1
|
Luo Y, Liu XF, Liu ZH, Li W, Yan S, Gao H, Su H, Pan D, Zhao J, Wang JY, Xu H. One-Dimensional Quantum Dot Array Integrated with Charge Sensors in an InAs Nanowire. NANO LETTERS 2024; 24:14012-14019. [PMID: 39467266 DOI: 10.1021/acs.nanolett.4c03646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We report an experimental study of a 1D quintuple-quantum-dot array integrated with two charge sensors in an InAs nanowire. The device is studied by measuring double quantum dots formed consecutively in the array, and corresponding charge stability diagrams are revealed with both direct current measurements and charge sensor signals. The one-dimensional quintuple-quantum-dot array is then tuned up, and its charge configurations are fully mapped out with the two charge sensors. The energy level of each dot in the array can be controlled individually using virtual gates. After that, four dots in the array are selected to form two double quantum dots, and ultrastrong inter-double-dot interaction is obtained. A theoretical simulation confirms the strong coupling strength between the two double quantum dots. The highly controllable one-dimensional quantum dot array is expected to be valuable for employing InAs nanowires to construct advanced quantum hardware in the future.
Collapse
Affiliation(s)
- Yi Luo
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices, and School of Electronics, Peking University, Beijing 100871, China
- Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing 100871, China
| | - Xiao-Fei Liu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Zhi-Hai Liu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Weijie Li
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices, and School of Electronics, Peking University, Beijing 100871, China
| | - Shili Yan
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Han Gao
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices, and School of Electronics, Peking University, Beijing 100871, China
| | - Haitian Su
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices, and School of Electronics, Peking University, Beijing 100871, China
- Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing 100871, China
| | - Dong Pan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors,Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
| | - Jianhua Zhao
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors,Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
| | - Ji-Yin Wang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Hongqi Xu
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices, and School of Electronics, Peking University, Beijing 100871, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Schmitt TW, Connolly MR, Schleenvoigt M, Liu C, Kennedy O, Chávez-Garcia JM, Jalil AR, Bennemann B, Trellenkamp S, Lentz F, Neumann E, Lindström T, de Graaf SE, Berenschot E, Tas N, Mussler G, Petersson KD, Grützmacher D, Schüffelgen P. Integration of Topological Insulator Josephson Junctions in Superconducting Qubit Circuits. NANO LETTERS 2022; 22:2595-2602. [PMID: 35235321 DOI: 10.1021/acs.nanolett.1c04055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The integration of semiconductor Josephson junctions (JJs) in superconducting quantum circuits provides a versatile platform for hybrid qubits and offers a powerful way to probe exotic quasiparticle excitations. Recent proposals for using circuit quantum electrodynamics (cQED) to detect topological superconductivity motivate the integration of novel topological materials in such circuits. Here, we report on the realization of superconducting transmon qubits implemented with (Bi0.06Sb0.94)2Te3 topological insulator (TI) JJs using ultrahigh vacuum fabrication techniques. Microwave losses on our substrates, which host monolithically integrated hardmasks used for the selective area growth of TI nanostructures, imply microsecond limits to relaxation times and, thus, their compatibility with strong-coupling cQED. We use the cavity-qubit interaction to show that the Josephson energy of TI-based transmons scales with their JJ dimensions and demonstrate qubit control as well as temporal quantum coherence. Our results pave the way for advanced investigations of topological materials in both novel Josephson and topological qubits.
Collapse
Affiliation(s)
- Tobias W Schmitt
- Institute for Semiconductor Nanoelectronics, Peter Grünberg Institute 9, Forschungszentrum Jülich & Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich and RWTH Aachen University, 52428 Jülich, Germany
- JARA-Institute for Green IT, Peter Grünberg Institute 10, Forschungszentrum Jülich and RWTH Aachen University, 52062 Aachen, Germany
| | - Malcolm R Connolly
- Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
- London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1H 0AH, United Kingdom
| | - Michael Schleenvoigt
- Institute for Semiconductor Nanoelectronics, Peter Grünberg Institute 9, Forschungszentrum Jülich & Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich and RWTH Aachen University, 52428 Jülich, Germany
| | - Chenlu Liu
- Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| | - Oscar Kennedy
- London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1H 0AH, United Kingdom
| | - José M Chávez-Garcia
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Abdur R Jalil
- Institute for Semiconductor Nanoelectronics, Peter Grünberg Institute 9, Forschungszentrum Jülich & Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich and RWTH Aachen University, 52428 Jülich, Germany
| | - Benjamin Bennemann
- Institute for Semiconductor Nanoelectronics, Peter Grünberg Institute 9, Forschungszentrum Jülich & Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich and RWTH Aachen University, 52428 Jülich, Germany
| | - Stefan Trellenkamp
- Helmholtz Nano Facility, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Florian Lentz
- Helmholtz Nano Facility, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Elmar Neumann
- Helmholtz Nano Facility, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Tobias Lindström
- National Physical Laboratory, Teddington TW11 0LW, United Kingdom
| | | | - Erwin Berenschot
- MESA+ Institute, University of Twente, 7500AE Enschede, The Netherlands
| | - Niels Tas
- MESA+ Institute, University of Twente, 7500AE Enschede, The Netherlands
| | - Gregor Mussler
- Institute for Semiconductor Nanoelectronics, Peter Grünberg Institute 9, Forschungszentrum Jülich & Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich and RWTH Aachen University, 52428 Jülich, Germany
| | - Karl D Petersson
- Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Detlev Grützmacher
- Institute for Semiconductor Nanoelectronics, Peter Grünberg Institute 9, Forschungszentrum Jülich & Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich and RWTH Aachen University, 52428 Jülich, Germany
- JARA-Institute for Green IT, Peter Grünberg Institute 10, Forschungszentrum Jülich and RWTH Aachen University, 52062 Aachen, Germany
| | - Peter Schüffelgen
- Institute for Semiconductor Nanoelectronics, Peter Grünberg Institute 9, Forschungszentrum Jülich & Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich and RWTH Aachen University, 52428 Jülich, Germany
| |
Collapse
|
3
|
Vekris A, Estrada Saldaña JC, de Bruijckere J, Lorić S, Kanne T, Marnauza M, Olsteins D, Nygård J, Grove-Rasmussen K. Asymmetric Little-Parks oscillations in full shell double nanowires. Sci Rep 2021; 11:19034. [PMID: 34561484 PMCID: PMC8463573 DOI: 10.1038/s41598-021-97780-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
Little-Parks oscillations of a hollow superconducting cylinder are of interest for flux-driven topological superconductivity in single Rashba nanowires. The oscillations are typically symmetric in the orientation of the applied magnetic flux. Using double InAs nanowires coated by an epitaxial superconducting Al shell which, despite the non-centro-symmetric geometry, behaves effectively as one hollow cylinder, we demonstrate that a small misalignment of the applied parallel field with respect to the axis of the nanowires can produce field-asymmetric Little-Parks oscillations. These are revealed by the simultaneous application of a magnetic field perpendicular to the misaligned parallel field direction. The asymmetry occurs in both the destructive regime, in which superconductivity is destroyed for half-integer quanta of flux through the shell, and in the non-destructive regime, where superconductivity is depressed but not fully destroyed at these flux values.
Collapse
Affiliation(s)
- Alexandros Vekris
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark.
- Sino-Danish Center for Education and Research (SDC) SDC Building, Yanqihu Campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, 101408, Huairou, China.
| | | | - Joeri de Bruijckere
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ, Delft, The Netherlands
| | - Sara Lorić
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Thomas Kanne
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Mikelis Marnauza
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Dags Olsteins
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jesper Nygård
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Kasper Grove-Rasmussen
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
4
|
Valentini M, Peñaranda F, Hofmann A, Brauns M, Hauschild R, Krogstrup P, San-Jose P, Prada E, Aguado R, Katsaros G. Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states. Science 2021; 373:82-88. [PMID: 34210881 DOI: 10.1126/science.abf1513] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/21/2021] [Indexed: 11/02/2022]
Abstract
A semiconducting nanowire fully wrapped by a superconducting shell has been proposed as a platform for obtaining Majorana modes at small magnetic fields. In this study, we demonstrate that the appearance of subgap states in such structures is actually governed by the junction region in tunneling spectroscopy measurements and not the full-shell nanowire itself. Short tunneling regions never show subgap states, whereas longer junctions always do. This can be understood in terms of quantum dots forming in the junction and hosting Andreev levels in the Yu-Shiba-Rusinov regime. The intricate magnetic field dependence of the Andreev levels, through both the Zeeman and Little-Parks effects, may result in robust zero-bias peaks-features that could be easily misinterpreted as originating from Majorana zero modes but are unrelated to topological superconductivity.
Collapse
Affiliation(s)
- Marco Valentini
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Fernando Peñaranda
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Andrea Hofmann
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Matthias Brauns
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Peter Krogstrup
- Microsoft Quantum Materials Lab and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Kanalvej 7, 2800 Kongens Lyngby, Denmark
| | - Pablo San-Jose
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Elsa Prada
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.,Departamento de Física de la Materia Condensada, Condensed Matter Physics Center (IFIMAC) and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Ramón Aguado
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Georgios Katsaros
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
5
|
Kringhøj A, Winkler GW, Larsen TW, Sabonis D, Erlandsson O, Krogstrup P, van Heck B, Petersson KD, Marcus CM. Andreev Modes from Phase Winding in a Full-Shell Nanowire-Based Transmon. PHYSICAL REVIEW LETTERS 2021; 126:047701. [PMID: 33576664 DOI: 10.1103/physrevlett.126.047701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
We investigate transmon qubits made from semiconductor nanowires with a fully surrounding superconducting shell. In the regime of reentrant superconductivity associated with the destructive Little-Parks effect, numerous coherent transitions are observed in the first reentrant lobe, where the shell carries 2π winding of superconducting phase, and are absent in the zeroth lobe. As junction density was increased by gate voltage, qubit coherence was suppressed then lost in the first lobe. These observations and numerical simulations highlight the role of winding-induced Andreev states in the junction.
Collapse
Affiliation(s)
- A Kringhøj
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Microsoft Quantum Lab-Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - G W Winkler
- Microsoft Quantum, Station Q, University of California, Santa Barbara, California 93106-6105, USA
| | - T W Larsen
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Microsoft Quantum Lab-Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - D Sabonis
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Microsoft Quantum Lab-Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - O Erlandsson
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Microsoft Quantum Lab-Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - P Krogstrup
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Microsoft Quantum Materials Lab-Copenhagen, 2800 Lyngby, Denmark
| | - B van Heck
- Microsoft Quantum Lab Delft, Delft University of Technology, 2600 GA Delft, Netherlands
| | - K D Petersson
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Microsoft Quantum Lab-Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - C M Marcus
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Microsoft Quantum Lab-Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|