1
|
Tečer M, Di Liberto M, Silvi P, Montangero S, Romanato F, Calajó G. Strongly Interacting Photons in 2D Waveguide QED. PHYSICAL REVIEW LETTERS 2024; 132:163602. [PMID: 38701484 DOI: 10.1103/physrevlett.132.163602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 05/05/2024]
Abstract
One-dimensional confinement in waveguide quantum electrodynamics (QED) plays a crucial role to enhance light-matter interactions and to induce a strong quantum nonlinear optical response. In two or higher-dimensional settings, this response is reduced since photons can be emitted within a larger phase space, opening the question whether strong photon-photon interaction can be still achieved. In this study, we positively answer this question for the case of a 2D square array of atoms coupled to the light confined into a two-dimensional waveguide. More specifically, we demonstrate the occurrence of long-lived two-photon repulsive and bound states with genuine 2D features. Furthermore, we observe signatures of these effects also in free-space atomic arrays in the form of weakly subradiant in-band scattering resonances. Our findings provide a paradigmatic signature of the presence of strong photon-photon interactions in 2D waveguide QED.
Collapse
Affiliation(s)
- Matija Tečer
- Dipartimento di Fisica e Astronomia "G. Galilei", via Marzolo 8, I-35131 Padova, Italy
| | - Marco Di Liberto
- Dipartimento di Fisica e Astronomia "G. Galilei", via Marzolo 8, I-35131 Padova, Italy
- Padua Quantum Technologies Research Center, Universitá degli Studi di Padova
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, I-35131 Padova, Italy
| | - Pietro Silvi
- Dipartimento di Fisica e Astronomia "G. Galilei", via Marzolo 8, I-35131 Padova, Italy
- Padua Quantum Technologies Research Center, Universitá degli Studi di Padova
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, I-35131 Padova, Italy
| | - Simone Montangero
- Dipartimento di Fisica e Astronomia "G. Galilei", via Marzolo 8, I-35131 Padova, Italy
- Padua Quantum Technologies Research Center, Universitá degli Studi di Padova
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, I-35131 Padova, Italy
| | - Filippo Romanato
- Dipartimento di Fisica e Astronomia "G. Galilei", via Marzolo 8, I-35131 Padova, Italy
- Padua Quantum Technologies Research Center, Universitá degli Studi di Padova
- CNR-IOM Istituto Officina dei Materiali, Trieste, Italy
| | - Giuseppe Calajó
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, I-35131 Padova, Italy
| |
Collapse
|
2
|
Walther V, Sørensen AS. Quantum Light from Lossy Semiconductor Rydberg Excitons. PHYSICAL REVIEW LETTERS 2023; 131:033607. [PMID: 37540885 DOI: 10.1103/physrevlett.131.033607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/28/2023] [Indexed: 08/06/2023]
Abstract
The emergence of photonic quantum correlations is typically associated with emitters strongly coupled to a photonic mode. Here, we show that semiconductor Rydberg excitons, which are only weakly coupled to a free-space light mode can produce strongly antibunched fields, i.e., quantum light. This effect is fueled by a micron-scale excitation blockade between Rydberg excitons inducing pair-wise polariton scattering events. Photons incident on an exciton resonance are scattered into blue- and red-detuned pairs, which enjoy relative protection from absorption and thus dominate the transmitted light. We demonstrate that this effect persists in the presence of additional phonon coupling, strong nonradiative decay, and across a wide range of experimental parameters. Our results pave the way for the observation of quantum statistics from weakly coupled semiconductor excitons.
Collapse
Affiliation(s)
- Valentin Walther
- ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Anders S Sørensen
- Center for Hybrid Quantum Networks (Hy-Q), The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
3
|
Yang F, Lund MM, Pohl T, Lodahl P, Mølmer K. Deterministic Photon Sorting in Waveguide QED Systems. PHYSICAL REVIEW LETTERS 2022; 128:213603. [PMID: 35687472 DOI: 10.1103/physrevlett.128.213603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Sorting quantum fields into different modes according to their Fock-space quantum numbers is a highly desirable quantum operation. In this Letter, we show that a pair of two-level emitters, chirally coupled to a waveguide, may scatter single- and two-photon components of an input pulse into orthogonal temporal modes with a fidelity ≳0.9997. We develop a general theory to characterize and optimize this process and reveal that such a high fidelity is enabled by an interesting two-photon scattering dynamics: while the first emitter gives rise to a complex multimode field, the second emitter recombines the field amplitudes, and the net two-photon scattering induces a self-time reversal of the input pulse mode. The presented scheme can be employed to construct logic elements for propagating photons, such as a deterministic nonlinear-sign gate with a fidelity ≳0.9995.
Collapse
Affiliation(s)
- Fan Yang
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mads M Lund
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Thomas Pohl
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Peter Lodahl
- Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
| | - Klaus Mølmer
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Zhang YX, Mølmer K. Free-Fermion Multiply Excited Eigenstates and Their Experimental Signatures in 1D Arrays of Two-Level Atoms. PHYSICAL REVIEW LETTERS 2022; 128:093602. [PMID: 35302803 DOI: 10.1103/physrevlett.128.093602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
One-dimensional (1D) subwavelength atom arrays display multiply excited subradiant eigenstates which are reminiscent of free fermions. So far, these states have been associated with subradiant states with decay rates ∝N^{-3}, with N the number of atoms, which fundamentally prevents detection of their fermionic features by optical means. In this Letter, we show that free-fermion states generally appear whenever the band of singly excited states has a quadratic dispersion relation at the band edge and, hence, may also be obtained with radiant and even superradiant states. 1D arrays have free-fermion multiply excited eigenstates that are typically either subradiant or (super)radiant, and we show that a simple transformation acts between the two families. Based on this correspondence, we propose different means for their preparation and analyze their experimental signature in optical detection.
Collapse
Affiliation(s)
- Yu-Xiang Zhang
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| | - Klaus Mølmer
- Aarhus Institute of Advanced Studies, Aarhus University and Center for Complex Quantum Systems (CCQ), Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Stewart JC, Fan Y, Danial JSH, Goetz A, Prasad AS, Burton OJ, Alexander-Webber JA, Lee SF, Skoff SM, Babenko V, Hofmann S. Quantum Emitter Localization in Layer-Engineered Hexagonal Boron Nitride. ACS NANO 2021; 15:13591-13603. [PMID: 34347438 DOI: 10.1021/acsnano.1c04467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Hexagonal boron nitride (hBN) is a promising host material for room-temperature, tunable solid-state quantum emitters. A key technological challenge is deterministic and scalable spatial emitter localization, both laterally and vertically, while maintaining the full advantages of the 2D nature of the material. Here, we demonstrate emitter localization in hBN in all three dimensions via a monolayer (ML) engineering approach. We establish pretreatment processes for hBN MLs to either fully suppress or activate emission, thereby enabling such differently treated MLs to be used as select building blocks to achieve vertical (z) emitter localization at the atomic layer level. We show that emitter bleaching of ML hBN can be suppressed by sandwiching between two protecting hBN MLs, and that such thin stacks retain opportunities for external control of emission. We exploit this to achieve lateral (x-y) emitter localization via the addition of a patterned graphene mask that quenches fluorescence. Such complete emitter site localization is highly versatile, compatible with planar, scalable processing, allowing tailored approaches to addressable emitter array designs for advanced characterization, monolithic device integration, and photonic circuits.
Collapse
Affiliation(s)
- James Callum Stewart
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Ye Fan
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - John S H Danial
- The Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alexander Goetz
- Institute of Atomic and Subatomic Physics, Vienna University of Technology, Stadionallee 2, 1020 Vienna, Austria
| | - Adarsh S Prasad
- Institute of Atomic and Subatomic Physics, Vienna University of Technology, Stadionallee 2, 1020 Vienna, Austria
| | - Oliver J Burton
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Jack A Alexander-Webber
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Steven F Lee
- The Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah M Skoff
- Institute of Atomic and Subatomic Physics, Vienna University of Technology, Stadionallee 2, 1020 Vienna, Austria
| | - Vitaliy Babenko
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Stephan Hofmann
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| |
Collapse
|
6
|
A Versatile Quantum Simulator for Coupled Oscillators Using a 1D Chain of Atoms Trapped near an Optical Nanofiber. PHOTONICS 2021. [DOI: 10.3390/photonics8060228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transversely confined propagating light modes of a nanophotonic optical waveguide or nanofiber can effectively mediate infinite-range forces. We show that for a linear chain of particles trapped within the waveguide’s evanescent field, transverse illumination with a suitable set of laser frequencies should allow the implementation of a coupled-oscillator quantum simulator with time-dependent and widely controllable all-to-all interactions. Using the example of the energy spectrum of oscillators with simulated Coulomb interactions, we show that different effective coupling geometries can be emulated with high precision by proper choice of laser illumination conditions. Similarly, basic quantum gates can be selectively implemented between arbitrarily chosen pairs of oscillators in the energy as well as in the coherent-state basis. Key properties of the system dynamics and states can be monitored continuously by analysis of the out-coupled fiber fields.
Collapse
|