1
|
Smolenski S, Wen M, Li Q, Downey E, Alfrey A, Liu W, Kondusamy ALN, Bostwick A, Jozwiak C, Rotenberg E, Zhao L, Deng H, Lv B, Zgid D, Gull E, Jo NH. Large exciton binding energy in a bulk van der Waals magnet from quasi-1D electronic localization. Nat Commun 2025; 16:1134. [PMID: 39880826 PMCID: PMC11779854 DOI: 10.1038/s41467-025-56457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Excitons, bound electron-hole pairs, influence the optical properties in strongly interacting solid-state systems and are typically most stable and pronounced in monolayer materials. Bulk systems with large exciton binding energies, on the other hand, are rare and the mechanisms driving their stability are still relatively unexplored. Here, we report an exceptionally large exciton binding energy in single crystals of the bulk van der Waals antiferromagnet CrSBr. Utilizing state-of-the-art angle-resolved photoemission spectroscopy and self-consistent ab-initio GW calculations, we present direct spectroscopic evidence supporting electronic localization and weak dielectric screening as mechanisms contributing to the amplified exciton binding energy. Furthermore, we report that surface doping enables broad tunability of the band gap offering promise for engineering of the optical and electronic properties. Our results indicate that CrSBr is a promising material for the study of the role of anisotropy in strongly interacting bulk systems and for the development of exciton-based optoelectronics.
Collapse
Affiliation(s)
- Shane Smolenski
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Ming Wen
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Qiuyang Li
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Eoghan Downey
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Adam Alfrey
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Wenhao Liu
- Department of Physics, The University of Texas at Dallas, Richardson, TX, USA
| | - Aswin L N Kondusamy
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Aaron Bostwick
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Jozwiak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eli Rotenberg
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Liuyan Zhao
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Hui Deng
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Bing Lv
- Department of Physics, The University of Texas at Dallas, Richardson, TX, USA
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Dominika Zgid
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Emanuel Gull
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Na Hyun Jo
- Department of Physics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Dhawan D, Zgid D, Motta M. Quantum Algorithm for Imaginary-Time Green's Functions. J Chem Theory Comput 2024; 20:4629-4638. [PMID: 38761142 DOI: 10.1021/acs.jctc.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Green's function methods lead to ab initio, systematically improvable simulations of molecules and materials while providing access to multiple experimentally observable properties such as the density of states and the spectral function. The calculation of the exact one-particle Green's function remains a significant challenge for classical computers and was attempted only on very small systems. Here, we present a hybrid quantum-classical algorithm to calculate the imaginary-time one-particle Green's function. The proposed algorithm combines the variational quantum eigensolver and the quantum subspace expansion methods to calculate Green's function in Lehmann's representation. We demonstrate the validity of this algorithm by simulating H2 and H4 on quantum simulators and on IBM's quantum devices.
Collapse
Affiliation(s)
- Diksha Dhawan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mario Motta
- IBM Quantum, Almaden Research Center, San Jose, California 95120, United States
| |
Collapse
|
3
|
Abraham V, Harsha G, Zgid D. Relativistic Fully Self-Consistent GW for Molecules: Total Energies and Ionization Potentials. J Chem Theory Comput 2024; 20:4579-4590. [PMID: 38778459 DOI: 10.1021/acs.jctc.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The fully self-consistent GW (scGW) method with an iterative solution of the Dyson equation provides a consistent approach for describing the ground and excited states without any dependence on the mean-field reference. In this work, we present a relativistic version of scGW for molecules containing heavy elements using the exact two-component (X2C) Coulomb approximation. We benchmark SOC-81 data set containing closed shell heavy elements for the first ionization potential using the fully self-consistent GW as well as one-shot GW. The self-consistent GW provides superior results compared to G0W0 with PBE reference and comparable results to G0W0 with PBE0 while also removing the starting point dependence. The photoelectron spectra obtained at the X2C level demonstrate very good agreement with the experimental spectra. We also observe that scGW provides very good estimation of ionization potential for the inner d-shell orbitals. Additionally, using the well-conserved total energy, we investigate the equilibrium bond length and harmonic frequencies of a few halogen dimers using scGW. Overall, our findings demonstrate the applicability of the fully self-consistent GW method for accurate ionization potential, photoelectron spectra, and total energies in finite systems with heavy elements with a reasonable computational scaling.
Collapse
Affiliation(s)
- Vibin Abraham
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gaurav Harsha
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Physics and Astronomy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Tölle J, Kin-Lic Chan G. AB-G0W0: A practical G0W0 method without frequency integration based on an auxiliary boson expansion. J Chem Phys 2024; 160:164108. [PMID: 38656438 DOI: 10.1063/5.0195934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024] Open
Abstract
Common G0W0 implementations rely on numerical or analytical frequency integration to determine the G0W0 self-energy, which results in a variety of practical complications. Recently, we have demonstrated an exact connection between the G0W0 approximation and equation-of-motion quantum chemistry approaches [J. Tölle and G. Kin-Lic Chan, J. Chem. Phys. 158, 124123 (2023)]. Based on this connection, we propose a new method to determine G0W0 quasiparticle energies, which completely avoids frequency integration and its associated problems. To achieve this, we make use of an auxiliary boson (AB) expansion. We name the new approach AB-G0W0 and demonstrate its practical applicability in a range of molecular problems.
Collapse
Affiliation(s)
- Johannes Tölle
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
5
|
Wen M, Abraham V, Harsha G, Shee A, Whaley KB, Zgid D. Comparing Self-Consistent GW and Vertex-Corrected G0W0 ( G0W0Γ) Accuracy for Molecular Ionization Potentials. J Chem Theory Comput 2024; 20:3109-3120. [PMID: 38573104 DOI: 10.1021/acs.jctc.3c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
We test the performance of self-consistent GW and several representative implementations of vertex-corrected G0W0 (G0W0Γ). These approaches are tested on benchmark data sets covering full valence spectra (first ionization potentials and some inner valence shell excitations). For small molecules, when comparing against state-of-the-art wave function techniques, our results show that full self-consistency in the GW scheme either systematically outperforms vertex-corrected G0W0 or gives results of at least comparative quality. Moreover, G0W0Γ results in additional computational cost when compared to G0W0 or self-consistent GW. The dependency of G0W0Γ on the starting mean-field solution is frequently more dominant than the magnitude of the vertex correction itself. Consequently, for molecular systems, self-consistent GW performed on the imaginary axis (and then followed by modern analytical continuation techniques) offers a more reliable approach to make predictions of ionization potentials.
Collapse
Affiliation(s)
- Ming Wen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vibin Abraham
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gaurav Harsha
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Avijit Shee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - K Birgitta Whaley
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Kemper AF, Yang C, Gull E. Denoising and Extension of Response Functions in the Time Domain. PHYSICAL REVIEW LETTERS 2024; 132:160403. [PMID: 38701446 DOI: 10.1103/physrevlett.132.160403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/16/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024]
Abstract
Response functions of quantum systems, such as electron Green's functions, magnetic, or charge susceptibilities, describe the response of a system to an external perturbation. They are the central objects of interest in field theories and quantum computing and measured directly in experiment. Response functions are intrinsically causal. In equilibrium and steady-state systems, they correspond to a positive spectral function in the frequency domain. Since response functions define an inner product on a Hilbert space and thereby induce a positive definite function, the properties of this function can be used to reduce noise in measured data and, in equilibrium and steady state, to construct positive definite extensions for data known on finite time intervals, which are then guaranteed to correspond to positive spectra.
Collapse
Affiliation(s)
- Alexander F Kemper
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Chao Yang
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Emanuel Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
7
|
Goswami S, Barros K, Carbone MR. Physically interpretable approximations of many-body spectral functions. Phys Rev E 2024; 109:015302. [PMID: 38366449 DOI: 10.1103/physreve.109.015302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/06/2023] [Indexed: 02/18/2024]
Abstract
The rational function approximation provides a natural and interpretable representation of response functions such as the many-body spectral functions. We apply the vector fitting (VFIT) algorithm to fit a variety of spectral functions calculated from the Holstein model of electron-phonon interactions. We show that the resulting rational functions are highly efficient in their fitting of sharp features in the spectral functions, and could provide a means to infer physically relevant information from a spectral data set. The position of the peaks in the approximated spectral function are determined by the location of poles in the complex plane. In addition, we developed a variant of VFIT that incorporates regularization to improve the quality of fits. With this procedure, we demonstrate it is possible to achieve accurate spectral function fits that vary smoothly as a function of physical conditions.
Collapse
Affiliation(s)
- Shubhang Goswami
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kipton Barros
- Theoretical Division and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Matthew R Carbone
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
8
|
Erpenbeck A, Gull E, Cohen G. Quantum Monte Carlo Method in the Steady State. PHYSICAL REVIEW LETTERS 2023; 130:186301. [PMID: 37204908 DOI: 10.1103/physrevlett.130.186301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/07/2022] [Accepted: 04/07/2023] [Indexed: 05/21/2023]
Abstract
We present a numerically exact steady-state inchworm Monte Carlo method for nonequilibrium quantum impurity models. Rather than propagating an initial state to long times, the method is directly formulated in the steady state. This eliminates any need to traverse the transient dynamics and grants access to a much larger range of parameter regimes at vastly reduced computational costs. We benchmark the method on equilibrium Green's functions of quantum dots in the noninteracting limit and in the unitary limit of the Kondo regime. We then consider correlated materials described with dynamical mean field theory and driven away from equilibrium by a bias voltage. We show that the response of a correlated material to a bias voltage differs qualitatively from the splitting of the Kondo resonance observed in bias-driven quantum dots.
Collapse
Affiliation(s)
- A Erpenbeck
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - E Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - G Cohen
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
9
|
Pokhilko P, Yeh CN, Zgid D. Iterative subspace algorithms for finite-temperature solution of Dyson equation. J Chem Phys 2022; 156:094101. [DOI: 10.1063/5.0082586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One-particle Green’s functions obtained from the self-consistent solution of the Dyson equation can be employed in the evaluation of spectroscopic and thermodynamic properties for both molecules and solids. However, typical acceleration techniques used in the traditional quantum chemistry self-consistent algorithms cannot be easily deployed for the Green’s function methods because of a non-convex grand potential functional and a non-idempotent density matrix. Moreover, the optimization problem can become more challenging due to the inclusion of correlation effects, changing chemical potential, and fluctuations of the number of particles. In this paper, we study acceleration techniques to target the self-consistent solution of the Dyson equation directly. We use the direct inversion in the iterative subspace (DIIS), the least-squared commutator in the iterative subspace (LCIIS), and the Krylov space accelerated inexact Newton method (KAIN). We observe that the definition of the residual has a significant impact on the convergence of the iterative procedure. Based on the Dyson equation, we generalize the concept of the commutator residual used in DIIS and LCIIS and compare it with the difference residual used in DIIS and KAIN. The commutator residuals outperform the difference residuals for all considered molecular and solid systems within both GW and GF2. For a number of bond-breaking problems, we found that an easily obtained high-temperature solution with effectively suppressed correlations is a very effective starting point for reaching convergence of the problematic low-temperature solutions through a sequential reduction of temperature during calculations.
Collapse
Affiliation(s)
- Pavel Pokhilko
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Chia-Nan Yeh
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
10
|
Förster A, Visscher L. Low-Order Scaling Quasiparticle Self-Consistent GW for Molecules. Front Chem 2021; 9:736591. [PMID: 34540804 PMCID: PMC8446457 DOI: 10.3389/fchem.2021.736591] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Low-order scaling GW implementations for molecules are usually restricted to approximations with diagonal self-energy. Here, we present an all-electron implementation of quasiparticle self-consistent GW for molecular systems. We use an efficient algorithm for the evaluation of the self-energy in imaginary time, from which a static non-local exchange-correlation potential is calculated via analytical continuation. By using a direct inversion of iterative subspace method, fast and stable convergence is achieved for almost all molecules in the GW100 database. Exceptions are systems which are associated with a breakdown of the single quasiparticle picture in the valence region. The implementation is proven to be starting point independent and good agreement of QP energies with other codes is observed. We demonstrate the computational efficiency of the new implementation by calculating the quasiparticle spectrum of a DNA oligomer with 1,220 electrons using a basis of 6,300 atomic orbitals in less than 4 days on a single compute node with 16 cores. We use then our implementation to study the dependence of quasiparticle energies of DNA oligomers consisting of adenine-thymine pairs on the oligomer size. The first ionization potential in vacuum decreases by nearly 1 electron volt and the electron affinity increases by 0.4 eV going from the smallest to the largest considered oligomer. This shows that the DNA environment stabilizes the hole/electron resulting from photoexcitation/photoattachment. Upon inclusion of the aqueous environment via a polarizable continuum model, the differences between the ionization potentials reduce to 130 meV, demonstrating that the solvent effectively compensates for the stabilizing effect of the DNA environment. The electron affinities of the different oligomers are almost identical in the aqueous environment.
Collapse
Affiliation(s)
- Arno Förster
- Theoretical Chemistry, Vrije Universiteit, Amsterdam, Netherlands
| | | |
Collapse
|