface, there are triplicate parity-frequency-space selective wave routing mechanisms. In the future, these mechanisms can be harnessed for the versatile manipulation of elastic-spin based routing in phononic topological insulators.
Collapse
Affiliation(s)
- Yao Huang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 100 Zhangwu Road, Shanghai, 200092, P. R. China
| | - Chenwen Yang
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Weitao Yuan
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Yuxuan Zhang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 100 Zhangwu Road, Shanghai, 200092, P. R. China
| | - Yongdong Pan
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 100 Zhangwu Road, Shanghai, 200092, P. R. China
| | - Fan Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 100 Zhangwu Road, Shanghai, 200092, P. R. China
| | - Zheng Zhong
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Jinfeng Zhao
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 100 Zhangwu Road, Shanghai, 200092, P. R. China
| | - Oliver B Wright
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
- Hokkaido University, Sapporo, Hokkaido, 060-0808, Japan
| | - Jie Ren
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
4
|
Ouyang YH, Luan HY, Zhao ZW, Mao WZ, Ma RM. Singular dielectric nanolaser with atomic-scale field localization. Nature 2024; 632:287-293. [PMID: 39020170 DOI: 10.1038/s41586-024-07674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/05/2024] [Indexed: 07/19/2024]
Abstract
Compressing the optical field to the atomic scale opens up possibilities for directly observing individual molecules, offering innovative imaging and research tools for both physical and life sciences. However, the diffraction limit imposes a fundamental constraint on how much the optical field can be compressed, based on the achievable photon momentum1,2. In contrast to dielectric structures, plasmonics offer superior field confinement by coupling the light field with the oscillations of free electrons in metals3-6. Nevertheless, plasmonics suffer from inherent ohmic loss, leading to heat generation, increased power consumption and limitations on the coherence time of plasmonic devices7,8. Here we propose and demonstrate singular dielectric nanolasers showing a mode volume that breaks the optical diffraction limit. Derived from Maxwell's equations, we discover that the electric-field singularity sustained in a dielectric bowtie nanoantenna originates from divergence of momentum. The singular dielectric nanolaser is constructed by integrating a dielectric bowtie nanoantenna into the centre of a twisted lattice nanocavity. The synergistic integration surpasses the diffraction limit, enabling the singular dielectric nanolaser to achieve an ultrasmall mode volume of about 0.0005 λ3 (λ, free-space wavelength), along with an exceptionally small feature size at the 1-nanometre scale. To fabricate the required dielectric bowtie nanoantenna with a single-nanometre gap, we develop a two-step process involving etching and atomic deposition. Our research showcases the ability to achieve atomic-scale field localization in laser devices, paving the way for ultra-precise measurements, super-resolution imaging, ultra-efficient computing and communication, and the exploration of light-matter interactions within the realm of extreme optical field localization.
Collapse
Affiliation(s)
- Yun-Hao Ouyang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Hong-Yi Luan
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zi-Wei Zhao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Wen-Zhi Mao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Ren-Min Ma
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| |
Collapse
|
5
|
Chai R, Liu W, Li Z, Zhang Y, Wang H, Cheng H, Tian J, Chen S. Spatial Information Lasing Enabled by Full-k-Space Bound States in the Continuum. PHYSICAL REVIEW LETTERS 2024; 132:183801. [PMID: 38759196 DOI: 10.1103/physrevlett.132.183801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024]
Abstract
Optical amplification and massive information transfer in modern physics depend on stimulated radiation. However, regardless of traditional macroscopic lasers or emerging micro- and nanolasers, the information modulations are generally outside the lasing cavities. On the other hand, bound states in the continuum (BICs) with inherently enormous Q factors are limited to zero-dimensional singularities in momentum space. Here, we propose the concept of spatial information lasing, whose lasing information entropy can be correspondingly controlled by near-field Bragg coupling of guided modes. This concept is verified in gain-loss metamaterials supporting full-k-space BICs with both flexible manipulations and strong confinement of light fields. The counterintuitive high-dimensional BICs exist in a continuous energy band, which provide a versatile platform to precisely control each lasing Fourier component and, thus, can directly convey rich spatial information on the compact size. Single-mode operation achieved in our scheme ensures consistent and stable lasing information. Our findings can be expanded to different wave systems and open new scenarios in informational coherent amplification and high-Q physical frameworks for both classical and quantum applications.
Collapse
Affiliation(s)
- Ruoheng Chai
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Wenwei Liu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Zhancheng Li
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Yuebian Zhang
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Haonan Wang
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Hua Cheng
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Jianguo Tian
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Shuqi Chen
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
- The Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
6
|
Ji X, Yang X. Generalized bulk-boundary correspondence in periodically driven non-Hermitian systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:243001. [PMID: 38387101 DOI: 10.1088/1361-648x/ad2c73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
We present a pedagogical review of the periodically driven non-Hermitian systems, particularly on the rich interplay between the non-Hermitian skin effect and the topology. We start by reviewing the non-Bloch band theory of the static non-Hermitian systems and discuss the establishment of its generalized bulk-boundary correspondence (BBC). Ultimately, we focus on the non-Bloch band theory of two typical periodically driven non-Hermitian systems: harmonically driven non-Hermitian system and periodically quenched non-Hermitian system. The non-Bloch topological invariants were defined on the generalized Brillouin zone and the real space wave functions to characterize the Floquet non-Hermtian topological phases. Then, the generalized BBC was established for the two typical periodically driven non-Hermitian systems. Additionally, we review novel phenomena in the higher-dimensional periodically driven non-Hermitian systems, including Floquet non-Hermitian higher-order topological phases and Floquet hybrid skin-topological modes. The experimental realizations and recent advances have also been surveyed. Finally, we end with a summarization and hope this pedagogical review can motivate further research on Floquet non-Hermtian topological physics.
Collapse
Affiliation(s)
- Xiang Ji
- Department of Physics, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xiaosen Yang
- Department of Physics, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
7
|
Cerjan A, Loring TA, Schulz-Baldes H. Local Markers for Crystalline Topology. PHYSICAL REVIEW LETTERS 2024; 132:073803. [PMID: 38427858 DOI: 10.1103/physrevlett.132.073803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/19/2024] [Indexed: 03/03/2024]
Abstract
Over the last few years, crystalline topology has been used in photonic crystals to realize edge- and corner-localized states that enhance light-matter interactions for potential device applications. However, the band-theoretic approaches currently used to classify bulk topological crystalline phases cannot predict the existence, localization, or spectral isolation of any resulting boundary-localized modes. While interfaces between materials in different crystalline phases must have topological states at some energy, these states need not appear within the band gap, and thus may not be useful for applications. Here, we derive a class of local markers for identifying material topology due to crystalline symmetries, as well as a corresponding measure of topological protection. As our real-space-based approach is inherently local, it immediately reveals the existence and robustness of topological boundary-localized states, yielding a predictive framework for designing topological crystalline heterostructures. Beyond enabling the optimization of device geometries, we anticipate that our framework will also provide a route forward to deriving local markers for other classes of topology that are reliant upon spatial symmetries.
Collapse
Affiliation(s)
- Alexander Cerjan
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Terry A Loring
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Hermann Schulz-Baldes
- FAU Erlangen-Nürnberg, Department Mathematik, Cauerstr. 11, D-91058 Erlangen, Germany
| |
Collapse
|
8
|
Ni X, Liu Y, Lou B, Zhang M, Hu EL, Fan S, Mazur E, Tang H. Three-Dimensional Reconfigurable Optical Singularities in Bilayer Photonic Crystals. PHYSICAL REVIEW LETTERS 2024; 132:073804. [PMID: 38427898 DOI: 10.1103/physrevlett.132.073804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/12/2024] [Indexed: 03/03/2024]
Abstract
Metasurfaces and photonic crystals have revolutionized classical and quantum manipulation of light and opened the door to studying various optical singularities related to phases and polarization states. However, traditional nanophotonic devices lack reconfigurability, hindering the dynamic switching and optimization of optical singularities. This paper delves into the underexplored concept of tunable bilayer photonic crystals (BPhCs), which offer rich interlayer coupling effects. Utilizing silicon nitride-based BPhCs, we demonstrate tunable bidirectional and unidirectional polarization singularities, along with spatiotemporal phase singularities. Leveraging these tunable singularities, we achieve dynamic modulation of bound-state-in-continuum states, unidirectional guided resonances, and both longitudinal and transverse orbital angular momentum. Our work paves the way for multidimensional control over polarization and phase, inspiring new directions in ultrafast optics, optoelectronics, and quantum optics.
Collapse
Affiliation(s)
- Xueqi Ni
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Yuan Liu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Beicheng Lou
- Department of Applied Physics and Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Mingjie Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Evelyn L Hu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Shanhui Fan
- Department of Applied Physics and Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Eric Mazur
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Haoning Tang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
9
|
Sakamoto I, Okada S, Nishiyama N, Hu X, Amemiya T. Deep learning improves performance of topological bending waveguides. OPTICS EXPRESS 2024; 32:1286-1294. [PMID: 38297683 DOI: 10.1364/oe.507479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/16/2023] [Indexed: 02/02/2024]
Abstract
This study introduced design informatics using deep learning in a topological photonics system and applied it to a topological waveguide with a sharp bending structure to further reduce propagation loss. The sharp bend in the topological waveguide composed of two photonic crystals wherein dielectrics having C6v symmetry were arranged in triangle lattices of hexagons, and the designing of parameters individually for 6 × 6 unit cells near the bending region using deep learning resulted in an output improvement of 60% compared to the initial structure. The proposed structural design method has high versatility and applicability for various topological photonic structures.
Collapse
|
10
|
Wang L, Wu L, Pan Y. Perovskite Topological Lasers: A Brand New Combination. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:28. [PMID: 38202483 PMCID: PMC10781028 DOI: 10.3390/nano14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Nanolasers are the essential components of modern photonic chips due to their low power consumption, high energy efficiency and fast modulation. As nanotechnology has advanced, researchers have proposed a number of nanolasers operating at both wavelength and sub-wavelength scales for application as light sources in photonic chips. Despite the advances in chip technology, the quality of the optical cavity, the operating threshold and the mode of operation of the light source still limit its advanced development. Ensuring high-performance laser operation has become a challenge as device size has been significantly reduced. A potential solution to this problem is the emergence of a novel optical confinement mechanism using photonic topological insulator lasers. In addition, gain media materials with perovskite-like properties have shown great potential for lasers, a role that many other gain materials cannot fulfil. When combined with topological laser modes, perovskite materials offer new possibilities for the operation and emission mechanism of nanolasers. This study introduces the operating mechanism of topological lasers and the optical properties of perovskite materials. It then outlines the key features of their combination and discusses the principles, structures, applications and prospects of perovskite topological lasers, including the scientific hurdles they face. Finally, the future development of low-dimensional perovskite topological lasers is explored.
Collapse
Affiliation(s)
| | | | - Yong Pan
- College of Science, Xi’an University of Architecture & Technology, Xi’an 710055, China; (L.W.); (L.W.)
| |
Collapse
|
11
|
Luan HY, Ouyang YH, Zhao ZW, Mao WZ, Ma RM. Reconfigurable moiré nanolaser arrays with phase synchronization. Nature 2023; 624:282-288. [PMID: 38092911 DOI: 10.1038/s41586-023-06789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
Miniaturized lasers play a central role in the infrastructure of modern information society. The breakthrough in laser miniaturization beyond the wavelength scale has opened up new opportunities for a wide range of applications1-4, as well as for investigating light-matter interactions in extreme-optical-field localization and lasing-mode engineering5-19. An ultimate objective of microscale laser research is to develop reconfigurable coherent nanolaser arrays that can simultaneously enhance information capacity and functionality. However, the absence of a suitable physical mechanism for reconfiguring nanolaser cavities hinders the demonstration of nanolasers in either a single cavity or a fixed array. Here we propose and demonstrate moiré nanolaser arrays based on optical flatbands in twisted photonic graphene lattices, in which coherent nanolasing is realized from a single nanocavity to reconfigurable arrays of nanocavities. We observe synchronized nanolaser arrays exhibiting high spatial and spectral coherence, across a range of distinct patterns, including P, K and U shapes and the Chinese characters '' and '' ('China' in Chinese). Moreover, we obtain nanolaser arrays that emit with spatially varying relative phases, allowing us to manipulate emission directions. Our work lays the foundation for the development of reconfigurable active devices that have potential applications in communication, LiDAR (light detection and ranging), optical computing and imaging.
Collapse
Affiliation(s)
- Hong-Yi Luan
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yun-Hao Ouyang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zi-Wei Zhao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Wen-Zhi Mao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Ren-Min Ma
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| |
Collapse
|
12
|
Ma J, Zhou T, Tang M, Li H, Zhang Z, Xi X, Martin M, Baron T, Liu H, Zhang Z, Chen S, Sun X. Room-temperature continuous-wave topological Dirac-vortex microcavity lasers on silicon. LIGHT, SCIENCE & APPLICATIONS 2023; 12:255. [PMID: 37872140 PMCID: PMC10593858 DOI: 10.1038/s41377-023-01290-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023]
Abstract
Robust laser sources are a fundamental building block for contemporary information technologies. Originating from condensed-matter physics, the concept of topology has recently entered the realm of optics, offering fundamentally new design principles for lasers with enhanced robustness. In analogy to the well-known Majorana fermions in topological superconductors, Dirac-vortex states have recently been investigated in passive photonic systems and are now considered as a promising candidate for robust lasers. Here, we experimentally realize the topological Dirac-vortex microcavity lasers in InAs/InGaAs quantum-dot materials monolithically grown on a silicon substrate. We observe room-temperature continuous-wave linearly polarized vertical laser emission at a telecom wavelength. We confirm that the wavelength of the Dirac-vortex laser is topologically robust against variations in the cavity size, and its free spectral range defies the universal inverse scaling law with the cavity size. These lasers will play an important role in CMOS-compatible photonic and optoelectronic systems on a chip.
Collapse
Affiliation(s)
- Jingwen Ma
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Taojie Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
- Department of Electronic and Electrical Engineering, University College London, London, WC1E 7JE, UK
| | - Mingchu Tang
- Department of Electronic and Electrical Engineering, University College London, London, WC1E 7JE, UK
| | - Haochuan Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zhan Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xiang Xi
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Mickael Martin
- Université Grenoble Alpes, CNRS, CEA-LETI, MINATEC, Grenoble INP, LTM, F-38054, Grenoble, France
| | - Thierry Baron
- Université Grenoble Alpes, CNRS, CEA-LETI, MINATEC, Grenoble INP, LTM, F-38054, Grenoble, France
| | - Huiyun Liu
- Department of Electronic and Electrical Engineering, University College London, London, WC1E 7JE, UK
| | - Zhaoyu Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Siming Chen
- Department of Electronic and Electrical Engineering, University College London, London, WC1E 7JE, UK.
| | - Xiankai Sun
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
13
|
Xu S, Wang Y, Agarwal R. Absence of Topological Protection of the Interface States in Z_{2} Photonic Crystals. PHYSICAL REVIEW LETTERS 2023; 131:053802. [PMID: 37595208 DOI: 10.1103/physrevlett.131.053802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/13/2023] [Indexed: 08/20/2023]
Abstract
Inspired from electronic systems, topological photonics aims to engineer new optical devices with robust properties. In many cases, the ideas from topological phases protected by internal symmetries in fermionic systems are extended to those protected by crystalline symmetries. One such popular photonic crystal model was proposed by Wu and Hu in 2015 for realizing a bosonic Z_{2} topological crystalline insulator with robust topological edge states, which led to intense theoretical and experimental studies. However, a rigorous relationship between the bulk topology and edge properties for this model, which is central to evaluating its advantage over traditional photonic designs, has never been established. In this Letter, we revisit the expanded and shrunken honeycomb lattice structures proposed by Wu and Hu and show that they are topologically trivial in the sense that symmetric, localized Wannier functions can be constructed. We show that the Z and Z_{2} type classifications of the Wu-Hu model are equivalent to the C_{2}T protected Euler class and the second Stiefel-Whitney class, respectively, with the latter characterizing the full valence bands of the Wu-Hu model, indicating only a higher order topological insulator. Additionally, we show that the Wu-Hu interface states can be gapped by a uniform topology preserving C_{6} and T symmetric perturbation, which demonstrates the trivial nature of the interface. Our result reveals that topology is not a necessary condition for the reported helical edge states in many photonics systems and opens new possibilities for interface engineering that may not be constrained by topological considerations.
Collapse
Affiliation(s)
- Shupeng Xu
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yuhui Wang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ritesh Agarwal
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
14
|
Ren H, Maier SA. Nanophotonic Materials for Twisted-Light Manipulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2106692. [PMID: 34716627 DOI: 10.1002/adma.202106692] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Twisted light, an unbounded set of helical spatial modes carrying orbital angular momentum (OAM), offers not only fundamental new insights into structured light-matter interactions, but also a new degree of freedom to boost optical and quantum information capacity. However, current OAM experiments still rely on bulky, expensive, and slow-response diffractive or refractive optical elements, hindering today's OAM systems to be largely deployed. In the last decade, nanophotonics has transformed the photonic design and unveiled a diverse range of compact and multifunctional nanophotonic devices harnessing the generation and detection of OAM modes. Recent metasurface devices developed for OAM generation in both real and momentum space, presenting design principle and exemplary devices, are summarized. Moreover, recent development of whispering-gallery-mode-based passive and tunable microcavities, capable of extracting degenerate OAM modes for on-chip vortex emission and lasing, is summarized. In addition, the design principle of different plasmonic devices and photodetectors recently developed for on-chip OAM detection is discussed. Current challenges faced by the nanophotonic field for twisted-light manipulation and future advances to meet these challenges are further discussed. It is believed that twisted-light manipulation in nanophotonics will continue to make significant impact on future development of ultracompact, ultrahigh-capacity, and ultrahigh-speed OAM systems-on-a-chip.
Collapse
Affiliation(s)
- Haoran Ren
- MQ Photonics Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie Park, NSW, 2109, Australia
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, 80539, Munich, Germany
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
15
|
Han S, Cui J, Chua Y, Zeng Y, Hu L, Dai M, Wang F, Sun F, Zhu S, Li L, Davies AG, Linfield EH, Tan CS, Kivshar Y, Wang QJ. Electrically-pumped compact topological bulk lasers driven by band-inverted bound states in the continuum. LIGHT, SCIENCE & APPLICATIONS 2023; 12:145. [PMID: 37308488 PMCID: PMC10261106 DOI: 10.1038/s41377-023-01200-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
One of the most exciting breakthroughs in physics is the concept of topology that was recently introduced to photonics, achieving robust functionalities, as manifested in the recently demonstrated topological lasers. However, so far almost all attention was focused on lasing from topological edge states. Bulk bands that reflect the topological bulk-edge correspondence have been largely missed. Here, we demonstrate an electrically pumped topological bulk quantum cascade laser (QCL) operating in the terahertz (THz) frequency range. In addition to the band-inversion induced in-plane reflection due to topological nontrivial cavity surrounded by a trivial domain, we further illustrate the band edges of such topological bulk lasers are recognized as the bound states in the continuum (BICs) due to their nonradiative characteristics and robust topological polarization charges in the momentum space. Therefore, the lasing modes show both in-plane and out-of-plane tight confinements in a compact laser cavity (lateral size ~3λlaser). Experimentally, we realize a miniaturized THz QCL that shows single-mode lasing with a side-mode suppression ratio (SMSR) around 20 dB. We also observe a cylindrical vector beam for the far-field emission, which is evidence for topological bulk BIC lasers. Our demonstration on miniaturization of single-mode beam-engineered THz lasers is promising for many applications including imaging, sensing, and communications.
Collapse
Affiliation(s)
- Song Han
- Centre for Optoelectronics and Biophotonics, School of Electrical and Electronic Engineering & The Photonics Institute, Nanyang Technological University, Singapore, Singapore.
| | - Jieyuan Cui
- Centre for Optoelectronics and Biophotonics, School of Electrical and Electronic Engineering & The Photonics Institute, Nanyang Technological University, Singapore, Singapore
| | - Yunda Chua
- Centre for Optoelectronics and Biophotonics, School of Electrical and Electronic Engineering & The Photonics Institute, Nanyang Technological University, Singapore, Singapore
| | - Yongquan Zeng
- Electronic Information School, Wuhan University, Wuhan, China
| | - Liangxing Hu
- Centre for Optoelectronics and Biophotonics, School of Electrical and Electronic Engineering & The Photonics Institute, Nanyang Technological University, Singapore, Singapore
| | - Mingjin Dai
- Centre for Optoelectronics and Biophotonics, School of Electrical and Electronic Engineering & The Photonics Institute, Nanyang Technological University, Singapore, Singapore
| | - Fakun Wang
- Centre for Optoelectronics and Biophotonics, School of Electrical and Electronic Engineering & The Photonics Institute, Nanyang Technological University, Singapore, Singapore
| | - Fangyuan Sun
- Centre for Optoelectronics and Biophotonics, School of Electrical and Electronic Engineering & The Photonics Institute, Nanyang Technological University, Singapore, Singapore
| | - Song Zhu
- Centre for Optoelectronics and Biophotonics, School of Electrical and Electronic Engineering & The Photonics Institute, Nanyang Technological University, Singapore, Singapore
| | - Lianhe Li
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | | | | | - Chuan Seng Tan
- Centre for Optoelectronics and Biophotonics, School of Electrical and Electronic Engineering & The Photonics Institute, Nanyang Technological University, Singapore, Singapore
| | - Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, ACT, 2601, Australia
| | - Qi Jie Wang
- Centre for Optoelectronics and Biophotonics, School of Electrical and Electronic Engineering & The Photonics Institute, Nanyang Technological University, Singapore, Singapore.
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
16
|
Elshahat S, Zhang H, Lu C. Topological rainbow based on coupling of topological waveguide and cavity. OPTICS EXPRESS 2023; 31:20187-20199. [PMID: 37381418 DOI: 10.1364/oe.493182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023]
Abstract
Topological photonics and topological photonic states have opened up a new frontier for optical manipulation and robust light trapping. The topological rainbow can separate different frequencies of topological states into different positions. This work combines a topological photonic crystal waveguide (topological PCW) with the optical cavity. The dipole and quadrupole topological rainbows are realized through increasing cavity size along the coupling interface. The flatted band can be obtained by increasing cavity length due to interaction strength between the optical field and defected region material which is extensively promoted. The light propagation through the coupling interface is built on the evanescent overlapping mode tails of the localized fields between bordering cavities. Thus, the ultra-low group velocity is realized at a cavity length more than the lattice constant, which is appropriate for realizing an accurate and precise topological rainbow. Hence, this is a novel release for strong localization with robust transmission and owns the possibility to realize high-performance optical storage devices.
Collapse
|
17
|
Liu H, Lai P, Wang H, Cheng H, Tian J, Chen S. Topological phases and non-Hermitian topology in photonic artificial microstructures. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2273-2294. [PMID: 39633770 PMCID: PMC11502100 DOI: 10.1515/nanoph-2022-0778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/01/2023] [Indexed: 12/07/2024]
Abstract
In the past few decades, the discovery of topological matter states has ushered in a new era in topological physics, providing a robust framework for strategically controlling the transport of particles or waves. Topological photonics, in particular, has sparked considerable research due to its ability to construct and manipulate photonic topological states via photonic artificial microstructures. Although the concept of topology originates from condensed matter, topological photonics has given rise to new fundamental ideas and a range of potential applications that may lead to revolutionary technologies. Here, we review recent developments in topological photonics, with a focus on the realization and application of several emerging research areas in photonic artificial microstructures. We highlight the research trend, spanning from the photonic counterpart of topological insulator phases, through topological semimetal phases, to other emerging non-Hermitian topologies.
Collapse
Affiliation(s)
- Hui Liu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Pengtao Lai
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Haonan Wang
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Hua Cheng
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Jianguo Tian
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Shuqi Chen
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
- The Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, China
| |
Collapse
|
18
|
Guo Y, Qiu D, Shao M, Song J, Wang Y, Xu M, Yang C, Li P, Liu H, Xiong J. Modulations in Superconductors: Probes of Underlying Physics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209457. [PMID: 36504310 DOI: 10.1002/adma.202209457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Indexed: 06/02/2023]
Abstract
The importance of modulations is elevated to an unprecedented level, due to the delicate conditions required to bring out exotic phenomena in quantum materials, such as topological materials, magnetic materials, and superconductors. Recently, state-of-the-art modulation techniques in material science, such as electric-double-layer transistor, piezoelectric-based strain apparatus, angle twisting, and nanofabrication, have been utilized in superconductors. They not only efficiently increase the tuning capability to the broader ranges but also extend the tuning dimensionality to unprecedented degrees of freedom, including quantum fluctuations of competing phases, electronic correlation, and phase coherence essential to global superconductivity. Here, for a comprehensive review, these techniques together with the established modulation methods, such as elemental substitution, annealing, and polarization-induced gating, are contextualized. Depending on the mechanism of each method, the modulations are categorized into stoichiometric manipulation, electrostatic gating, mechanical modulation, and geometrical design. Their recent advances are highlighted by applications in newly discovered superconductors, e.g., nickelates, Kagome metals, and magic-angle graphene. Overall, the review is to provide systematic modulations in emergent superconductors and serve as the coordinate for future investigations, which can stimulate researchers in superconductivity and other fields to perform various modulations toward a thorough understanding of quantum materials.
Collapse
Affiliation(s)
- Yehao Guo
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Dong Qiu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Mingxin Shao
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jingyan Song
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yang Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Minyi Xu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chao Yang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Peng Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Haiwen Liu
- Department of Physics, Beijing Normal University, Beijing, 100875, China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
19
|
Li Y, Xu S, Zhang Z, Yang Y, Xie X, Ye W, Liu F, Xue H, Jing L, Wang Z, Chen QD, Sun HB, Li E, Chen H, Gao F. Polarization-Orthogonal Nondegenerate Plasmonic Higher-Order Topological States. PHYSICAL REVIEW LETTERS 2023; 130:213603. [PMID: 37295078 DOI: 10.1103/physrevlett.130.213603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 04/19/2023] [Indexed: 06/12/2023]
Abstract
Photonic topological states, providing light-manipulation approaches in robust manners, have attracted intense attention. Connecting photonic topological states with far-field degrees of freedom (d.o.f.) has given rise to fruitful phenomena. Recently emerged higher-order topological insulators (HOTIs), hosting boundary states two or more dimensions lower than those of bulk, offer new paradigms to localize or transport light topologically in extended dimensionalities. However, photonic HOTIs have not been related to d.o.f. of radiation fields yet. Here, we report the observation of polarization-orthogonal second-order topological corner states at different frequencies on a designer-plasmonic kagome metasurface in the far field. Such phenomenon stands on two mechanisms, i.e., projecting the far-field polarizations to the intrinsic parity d.o.f. of lattice modes and the parity splitting of the plasmonic corner states in spectra. We theoretically and numerically show that the parity splitting originates from the underlying interorbital coupling. Both near-field and far-field experiments verify the polarization-orthogonal nondegenerate second-order topological corner states. These results promise applications in robust optical single photon emitters and multiplexed photonic devices.
Collapse
Affiliation(s)
- Yuanzhen Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| | - Su Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zijian Zhang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| | - Yumeng Yang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| | - Xinrong Xie
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| | - Wenzheng Ye
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
| | - Feng Liu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Haoran Xue
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Liqiao Jing
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| | - Zuojia Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| | - Qi-Dai Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hong-Bo Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China
| | - Erping Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
| | - Fei Gao
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| |
Collapse
|
20
|
Abstract
The topological properties of an object, associated with an integer called the topological invariant, are global features that cannot change continuously but only through abrupt variations, hence granting them intrinsic robustness. Engineered metamaterials (MMs) can be tailored to support highly nontrivial topological properties of their band structure, relative to their electronic, electromagnetic, acoustic and mechanical response, representing one of the major breakthroughs in physics over the past decade. Here, we review the foundations and the latest advances of topological photonic and phononic MMs, whose nontrivial wave interactions have become of great interest to a broad range of science disciplines, such as classical and quantum chemistry. We first introduce the basic concepts, including the notion of topological charge and geometric phase. We then discuss the topology of natural electronic materials, before reviewing their photonic/phononic topological MM analogues, including 2D topological MMs with and without time-reversal symmetry, Floquet topological insulators, 3D, higher-order, non-Hermitian and nonlinear topological MMs. We also discuss the topological aspects of scattering anomalies, chemical reactions and polaritons. This work aims at connecting the recent advances of topological concepts throughout a broad range of scientific areas and it highlights opportunities offered by topological MMs for the chemistry community and beyond.
Collapse
Affiliation(s)
- Xiang Ni
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
- School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China
| | - Simon Yves
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Alex Krasnok
- Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, USA
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
- Department of Electrical Engineering, City College, The City University of New York, 160 Convent Avenue, New York, New York 10031, United States
- Physics Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
21
|
Wang D, Jia H, Yang Q, Hu J, Zhang ZQ, Chan CT. Intrinsic Triple Degeneracy Point Bounded by Nodal Surfaces in Chiral Photonic Crystal. PHYSICAL REVIEW LETTERS 2023; 130:203802. [PMID: 37267572 DOI: 10.1103/physrevlett.130.203802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/24/2023] [Indexed: 06/04/2023]
Abstract
In periodic systems, band degeneracies are typically protected and classified by spatial symmetries. However, in photonic systems, the Γ point at zero frequency is an intrinsic degeneracy due to the polarization degree of freedom of electromagnetic waves. For chiral photonic crystals, such an intrinsic degeneracy carries ±2 chiral topological charge while having linear band dispersions, different from the general perception of charge-2 nodes being associated with quadratic dispersions. Here, we show that these topological characters originate from the spin-1 Weyl point at zero frequency node of triple degeneracy, due to the existence of an electrostatic flat band. Such a topological charge at zero frequency is usually buried in bulk band projections and has never been experimentally observed. To address this challenge, we introduce space-group screw symmetries in the design of chiral photonic crystal, which makes the Brillouin zone boundary an oppositely charged nodal surface enclosing the Γ point. As a result, the emergent Fermi arcs are forced to connect the projections of these topological singularities, enabling their experimental observation. The number of Fermi arcs then directly reveals the embedded topological charge at zero frequency.
Collapse
Affiliation(s)
- Dongyang Wang
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongwei Jia
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
- Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong, China
| | - Quanlong Yang
- School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China
| | - Jing Hu
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Z Q Zhang
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - C T Chan
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
22
|
Liao K, Zhong Y, Du Z, Liu G, Li C, Wu X, Deng C, Lu C, Wang X, Chan CT, Song Q, Wang S, Liu X, Hu X, Gong Q. On-chip integrated exceptional surface microlaser. SCIENCE ADVANCES 2023; 9:eadf3470. [PMID: 37043581 PMCID: PMC10096563 DOI: 10.1126/sciadv.adf3470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
The on-chip integrated visible microlaser is a core unit of high-speed visible-light communication with huge bandwidth resources, which needs robustness against fabrication errors, compressible linewidth, reducible threshold, and in-plane emission. However, until now, it has been a great challenge to meet these requirements simultaneously. Here, we report a scalable strategy to realize a robust on-chip integrated visible microlaser with further improved lasing performances enabled by the increased orders (n) of exceptional surfaces, and experimentally verify the strategy by demonstrating the performances of a second-order exceptional surface-tailored microlaser. We further prove the potential application of the strategy by discussing an exceptional surface-tailored topological microlaser with unique performances. This work lays a foundation for further development of on-chip integrated high-speed visible-light communication and processing systems, provides a platform for the fundamental study of non-Hermitian photonics, and proposes a feasible method of joint research for non-Hermitian photonics with nonlinear optics and topological photonics.
Collapse
Affiliation(s)
- Kun Liao
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter, Beijing Academy of Quantum Information Sciences, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Yangguang Zhong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhuochen Du
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter, Beijing Academy of Quantum Information Sciences, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Guodong Liu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter, Beijing Academy of Quantum Information Sciences, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Chentong Li
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter, Beijing Academy of Quantum Information Sciences, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Xianxin Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Chunhua Deng
- State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Cuicui Lu
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xingyuan Wang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Che Ting Chan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Qinghai Song
- State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shufeng Wang
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter, Beijing Academy of Quantum Information Sciences, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaoyong Hu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter, Beijing Academy of Quantum Information Sciences, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter, Beijing Academy of Quantum Information Sciences, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| |
Collapse
|
23
|
Berestennikov A, Kiriushechkina S, Vakulenko A, Pushkarev AP, Khanikaev AB, Makarov SV. Perovskite Microlaser Integration with Metasurface Supporting Topological Waveguiding. ACS NANO 2023; 17:4445-4452. [PMID: 36848179 DOI: 10.1021/acsnano.2c09883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Halide perovskite nano- and microlasers have become a very convenient tool for many applications from sensing to reconfigurable optical chips. Indeed, they exhibit outstanding emission robustness to crystalline defects due to so-called "defect tolerance" allowing for their simple chemical synthesis and further integration with various photonic designs. Here we demonstrate that such robust microlasers can be combined with another class of resilient photonic components, namely, with topological metasurfaces supporting topological guided boundary modes. We show that this approach allows to outcouple and deliver the generated coherent light over tens of microns despite the presence of defects of different nature in the structure: sharp corners in the waveguide, random location of the microlaser, and defects in the microlaser caused by mechanical pressure applied during its transfer to the metasurface. As a result, the developed platform provides a strategy to attain robust integrated lasing-waveguiding designs resilient to a broad range of structural imperfections, both for electrons in a laser and for pseudo-spin-polarized photons in a waveguide.
Collapse
Affiliation(s)
- Alexander Berestennikov
- Department of Electrical Engineering, Grove School of Engineering, City College of the City University of New York, New York 10031, United States
- School of Physics and Engineering, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Svetlana Kiriushechkina
- Department of Electrical Engineering, Grove School of Engineering, City College of the City University of New York, New York 10031, United States
| | - Anton Vakulenko
- Department of Electrical Engineering, Grove School of Engineering, City College of the City University of New York, New York 10031, United States
| | - Anatoly P Pushkarev
- School of Physics and Engineering, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Alexander B Khanikaev
- Department of Electrical Engineering, Grove School of Engineering, City College of the City University of New York, New York 10031, United States
| | - Sergey V Makarov
- School of Physics and Engineering, ITMO University, Saint Petersburg 191002, Russian Federation
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, People's Republic of China
| |
Collapse
|
24
|
Han S, Chua Y, Zeng Y, Zhu B, Wang C, Qiang B, Jin Y, Wang Q, Li L, Davies AG, Linfield EH, Chong Y, Zhang B, Wang QJ. Photonic Majorana quantum cascade laser with polarization-winding emission. Nat Commun 2023; 14:707. [PMID: 36759671 PMCID: PMC9911720 DOI: 10.1038/s41467-023-36418-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Topological cavities, whose modes are protected against perturbations, are promising candidates for novel semiconductor laser devices. To date, there have been several demonstrations of topological lasers (TLs) exhibiting robust lasing modes. The possibility of achieving nontrivial beam profiles in TLs has recently been explored in the form of vortex wavefront emissions enabled by a structured optical pump or strong magnetic field, which are inconvenient for device applications. Electrically pumped TLs, by contrast, have attracted attention for their compact footprint and easy on-chip integration with photonic circuits. Here, we experimentally demonstrate an electrically pumped TL based on photonic analogue of a Majorana zero mode (MZM), implemented monolithically on a quantum cascade chip. We show that the MZM emits a cylindrical vector (CV) beam, with a topologically nontrivial polarization profile from a terahertz (THz) semiconductor laser.
Collapse
Affiliation(s)
- Song Han
- Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering & The Photonics Institute, Nanyang Technological University, Singapore, Singapore
| | - Yunda Chua
- Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering & The Photonics Institute, Nanyang Technological University, Singapore, Singapore
| | - Yongquan Zeng
- Electronic Information School, Wuhan University, Wuhan, China.
| | - Bofeng Zhu
- Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering & The Photonics Institute, Nanyang Technological University, Singapore, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chongwu Wang
- Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering & The Photonics Institute, Nanyang Technological University, Singapore, Singapore
| | - Bo Qiang
- Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering & The Photonics Institute, Nanyang Technological University, Singapore, Singapore
| | - Yuhao Jin
- Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering & The Photonics Institute, Nanyang Technological University, Singapore, Singapore
| | - Qian Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Singapore
| | - Lianhe Li
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | | | | | - Yidong Chong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Baile Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Qi Jie Wang
- Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering & The Photonics Institute, Nanyang Technological University, Singapore, Singapore.
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
25
|
Cerjan A, Loring TA. An operator-based approach to topological photonics. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4765-4780. [PMID: 39634734 PMCID: PMC11501349 DOI: 10.1515/nanoph-2022-0547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/06/2022] [Indexed: 12/07/2024]
Abstract
Recently, the study of topological structures in photonics has garnered significant interest, as these systems can realize robust, nonreciprocal chiral edge states and cavity-like confined states that have applications in both linear and nonlinear devices. However, current band theoretic approaches to understanding topology in photonic systems yield fundamental limitations on the classes of structures that can be studied. Here, we develop a theoretical framework for assessing a photonic structure's topology directly from its effective Hamiltonian and position operators, as expressed in real space, and without the need to calculate the system's Bloch eigenstates or band structure. Using this framework, we show that nontrivial topology, and associated boundary-localized chiral resonances, can manifest in photonic crystals with broken time-reversal symmetry that lack a complete band gap, a result that may have implications for new topological laser designs. Finally, we use our operator-based framework to develop a novel class of invariants for topology stemming from a system's crystalline symmetries, which allows for the prediction of robust localized states for creating waveguides and cavities.
Collapse
Affiliation(s)
- Alexander Cerjan
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM87185, USA
| | - Terry A. Loring
- Department of Mathematics and Statistics, University of NM, Albuquerque, NM87131, USA
| |
Collapse
|
26
|
Topological polarization singular lasing with highly efficient radiation channel. Nat Commun 2022; 13:6485. [PMID: 36309528 PMCID: PMC9617866 DOI: 10.1038/s41467-022-34307-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/20/2022] [Indexed: 02/08/2023] Open
Abstract
Bound states in the continuum (BICs) in photonic crystals describe the originally leaky Bloch modes that can become bounded when their radiation fields carry topological polarization singularities. However, topological polarization singularities do not carry energy to far field, which limits radiation efficiencies of BICs for light emitting applications. Here, we demonstrate a topological polarization singular laser which has a topological polarization singular channel in the second Brillouin zone and a paired linearly polarized radiation channel in the first Brillouin zone. The presence of the singular channel enables the lasing mode with a higher quality factor than other modes for single mode lasing. In the meanwhile, the presence of the radiation channel secures the lasing mode with high radiation efficiency. The demonstrated topological polarization singular laser operates at room temperature with an external quantum efficiency exceeding 24%. Our work presents a new paradigm in eigenmode engineering for mode selection, exotic field manipulation and lasing.
Collapse
|
27
|
Ma RM. Twisted phonon polaritons at deep subwavelength scale. LIGHT, SCIENCE & APPLICATIONS 2022; 11:249. [PMID: 35941137 PMCID: PMC9360044 DOI: 10.1038/s41377-022-00944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hyperbolic polariton vortices carrying reconfigurable topological charges have been realized at deep subwavelength scale.
Collapse
Affiliation(s)
- Ren-Min Ma
- State Key Lab for Mesoscopic Physics and School of Physics, Peking University, Beijing, China.
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Beijing, China.
| |
Collapse
|
28
|
Deng WM, Chen ZM, Li MY, Guo CH, Tian ZT, Sun KX, Chen XD, Chen WJ, Dong JW. Ideal nodal rings of one-dimensional photonic crystals in the visible region. LIGHT, SCIENCE & APPLICATIONS 2022; 11:134. [PMID: 35551174 PMCID: PMC9098453 DOI: 10.1038/s41377-022-00821-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 06/03/2023]
Abstract
Three-dimensional (3D) artificial metacrystals host rich topological phases, such as Weyl points, nodal rings, and 3D photonic topological insulators. These topological states enable a wide range of applications, including 3D robust waveguides, one-way fiber, and negative refraction of the surface wave. However, these carefully designed metacrystals are usually very complex, hindering their extension to nanoscale photonic systems. Here, we theoretically proposed and experimentally realized an ideal nodal ring in the visible region using a simple 1D photonic crystal. The π-Berry phase around the ring is manifested by a 2π reflection phase's winding and the resultant drumhead surface states. By breaking the inversion symmetry, the nodal ring can be gapped and the π-Berry phase would diffuse into a toroidal-shaped Berry flux, resulting in photonic ridge states (the 3D extension of quantum valley Hall states). Our results provide a simple and feasible platform for exploring 3D topological physics and its potential applications in nanophotonics.
Collapse
Affiliation(s)
- Wei-Min Deng
- School of Physics & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, China
| | - Ze-Ming Chen
- School of Physics & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, China
| | - Meng-Yu Li
- School of Physics & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, China
| | - Chao-Heng Guo
- School of Physics & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, China
| | - Zhong-Tao Tian
- School of Physics & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, China
| | - Ke-Xin Sun
- School of Physics & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xiao-Dong Chen
- School of Physics & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, China
| | - Wen-Jie Chen
- School of Physics & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, China.
| | - Jian-Wen Dong
- School of Physics & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
29
|
Ishida N, Ota Y, Lin W, Byrnes T, Arakawa Y, Iwamoto S. A large-scale single-mode array laser based on a topological edge mode. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2169-2181. [PMID: 39633954 PMCID: PMC11501996 DOI: 10.1515/nanoph-2021-0608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/07/2024]
Abstract
Topological lasers have been intensively investigated as a strong candidate for robust single-mode lasers. A typical topological laser employs a single-mode topological edge state, which appears deterministically in a designed topological bandgap and exhibits robustness to disorder. These properties seem to be highly attractive in pursuit of high-power lasers capable of single mode operation. In this paper, we theoretically analyze a large-scale single-mode laser based on a topological edge state. We consider a sizable array laser consisting of a few hundreds of site resonators, which support a single topological edge mode broadly distributed among the resonators. We build a basic model describing the laser using the tight binding approximation and evaluate the stability of single mode lasing based on the threshold gain difference Δα between the first-lasing edge mode and the second-lasing competing bulk mode. Our calculations demonstrate that stronger couplings between the cavities and lower losses are advantageous for achieving stable operation of the device. When assuming an average coupling of 100 cm-1 between site resonators and other realistic parameters, the threshold gain difference Δα can reach about 2 cm-1, which would be sufficient for stable single mode lasing using a conventional semiconductor laser architecture. We also consider the effects of possible disorders and long-range interactions to assess the robustness of the laser under non-ideal situations. These results lay the groundwork for developing single-mode high-power topological lasers.
Collapse
Affiliation(s)
- Natsuko Ishida
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan
| | - Yasutomo Ota
- Department of Applied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa223-8522, Japan
- Institute for Nano Quantum Information Electronics, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan
| | - Wenbo Lin
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan
| | - Tim Byrnes
- New York University Shanghai, 1555 Century Ave, Pudong, Shanghai, 200122, China
- State Key Laboratory of Precision Spectroscopy, School of Physical and Material Sciences, East China Normal University, Shanghai, 200062, China
- NYU-ECNU Institute of Physics at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China
- National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan
- Department of Physics, New York University, New York, NY10003, USA
| | - Yasuhiko Arakawa
- Institute for Nano Quantum Information Electronics, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan
| | - Satoshi Iwamoto
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan
- Institute for Nano Quantum Information Electronics, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan
| |
Collapse
|
30
|
Wang XY, Chen HZ, Wang S, Ge L, Zhang S, Ma RM. Vortex radiation from a single emitter in a chiral plasmonic nanocavity. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:1905-1911. [PMID: 39633926 PMCID: PMC11501179 DOI: 10.1515/nanoph-2021-0743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 12/07/2024]
Abstract
Manipulating single emitter radiation is essential for quantum information science. Significant progress has been made in enhancing the radiation efficiency and directivity by coupling quantum emitters with microcavities and plasmonic antennas. However, there has been a great challenge to generate complex radiation patterns such as vortex beam from a single emitter. Here, we report a chiral plasmonic nanocavity, which provides a strong local chiral vacuum field at an exceptional point. We show that a single linear dipole emitter embedded in the nanocavity will radiate to vortex beam via anomalous spontaneous emission with a Purcell enhancement factor up to ∼1000. Our scheme provides a new field manipulation method for chiral quantum optics and vortex lasers at the nanoscale.
Collapse
Affiliation(s)
- Xing-Yuan Wang
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Hua-Zhou Chen
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Suo Wang
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Li Ge
- Department of Physics and Astronomy, College of Staten Island, CUNY, Staten Island, New York, USA
- Graduate Center, CUNY, New York, USA
| | - Shuang Zhang
- Department of Physics, University of Hong Kong, Hong Kong, China
- School of Physics and Astronomy, University of Birmingham, BirminghamB15 2TT, UK
| | - Ren-Min Ma
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| |
Collapse
|
31
|
Huang ZT, Hong KB, Lee RK, Pilozzi L, Conti C, Wu JS, Lu TC. Pattern-tunable synthetic gauge fields in topological photonic graphene. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:1297-1308. [PMID: 39634620 PMCID: PMC11501643 DOI: 10.1515/nanoph-2021-0647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 03/01/2022] [Indexed: 12/07/2024]
Abstract
We propose a straightforward and effective approach to design, by pattern-tunable strain-engineering, photonic topological insulators supporting high quality factors edge states. Chiral strain-engineering creates opposite synthetic gauge fields in two domains resulting in Landau levels with the same energy spacing but different topological numbers. The boundary of the two topological domains hosts robust time-reversal and spin-momentum-locked edge states, exhibiting high quality factors due to continuous strain modulation. By shaping the synthetic gauge field, we obtain remarkable field confinement and tunability, with the strain strongly affecting the degree of localization of the edge states. Notably, the two-domain design stabilizes the strain-induced topological edge state. The large potential bandwidth of the strain-engineering and the opportunity to induce the mechanical stress at the fabrication stage enables large scalability for many potential applications in photonics, such as tunable microcavities, new lasers, and information processing devices, including the quantum regime.
Collapse
Affiliation(s)
- Zhen-Ting Huang
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30050, Taiwan, ROC
| | - Kuo-Bin Hong
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30050, Taiwan, ROC
| | - Ray-Kuang Lee
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu30013, Taiwan, ROC
- Physics Division, National Center for Theoretical Sciences, Hsinchu30013, Taiwan, ROC
| | - Laura Pilozzi
- Institute for Complex Systems, National Research Council (ISC-CNR), Via dei Taurini 19, 00185Rome, Italy
- Research Center Enrico Fermi, Via Panisperna 89a, 00184Rome, Italy
| | - Claudio Conti
- Research Center Enrico Fermi, Via Panisperna 89a, 00184Rome, Italy
- Department of Physics, University Sapienza of Rome, Piazzale Aldo Moro 5, Rome00185, Italy
| | - Jhih-Sheng Wu
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30050, Taiwan, ROC
| | - Tien-Chang Lu
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30050, Taiwan, ROC
| |
Collapse
|
32
|
Wu C, Kumar S, Kan Y, Komisar D, Wang Z, Bozhevolnyi SI, Ding F. Room-temperature on-chip orbital angular momentum single-photon sources. SCIENCE ADVANCES 2022; 8:eabk3075. [PMID: 35020431 PMCID: PMC8754403 DOI: 10.1126/sciadv.abk3075] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
On-chip photon sources carrying orbital angular momentum (OAM) are in demand for high-capacity optical information processing in both classical and quantum regimes. However, currently exploited integrated OAM sources have been primarily limited to the classical regime. Here, we demonstrate a room-temperature on-chip integrated OAM source that emits well-collimated single photons, with a single-photon purity of g(2)(0) ≈ 0.22, carrying entangled spin and OAM states and forming two spatially separated entangled radiation channels with different polarization properties. The OAM-encoded single photons are generated by efficiently outcoupling diverging surface plasmon polaritons excited with a deterministically positioned quantum emitter via Archimedean spiral gratings. Our OAM single-photon source platform bridges the gap between conventional OAM manipulation and nonclassical light sources, enabling high-dimensional and large-scale photonic quantum systems for quantum information processing.
Collapse
Affiliation(s)
- Cuo Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Shailesh Kumar
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Yinhui Kan
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
- College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Danylo Komisar
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Sergey I. Bozhevolnyi
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Fei Ding
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
- Corresponding author.
| |
Collapse
|
33
|
Yang ZQ, Shao ZK, Chen HZ, Mao XR, Ma RM. Yang et al. Reply. PHYSICAL REVIEW LETTERS 2021; 127:209402. [PMID: 34860064 DOI: 10.1103/physrevlett.127.209402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Zhen-Qian Yang
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China
| | - Zeng-Kai Shao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China
| | - Hua-Zhou Chen
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China
| | - Xin-Rui Mao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China
| | - Ren-Min Ma
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China
| |
Collapse
|
34
|
Sun XC, Wang XX, Amemiya T, Hu X. Comment on "Spin-Momentum-Locked Edge Mode for Topological Vortex Lasing". PHYSICAL REVIEW LETTERS 2021; 127:209401. [PMID: 34860032 DOI: 10.1103/physrevlett.127.209401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Xiao-Chen Sun
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Xing-Xiang Wang
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
- Graduate School of Science Technology, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Tomohiro Amemiya
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Xiao Hu
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
- Graduate School of Science Technology, University of Tsukuba, Tsukuba 305-8571, Japan
| |
Collapse
|
35
|
Liu G, Jia S, Wang J, Li Y, Yang H, Wang S, Gong Q. Toward Microlasers with Artificial Structure Based on Single-Crystal Ultrathin Perovskite Films. NANO LETTERS 2021; 21:8650-8656. [PMID: 34609149 DOI: 10.1021/acs.nanolett.1c02618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A perovskite microlaser is potentially valuable for integrated photonics due to its excellent properties. The artificial microlasers were mostly made on polycrystalline films. Though a perovskite single crystal has significantly improved properties in comparison with its polycrystalline counterpart, an artificial microlaser based on single-crystal perovskite has been much less explored due to the difficulty in producing an ultrathin-single-crystal (UTSC) film. Here we show a device processing based on a perovskite UTSC film, confirming the high performance of the UTSC device with a quality factor of 1250. The single-crystal device shows 4.5 times the quality factor and 8 times the radiation intensity in comparison with its polycrystalline counterpart. The experiment first proved that hybrid perovskite microlasers with a subwavelength fine structure can be processed by focused ion beams (FIB). In addition, a wavelength-tunable distributed feedback (DFB) laser is demonstrated, with a tuning range of ∼4.6 nm. The research provides an easily applicable approach for perovskite photonic devices with excellent performance.
Collapse
Affiliation(s)
- Guodong Liu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Shangtong Jia
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Ju Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Yifan Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Hong Yang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Shufeng Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, People's Republic of China
- Peking University, Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Qihuang Gong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, People's Republic of China
- Peking University, Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, People's Republic of China
| |
Collapse
|
36
|
Ni J, Huang C, Zhou LM, Gu M, Song Q, Kivshar Y, Qiu CW. Multidimensional phase singularities in nanophotonics. Science 2021; 374:eabj0039. [PMID: 34672745 DOI: 10.1126/science.abj0039] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jincheng Ni
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Can Huang
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Lei-Ming Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Min Gu
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, China.,Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qinghai Song
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006 Shanxi, China
| | - Yuri Kivshar
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra ACT 2601, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
37
|
Dikopoltsev A, Harder TH, Lustig E, Egorov OA, Beierlein J, Wolf A, Lumer Y, Emmerling M, Schneider C, Höfling S, Segev M, Klembt S. Topological insulator vertical-cavity laser array. Science 2021; 373:1514-1517. [PMID: 34554782 DOI: 10.1126/science.abj2232] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Tristan H Harder
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Eran Lustig
- Physics Department, Technion, 32000 Haifa, Israel
| | - Oleg A Egorov
- ITFO, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| | - Johannes Beierlein
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Adriana Wolf
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Yaakov Lumer
- Physics Department, Technion, 32000 Haifa, Israel
| | - Monika Emmerling
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | - Sven Höfling
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | - Sebastian Klembt
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
38
|
Xie X, Dang J, Yan S, Zhang W, Hao H, Xiao S, Shi S, Zuo Z, Ni H, Niu Z, Zhang X, Wang C, Xu X. Optimization and robustness of the topological corner state in second-order topological photonic crystals. OPTICS EXPRESS 2021; 29:30735-30750. [PMID: 34614794 DOI: 10.1364/oe.438474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The second-order topological photonic crystal with the 0D corner state provides a new way to investigate cavity quantum electrodynamics and develop topological nanophotonic devices with diverse functionalities. Here, we report on the optimization and robustness of the topological corner state in the second-order topological photonic crystal both in theory and in experiment. The topological nanocavity is formed based on the 2D generalized Su-Schrieffer-Heeger model. The quality factor of the corner state is optimized theoretically and experimentally by changing the gap between two photonic crystals or just modulating the position or size of the airholes surrounding the corner. The fabricated quality factors are further optimized by the surface passivation treatment which reduces surface absorption. A maximum quality factor of the fabricated devices is about 6000, which is the highest value ever reported for the active topological corner state. Furthermore, we demonstrate the robustness of the corner state against strong disorders including the bulk defect, edge defect, and even corner defect. Our results lay a solid foundation for further investigations and applications of the topological corner state, such as the investigation of a strong coupling regime and the development of optical devices for topological nanophotonic circuitry.
Collapse
|
39
|
Yoshimi H, Yamaguchi T, Katsumi R, Ota Y, Arakawa Y, Iwamoto S. Experimental demonstration of topological slow light waveguides in valley photonic crystals. OPTICS EXPRESS 2021; 29:13441-13450. [PMID: 33985077 DOI: 10.1364/oe.422962] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
We experimentally demonstrate topological slow light waveguides in valley photonic crystals (VPhCs). We employed a bearded interface formed between two topologically-distinct VPhCs patterned in an air-bridged silicon slab. The interface supports both topological and non-topological slow light modes below the light line. By means of optical microscopy, we observed light propagation in the topological mode in the slow light regime with a group index ng over 30. Furthermore, we confirmed light transmission via the slow light mode even under the presence of sharp waveguide bends. In comparison between the topological and non-topological modes, we found that the topological mode exhibits much more efficient waveguiding than the trivial one, demonstrating topological protection in the slow light regime. This work paves the way for exploring topological slow-light devices compatible with existing photonics technologies.
Collapse
|
40
|
Kagami H, Amemiya T, Okada S, Nishiyama N, Hu X. Topological converter for high-efficiency coupling between Si wire waveguide and topological waveguide. OPTICS EXPRESS 2020; 28:33619-33631. [PMID: 33115022 DOI: 10.1364/oe.398421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Replacing part of a conventional optical circuit with a topological photonic system allows for various controls of optical vortices in the optical circuit. As an underlying technology for this, in this study, we have realized a topological converter that provides high coupling efficiency between a normal silicon wire waveguide and a topological edge waveguide. After expanding the waveguide width while maintaining single-mode transmission from the Si wire waveguide, the waveguides are gradually narrowed from both sides by using a structure in which nanoholes with C6 symmetry are arranged in a honeycomb lattice. On the basis of the analysis using the three-dimensional finite-difference time-domain method, we actually fabricated a device in which a Si wire waveguide and a topological edge waveguide were connected via the proposed topological converter and evaluated its transmission characteristics. The resulting coupling efficiency between the Si wire waveguide and the topological edge waveguide through the converter was -4.49 dB/taper, and the coupling efficiency was improved by 5.12 dB/taper compared to the case where the Si wire waveguide and the topological edge waveguide were connected directly.
Collapse
|
41
|
Liu W, Ji Z, Wang Y, Modi G, Hwang M, Zheng B, Sorger VJ, Pan A, Agarwal R. Generation of helical topological exciton-polaritons. Science 2020; 370:600-604. [PMID: 33033158 DOI: 10.1126/science.abc4975] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/17/2020] [Accepted: 09/09/2020] [Indexed: 01/15/2023]
Abstract
Topological photonics in strongly coupled light-matter systems offer the possibility for fabricating tunable optical devices that are robust against disorder and defects. Topological polaritons, i.e., hybrid exciton-photon quasiparticles, have been proposed to demonstrate scatter-free chiral propagation, but their experimental realization to date has been at deep cryogenic temperatures and under strong magnetic fields. We demonstrate helical topological polaritons up to 200 kelvin without external magnetic field in monolayer WS2 excitons coupled to a nontrivial photonic crystal protected by pseudo time-reversal symmetry. The helical nature of the topological polaritons, where polaritons with opposite helicities are transported to opposite directions, is verified. Topological helical polaritons provide a platform for developing robust and tunable polaritonic spintronic devices for classical and quantum information-processing applications.
Collapse
Affiliation(s)
- Wenjing Liu
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhurun Ji
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuhui Wang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gaurav Modi
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Minsoo Hwang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Biyuan Zheng
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Volker J Sorger
- Department of Electrical and Computer Engineering, George Washington University, Washington, DC 20052, USA
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Ritesh Agarwal
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|