1
|
Nguyen AQ, Huang J, Bi D. Origin of yield stress and mechanical plasticity in model biological tissues. Nat Commun 2025; 16:3260. [PMID: 40188154 PMCID: PMC11972370 DOI: 10.1038/s41467-025-58526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
During development and under normal physiological conditions, biological tissues are continuously subjected to substantial mechanical stresses. In response to large deformations, cells in a tissue must undergo multicellular rearrangements to maintain integrity and robustness. However, how these events are connected in time and space remains unknown. Here, using theoretical modeling, we study the mechanical plasticity of cell monolayers under large deformations. Our results suggest that the jamming-unjamming (solid-fluid) transition can vary significantly depending on the degree of deformation, implying that tissues are highly unconventional materials. We elucidate the origins of this behavior. We also demonstrate how large deformations are accommodated through a series of cellular rearrangements, similar to avalanches in non-living materials. We find that these 'tissue avalanches' are governed by stress redistribution and the spatial distribution of "soft" or vulnerable spots, which are more prone to undergo rearrangements. Finally, we propose a simple and experimentally accessible framework to infer tissue-level stress and predict avalanches based on static images.
Collapse
Affiliation(s)
- Anh Q Nguyen
- Department of Physics and, Northeastern University, Boston, MA, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA
| | - Junxiang Huang
- Department of Physics and, Northeastern University, Boston, MA, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA
| | - Dapeng Bi
- Department of Physics and, Northeastern University, Boston, MA, USA.
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA.
| |
Collapse
|
2
|
Vaibhav V, Bera A, Liu ACY, Baggioli M, Keim P, Zaccone A. Experimental identification of topological defects in 2D colloidal glass. Nat Commun 2025; 16:55. [PMID: 39746911 PMCID: PMC11697214 DOI: 10.1038/s41467-024-54857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
Topological defects are singularities within a field that cannot be removed by continuous transformations. The definition of these irregularities requires an ordered reference configuration, calling into question whether they exist in disordered materials, such as glasses. However, recent work suggests that well-defined topological defects emerge in the dynamics of glasses, even if they are not evident in the static configuration. In this study, we reveal the presence of topological defects in the vibrational eigenspace of a two-dimensional experimental colloidal glass. These defects strongly correlate with the vibrational features and spatially correlate with each other and structural "soft spots", more prone to plastic flow. This work experimentally confirms the existence of topological defects in disordered systems revealing the complex interplay between topology, disorder, and dynamics.
Collapse
Affiliation(s)
- Vinay Vaibhav
- Department of Physics "A. Pontremoli", University of Milan, via Celoria 16, 20133, Milan, Italy
| | - Arabinda Bera
- Department of Physics "A. Pontremoli", University of Milan, via Celoria 16, 20133, Milan, Italy
| | - Amelia C Y Liu
- School of Physics and Astronomy, Monash University, Clayton, 3800, VIC, Australia
| | - Matteo Baggioli
- Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Research Center for Quantum Sciences, Shanghai, 201315, China.
| | - Peter Keim
- Institute for Experimental Physics of Condensed Matter, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
- Max-Planck-Institute for Dynamics and Self-Organization, 37077, Göttingen, Germany.
- Institute for the Dynamics of Complex Systems, University of Göttingen, 37077, Göttingen, Germany.
| | - Alessio Zaccone
- Department of Physics "A. Pontremoli", University of Milan, via Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
3
|
Li B, Liao G, Liu Y, Cao K, Li Y, Xie Z, Yin H, Cui L. Investigation on the creep mechanism of PA6 films based on quasi point defect theory. Sci Rep 2024; 14:22169. [PMID: 39333291 PMCID: PMC11437254 DOI: 10.1038/s41598-024-73513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Polyamide 6 (PA6) films with significant α relaxation process was selected as the model system. The creep behavior and rheological mechanism during deformation in the amorphous regions of semi-crystalline polymers are systematically investigated by carrying out creep experiments. Based on the quasi point defect (QPD) theory, the complete physical process of PA6 film creep behavior from elasticity to viscoelasticity and viscoplasticity was analyzed and modeled from the perspective of structural heterogeneity. The results demonstrate that the creep deformation of PA6 film is a typical thermo-mechanical coupling and nonlinear mechanics process, and potential creep mechanisms corresponds to stress-induced local shear deformation enhancement and thermal activation-induced particle flow diffusion. The elastic-plastic transition involved in the creep deformation process of semi-crystalline polymer originates from the activation of quasi-point defective sites in the amorphous region, the expansion of sheared micro-domains and irreversible fusion. The generalized fractional Kelvin (GFK) model is proposed, and the physical meaning of parameters is explained by combining the quasi point defect theory and creep delay spectrum(L(τ)). Finally, the effectiveness of the GFK model and the QPD theory in studying the deformation behavior of PA6 films was validated by comparing experimental data with theoretical results, which theoretically reveals the structural evolution of PA6 film during creep process.
Collapse
Affiliation(s)
- Bowen Li
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China
| | - Guangkai Liao
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Kaikai Cao
- Zhuzhou Times Engineering Plastics Industrial Co., Ltd, Zhuzhou, 412008, China
| | - Yuankang Li
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zhenyan Xie
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China
| | - Haomin Yin
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China
| | - Lingna Cui
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China
| |
Collapse
|
4
|
Lerner E, Moriel A, Bouchbinder E. Enumerating low-frequency nonphononic vibrations in computer glasses. J Chem Phys 2024; 161:014504. [PMID: 38949282 DOI: 10.1063/5.0216351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
In addition to Goldstone phonons that generically emerge in the low-frequency vibrational spectrum of any solid, crystalline or glassy, structural glasses also feature other low-frequency vibrational modes. The nature and statistical properties of these modes-often termed "excess modes"-have been the subject of decades-long investigation. Studying them, even using well-controlled computer glasses, has proven challenging due to strong spatial hybridization effects between phononic and nonphononic excitations, which hinder quantitative analyses of the nonphononic contribution DG(ω) to the total spectrum D(ω), per frequency ω. Here, using recent advances indicating that DG(ω)=D(ω)-DD(ω), where DD(ω) is Debye's spectrum of phonons, we present a simple and straightforward scheme to enumerate nonphononic modes in computer glasses. Our analysis establishes that nonphononic modes in computer glasses indeed make an additive contribution to the total spectrum, including in the presence of strong hybridizations. Moreover, it cleanly reveals the universal DG(ω)∼ω4 tail of the nonphononic spectrum, and opens the way for related analyses of experimental spectra of glasses.
Collapse
Affiliation(s)
- Edan Lerner
- Institute of Theoretical Physics, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Avraham Moriel
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Shekh Alshabab S, Markert B, Bamer F. Criticality in the fracture of silica glass: Insights from molecular mechanics. Phys Rev E 2024; 109:034110. [PMID: 38632794 DOI: 10.1103/physreve.109.034110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/02/2024] [Indexed: 04/19/2024]
Abstract
The universality of avalanches characterizing the inelastic response of disordered materials has the potential to bridge the gap from micro to macroscale. In this study, we explore the statistics and the scaling behavior of avalanches occurring during the fracture process in silica glass using molecular mechanics. We introduce a robust method for capturing and quantifying these avalanches, allowing us to perform rigorous statistical analyses, revealing universal power laws associated with critical phenomena. The influence of an initial crack is explored, observing deviations from mean-field predictions while maintaining the property of criticality. However, the avalanche exponents in the unnotched samples are predicted correctly by the mean-field depinning model. Furthermore, we investigate the strain-dependent probability density function, its cutoff function, and the interrelation between the critical exponents. Finally, we unveil distinct scaling behavior for small and large avalanches of the crack growth, shedding light on the underlying fracture mechanisms in silica glass.
Collapse
Affiliation(s)
| | - Bernd Markert
- Institute of General Mechanics, RWTH Aachen University, 52062 Aachen, Germany
| | - Franz Bamer
- Institute of General Mechanics, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
6
|
Zhang H, Zhang Q, Liu F, Han Y. Anisotropic-Isotropic Transition of Cages at the Glass Transition. PHYSICAL REVIEW LETTERS 2024; 132:078201. [PMID: 38427876 DOI: 10.1103/physrevlett.132.078201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/03/2023] [Accepted: 01/12/2024] [Indexed: 03/03/2024]
Abstract
Characterizing the local structural evolution is an essential step in understanding the nature of glass transition. In this work, we probe the evolution of Voronoi cell geometry in simple glass models by simulations and colloid experiments, and find that the individual particle cages deform anisotropically in supercooled liquid and isotropically in glass. We introduce an anisotropy parameter k for each Voronoi cell, whose mean value exhibits a sharp change at the mode-coupling glass transition ϕ_{c}. Moreover, a power law of packing fraction ϕ∝q_{1}^{d} is discovered in the supercooled liquid regime with d>D, in contrast to d=D in the glass regime, where q_{1} is the first peak position of structure factor, and D is the space dimension. This power law is qualitatively explained by the change of k. The active motions in supercooled liquid are spatially correlated with long axes rather than short axes of Voronoi cells. In addition, the dynamic slowing down approaching the glass transition can be well characterized through a modified free-volume model based on k. These findings reveal that the structural parameter k is effective in identifying the structure-dynamics correlations and the glass transition in these systems.
Collapse
Affiliation(s)
- Huijun Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Qi Zhang
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Feng Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Yilong Han
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China
| |
Collapse
|
7
|
Dattani UA, Karmakar S, Chaudhuri P. Athermal quasistatic cavitation in amorphous solids: Effect of random pinning. J Chem Phys 2023; 159:204501. [PMID: 38010327 DOI: 10.1063/5.0171905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023] Open
Abstract
Amorphous solids are known to fail catastrophically via fracture, and cavitation at nano-metric scales is known to play a significant role in such a failure process. Micro-alloying via inclusions is often used as a means to increase the fracture toughness of amorphous solids. Modeling such inclusions as randomly pinned particles that only move affinely and do not participate in plastic relaxations, we study how the pinning influences the process of cavitation-driven fracture in an amorphous solid. Using extensive numerical simulations and probing in the athermal quasistatic limit, we show that just by pinning a very small fraction of particles, the tensile strength is increased, and also the cavitation is delayed. Furthermore, the cavitation that is expected to be spatially heterogeneous becomes spatially homogeneous by forming a large number of small cavities instead of a dominant cavity. The observed behavior is rationalized in terms of screening of plastic activity via the pinning centers, characterized by a screening length extracted from the plastic-eigenmodes.
Collapse
Affiliation(s)
- Umang A Dattani
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Smarajit Karmakar
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Pinaki Chaudhuri
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
8
|
Richard D, Kapteijns G, Lerner E. Detecting low-energy quasilocalized excitations in computer glasses. Phys Rev E 2023; 108:044124. [PMID: 37978582 DOI: 10.1103/physreve.108.044124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/15/2023] [Indexed: 11/19/2023]
Abstract
Soft, quasilocalized excitations (QLEs) are known to generically emerge in a broad class of disordered solids and to govern many facets of the physics of glasses, from wave attenuation to plastic instabilities. In view of this key role of QLEs, shedding light upon several open questions in glass physics depends on the availability of computational tools that allow one to study QLEs' statistical mechanics. The latter is a formidable task since harmonic analyses are typically contaminated by hybridizations of QLEs with phononic excitations at low frequencies, obscuring a clear picture of QLEs' abundance, typical frequencies, and other important micromechanical properties. Here we present an efficient algorithm to detect the field of quasilocalized excitations in structural computer glasses. The algorithm introduced takes a computer-glass sample as input and outputs a library of QLEs embedded in that sample. We demonstrate the power of the algorithm by reporting the spectrum of glassy excitations in two-dimensional computer glasses featuring a huge range of mechanical stability, which is inaccessible using conventional harmonic analyses due to phonon hybridizations. Future applications are discussed.
Collapse
Affiliation(s)
- David Richard
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Geert Kapteijns
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
9
|
Wu ZW, Chen Y, Wang WH, Kob W, Xu L. Topology of vibrational modes predicts plastic events in glasses. Nat Commun 2023; 14:2955. [PMID: 37225717 DOI: 10.1038/s41467-023-38547-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/02/2023] [Indexed: 05/26/2023] Open
Abstract
The plastic deformation of crystalline materials can be understood by considering their structural defects such as disclinations and dislocations. Although also glasses are solids, their structure resembles closely the one of a liquid and hence the concept of structural defects becomes ill-defined. As a consequence it is very challenging to rationalize on a microscopic level the mechanical properties of glasses close to the yielding point and to relate plastic events to structural properties. Here we investigate the topological characteristics of the eigenvector field of the vibrational excitations of a two-dimensional glass model, notably the geometric arrangement of the topological defects as a function of vibrational frequency. We find that if the system is subjected to a quasistatic shear, the location of the resulting plastic events correlate strongly with the topological defects that have a negative charge. Our results provide thus a direct link between the structure of glasses prior their deformation and the plastic events during deformation.
Collapse
Affiliation(s)
- Zhen Wei Wu
- Institute of Nonequilibrium Systems, School of Systems Science, Beijing Normal University, 100875, Beijing, China.
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China.
| | - Yixiao Chen
- Yuanpei College, Peking University, 100871, Beijing, China
| | - Wei-Hua Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Walter Kob
- Department of Physics, University of Montpellier and CNRS, 34095, Montpellier, France.
| | - Limei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, 100871, China.
| |
Collapse
|
10
|
Lerner E, Bouchbinder E. Boson-peak vibrational modes in glasses feature hybridized phononic and quasilocalized excitations. J Chem Phys 2023; 158:2890775. [PMID: 37191216 DOI: 10.1063/5.0147889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023] Open
Abstract
A hallmark of structural glasses and other disordered solids is the emergence of excess low-frequency vibrations on top of the Debye spectrum DDebye(ω) of phonons (ω denotes the vibrational frequency), which exist in any solid whose Hamiltonian is translationally invariant. These excess vibrations-a signature of which is a THz peak in the reduced density of states D(ω)/DDebye(ω), known as the boson peak-have resisted a complete theoretical understanding for decades. Here, we provide direct numerical evidence that vibrations near the boson peak consist of hybridizations of phonons with many quasilocalized excitations; the latter have recently been shown to generically populate the low-frequency tail of the vibrational spectra of structural glasses quenched from a melt and of disordered crystals. Our results suggest that quasilocalized excitations exist up to and in the vicinity of the boson-peak frequency and, hence, constitute the fundamental building blocks of the excess vibrational modes in glasses.
Collapse
Affiliation(s)
- Edan Lerner
- Institute of Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
11
|
Shiba H, Hanai M, Suzumura T, Shimokawabe T. BOTAN: BOnd TArgeting Network for prediction of slow glassy dynamics by machine learning relative motion. J Chem Phys 2023; 158:084503. [PMID: 36859106 DOI: 10.1063/5.0129791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Recent developments in machine learning have enabled accurate predictions of the dynamics of slow structural relaxation in glass-forming systems. However, existing machine learning models for these tasks are mostly designed such that they learn a single dynamic quantity and relate it to the structural features of glassy liquids. In this study, we propose a graph neural network model, "BOnd TArgeting Network," that learns relative motion between neighboring pairs of particles, in addition to the self-motion of particles. By relating the structural features to these two different dynamical variables, the model autonomously acquires the ability to discern how the self motion of particles undergoing slow relaxation is affected by different dynamical processes, strain fluctuations and particle rearrangements, and thus can predict with high precision how slow structural relaxation develops in space and time.
Collapse
Affiliation(s)
- Hayato Shiba
- Information Technology Center, University of Tokyo, Chiba 277-0882, Japan
| | - Masatoshi Hanai
- Information Technology Center, University of Tokyo, Chiba 277-0882, Japan
| | - Toyotaro Suzumura
- Information Technology Center, University of Tokyo, Chiba 277-0882, Japan
| | | |
Collapse
|
12
|
Stanifer E, Manning ML. Avalanche dynamics in sheared athermal particle packings occurs via localized bursts predicted by unstable linear response. SOFT MATTER 2022; 18:2394-2406. [PMID: 35266483 DOI: 10.1039/d1sm01451j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Under applied shear strain, granular and amorphous materials deform via particle rearrangements, which can be small and localized or organized into system-spanning avalanches. While the statistical properties of avalanches under quasi-static shear are well-studied, the dynamics during avalanches is not. In numerical simulations of sheared soft spheres, we find that avalanches can be decomposed into bursts of localized deformations, which we identify using an extension of persistent homology methods. We also study the linear response of unstable systems during an avalanche, demonstrating that eigenvalue dynamics are highly complex during such events, and that the most unstable eigenvector is a poor predictor of avalanche dynamics. Instead, we modify existing tools that identify localized excitations in stable systems, and apply them to these unstable systems with non-positive definite Hessians, quantifying the evolution of such excitations during avalanches. We find that bursts of localized deformations in the avalanche almost always occur at localized excitations identified using the linear spectrum. These new tools will provide an improved framework for validating and extending mesoscale elastoplastic models that are commonly used to explain avalanche statistics in glasses and granular matter.
Collapse
Affiliation(s)
- Ethan Stanifer
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - M Lisa Manning
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA.
| |
Collapse
|
13
|
Giannini JA, Stanifer EM, Manning ML. Searching for structural predictors of plasticity in dense active packings. SOFT MATTER 2022; 18:1540-1553. [PMID: 35107478 DOI: 10.1039/d1sm01675j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In amorphous solids subject to shear or thermal excitation, so-called structural indicators have been developed that predict locations of future plasticity or particle rearrangements. An open question is whether similar tools can be used in dense active materials, but a challenge is that under most circumstances, active systems do not possess well-defined solid reference configurations. We develop a computational model for a dense active crowd attracted to a point of interest, which does permit a mechanically stable reference state in the limit of infinitely persistent motion. Previous work on a similar system suggested that the collective motion of crowds could be predicted by inverting a matrix of time-averaged two-particle correlation functions. Seeking a first-principles understanding of this result, we demonstrate that this active matter system maps directly onto a granular packing in the presence of an external potential, and extend an existing structural indicator based on linear response to predict plasticity in the presence of noisy dynamics. We find that the strong pressure gradient necessitated by the directed activity, as well as a self-generated free boundary, strongly impact the linear response of the system. In low-pressure regions the linear-response-based indicator is predictive, but it does not work well in the high-pressure interior of our active packings. Our findings motivate and inform future work that could better formulate structure-dynamics predictions in systems with strong pressure gradients.
Collapse
Affiliation(s)
- Julia A Giannini
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA.
- BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA
| | - Ethan M Stanifer
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA.
- BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA
| |
Collapse
|
14
|
Lerner E, Bouchbinder E. Low-energy quasilocalized excitations in structural glasses. J Chem Phys 2021; 155:200901. [PMID: 34852497 DOI: 10.1063/5.0069477] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Glassy solids exhibit a wide variety of generic thermomechanical properties, ranging from universal anomalous specific heat at cryogenic temperatures to nonlinear plastic yielding and failure under external driving forces, which qualitatively differ from their crystalline counterparts. For a long time, it has been believed that many of these properties are intimately related to nonphononic, low-energy quasilocalized excitations (QLEs) in glasses. Indeed, recent computer simulations have conclusively revealed that the self-organization of glasses during vitrification upon cooling from a melt leads to the emergence of such QLEs. In this Perspective, we review developments over the past three decades toward understanding the emergence of QLEs in structural glasses and the degree of universality in their statistical and structural properties. We discuss the challenges and difficulties that hindered progress in achieving these goals and review the frameworks put forward to overcome them. We conclude with an outlook on future research directions and open questions.
Collapse
Affiliation(s)
- Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
15
|
Giannini JA, Richard D, Manning ML, Lerner E. Bond-space operator disentangles quasilocalized and phononic modes in structural glasses. Phys Rev E 2021; 104:044905. [PMID: 34781437 DOI: 10.1103/physreve.104.044905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 11/07/2022]
Abstract
The origin of several emergent mechanical and dynamical properties of structural glasses is often attributed to populations of localized structural instabilities, coined quasilocalized modes (QLMs). Under a restricted set of circumstances, glassy QLMs can be revealed by analyzing computer glasses' vibrational spectra in the harmonic approximation. However, this analysis has limitations due to system-size effects and hybridization processes with low-energy phononic excitations (plane waves) that are omnipresent in elastic solids. Here we overcome these limitations by exploring the spectrum of a linear operator defined on the space of particle interactions (bonds) in a disordered material. We find that this bond-force-response operator offers a different interpretation of QLMs in glasses and cleanly recovers some of their important statistical and structural features. The analysis presented here reveals the dependence of the number density (per frequency) and spatial extent of QLMs on material preparation protocol (annealing). Finally, we discuss future research directions and possible extensions of this work.
Collapse
Affiliation(s)
- Julia A Giannini
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA.,BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA
| | - David Richard
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA.,Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, Netherlands
| | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA.,BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, Netherlands
| |
Collapse
|
16
|
Floyd C, Levine H, Jarzynski C, Papoian GA. Understanding cytoskeletal avalanches using mechanical stability analysis. Proc Natl Acad Sci U S A 2021; 118:e2110239118. [PMID: 34611021 PMCID: PMC8521716 DOI: 10.1073/pnas.2110239118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/28/2022] Open
Abstract
Eukaryotic cells are mechanically supported by a polymer network called the cytoskeleton, which consumes chemical energy to dynamically remodel its structure. Recent experiments in vivo have revealed that this remodeling occasionally happens through anomalously large displacements, reminiscent of earthquakes or avalanches. These cytoskeletal avalanches might indicate that the cytoskeleton's structural response to a changing cellular environment is highly sensitive, and they are therefore of significant biological interest. However, the physics underlying "cytoquakes" is poorly understood. Here, we use agent-based simulations of cytoskeletal self-organization to study fluctuations in the network's mechanical energy. We robustly observe non-Gaussian statistics and asymmetrically large rates of energy release compared to accumulation in a minimal cytoskeletal model. The large events of energy release are found to correlate with large, collective displacements of the cytoskeletal filaments. We also find that the changes in the localization of tension and the projections of the network motion onto the vibrational normal modes are asymmetrically distributed for energy release and accumulation. These results imply an avalanche-like process of slow energy storage punctuated by fast, large events of energy release involving a collective network rearrangement. We further show that mechanical instability precedes cytoquake occurrence through a machine-learning model that dynamically forecasts cytoquakes using the vibrational spectrum as input. Our results provide a connection between the cytoquake phenomenon and the network's mechanical energy and can help guide future investigations of the cytoskeleton's structural susceptibility.
Collapse
Affiliation(s)
- Carlos Floyd
- Biophysics Program, University of Maryland, College Park, MD 20742
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115
- Department of Physics, Northeastern University, Boston, MA 02115
- Department of Bioengineering, Northeastern University, Boston, MA 02115
| | - Christopher Jarzynski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742;
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
- Department of Physics, University of Maryland, College Park, MD 20742
| | - Garegin A Papoian
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742;
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| |
Collapse
|
17
|
Jin W, Datye A, Schwarz UD, Shattuck MD, O'Hern CS. Using delaunay triangularization to characterize non-affine displacement fields during athermal, quasistatic deformation of amorphous solids. SOFT MATTER 2021; 17:8612-8623. [PMID: 34545381 DOI: 10.1039/d1sm00898f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We investigate the non-affine displacement fields that occur in two-dimensional Lennard-Jones models of metallic glasses subjected to athermal, quasistatic simple shear (AQS). During AQS, the shear stress versus strain displays continuous quasi-elastic segments punctuated by rapid drops in shear stress, which correspond to atomic rearrangement events. We capture all information concerning the atomic motion during the quasi-elastic segments and shear stress drops by performing Delaunay triangularizations and tracking the deformation gradient tensor Fα associated with each triangle α. To understand the spatio-temporal evolution of the displacement fields during shear stress drops, we calculate Fα along minimal energy paths from the mechanically stable configuration immediately before to that after the stress drop. We find that quadrupolar displacement fields form and dissipate both during the quasi-elastic segments and shear stress drops. We then perform local perturbations (rotation, dilation, simple and pure shear) to single triangles and measure the resulting displacement fields. We find that local pure shear deformations of single triangles give rise to mostly quadrupolar displacement fields, and thus pure shear strain is the primary type of local strain that is activated by bulk, athermal quasistatic simple shear. Other local perturbations, e.g. rotations, dilations, and simple shear of single triangles, give rise to vortex-like and dipolar displacement fields that are not frequently activated by bulk AQS. These results provide fundamental insights into the non-affine atomic motion that occurs in driven, glassy materials.
Collapse
Affiliation(s)
- Weiwei Jin
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Amit Datye
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Udo D Schwarz
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA.
| |
Collapse
|
18
|
Kapteijns G, Richard D, Bouchbinder E, Schrøder TB, Dyre JC, Lerner E. Does mesoscopic elasticity control viscous slowing down in glassforming liquids? J Chem Phys 2021; 155:074502. [PMID: 34418936 DOI: 10.1063/5.0051193] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The dramatic slowing down of relaxation dynamics of liquids approaching the glass transition remains a highly debated problem, where the crux of the puzzle resides in the elusive increase in the activation barrier ΔE(T) with decreasing temperature T. A class of theoretical frameworks-known as elastic models-attribute this temperature dependence to the variations of the liquid's macroscopic elasticity, quantified by the high-frequency shear modulus G∞(T). While elastic models find some support in a number of experimental studies, these models do not take into account the spatial structures, length scales, and heterogeneity associated with structural relaxation in supercooled liquids. Here, we propose and test the possibility that viscous slowing down is controlled by a mesoscopic elastic stiffness κ(T), defined as the characteristic stiffness of response fields to local dipole forces in the liquid's underlying inherent structures. First, we show that κ(T)-which is intimately related to the energy and length scales characterizing quasilocalized, nonphononic excitations in glasses-increases more strongly with decreasing T than the macroscopic inherent structure shear modulus G(T) [the glass counterpart of liquids' G∞(T)] in several computer liquids. Second, we show that the simple relation ΔE(T) ∝ κ(T) holds remarkably well for some computer liquids, suggesting a direct connection between the liquid's underlying mesoscopic elasticity and enthalpic energy barriers. On the other hand, we show that for other computer liquids, the above relation fails. Finally, we provide strong evidence that what distinguishes computer liquids in which the ΔE(T) ∝ κ(T) relation holds from those in which it does not is that the latter feature highly fragmented/granular potential energy landscapes, where many sub-basins separated by low activation barriers exist. Under such conditions, it appears that the sub-basins do not properly represent the landscape properties relevant for structural relaxation.
Collapse
Affiliation(s)
- Geert Kapteijns
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - David Richard
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas B Schrøder
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
19
|
González-López K, Shivam M, Zheng Y, Ciamarra MP, Lerner E. Mechanical disorder of sticky-sphere glasses. I. Effect of attractive interactions. Phys Rev E 2021; 103:022605. [PMID: 33736046 DOI: 10.1103/physreve.103.022605] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/13/2021] [Indexed: 11/07/2022]
Abstract
Recent literature indicates that attractive interactions between particles of a dense liquid play a secondary role in determining its bulk mechanical properties. Here we show that, in contrast with their apparent unimportance to the bulk mechanics of dense liquids, attractive interactions can have a major effect on macro- and microscopic elastic properties of glassy solids. We study several broadly applicable dimensionless measures of stability and mechanical disorder in simple computer glasses, in which the relative strength of attractive interactions-referred to as "glass stickiness"-can be readily tuned. We show that increasing glass stickiness can result in the decrease of various quantifiers of mechanical disorder, on both macro- and microscopic scales, with a pair of intriguing exceptions to this rule. Interestingly, in some cases strong attractions can lead to a reduction of the number density of soft, quasilocalized modes, by up to an order of magnitude, and to a substantial decrease in their core size, similar to the effects of thermal annealing on elasticity observed in recent works. Contrary to the behavior of canonical glass models, we provide compelling evidence indicating that the stabilization mechanism in our sticky-sphere glasses stems predominantly from the self-organized depletion of interactions featuring large, negative stiffnesses. Finally, we establish a fundamental link between macroscopic and microscopic quantifiers of mechanical disorder, which we motivate via scaling arguments. Future research directions are discussed.
Collapse
Affiliation(s)
- Karina González-López
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Mahajan Shivam
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yuanjian Zheng
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Massimo Pica Ciamarra
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Naples, Italy
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| |
Collapse
|