1
|
Chen S, Zhu H, Li T, Liu P, Wu C, Jia S, Li Y, Suo B. Applications of metal nanoclusters supported on the two-dimensional material graphene in electrocatalytic carbon dioxide reduction. Phys Chem Chem Phys 2024; 26:26647-26676. [PMID: 39415712 DOI: 10.1039/d4cp03161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metal nanoclusters (MNCs) have been demonstrated to exhibit superior catalytic performance compared to single nanoparticles. This is attributed to their quantized electronic structure, unique geometrical stacking and abundant active sites. While the exposed metal atoms can markedly enhance the efficiency of catalysis, unfortunately, MNCs are susceptible to agglomeration, which impairs their catalytic activity and stability. Graphene is a two-dimensional material consisting of a single atomic layer formed by the hybridization of the s and p orbitals of carbon atoms. It exhibits stable physical and chemical properties and has an easily controllable structure, making it an ideal carrier for MNCs. When metal nanoclusters (MNCs) are loaded on a graphene substrate, the MNCs can form a stable binding site on the graphene substrate. Furthermore, the construction of a defective structure on the graphene substrate enables the formation of robust interactions between the metal atoms of the MNCs and the substrate, facilitating the rapid establishment of electron conduction pathways and markedly enhancing the electrocatalytic performance. This paper presents a review of the applications of metal nanoclusters supported on graphene skeletons in the field of the electrocatalytic CO2 reduction reaction (CO2RR). Firstly, we briefly introduce the reaction mechanism of the CO2RR, then we systematically discuss the synthesis strategies, properties and applications of metal nanoclusters in electrocatalytic carbon dioxide reduction from both experimental and theoretical perspectives, and lastly, we discuss the opportunities and challenges of metal nanocluster catalysts supported on carbon materials.
Collapse
Affiliation(s)
- Shanlin Chen
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Haiyan Zhu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Tingting Li
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Ping Liu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chou Wu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shaobo Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi'an, P. R. China
| | - Yawei Li
- School of Energy, Power and Mechanical Engineering, Institute of Energy and Power Innovation, North China Electric Power University, Beijing 102206, China.
| | - Bingbing Suo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
2
|
Mohanta M, Jena P. Magnetism of Otherwise Nonmagnetic Elements: From Clusters to Monolayers. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:12286-12295. [PMID: 39081559 PMCID: PMC11284855 DOI: 10.1021/acs.jpcc.4c03592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Atomic clusters are known to exhibit properties different from their bulk phase. However, when assembled or supported on substrates, clusters often lose their uniqueness. For example, uranium and coinage metals (Cu, Ag, Au) are nonmagnetic in their bulk. Herein, we show that UX6 (X= Cu, Ag, Au) clusters, unlike their nonmagnetic bulk, are not only magnetic but also retain their magnetic character and structure when assembled into a two-dimensional (2D) material. The magnetic moment remains localized at the U site and is found to be 3μB in clusters and about 2μB in the 2D structure. In 2D UX4 (X = Cu, Ag, Au) monolayers, U atoms are found to be coupled antiferromagnetically through an indirect exchange coupling mediated by the coinage metal atoms. Furthermore, hydrogenation of these monolayers can induce a transition from the antiferromagnetic to the ferromagnetic phase. These results, based on density functional theory, have predictive capability and can motivate experiments.
Collapse
Affiliation(s)
- Manish
Kumar Mohanta
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
3
|
Piotrowski MJ, Palheta JMT, Fournier R. Cage doping of Ti, Zr, and Hf-based 13-atom nanoclusters: two sides of the same coin. Phys Chem Chem Phys 2024; 26:13172-13181. [PMID: 38630106 DOI: 10.1039/d4cp00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Transition metal nanoclusters can exhibit unique and tunable properties which result not only from their chemical composition but also from their atomic packing and quantized electronic structures. Here, we introduce a promising family of bimetallic TM@Ti12, TM@Zr12, and TM@Hf12 nanoclusters with icosahedral geometry, where TM represents an atom from groups 3 to 12. Density functional theory calculations show that their stability can be explained with familiar concepts of metal cluster electronic and atomic shell structures. The magnetic properties of these quasispherical clusters are entirely consistent with superatom electronic shells and Hund's rules, and can be tuned by the choice of the TM dopant. The computed cluster atomization energies were analyzed in terms of the elements' cohesive energy, Ecoh, and contributions from geometric distortion, Edis, surface energy, Es, and ionic bonding, Ei. Some clusters have anomalous stability relative to Ecoh + Edis + Es + Ei. We attribute this to superatomic character associated with a favorable atomic and electronic shell structure. This raises the possibility of designing stable superatoms and materials with tailored electronic and magnetic properties.
Collapse
Affiliation(s)
- Maurício J Piotrowski
- Department of Physics, Federal University of Pelotas, PO Box 354, 96010-900 Pelotas, RS, Brazil.
| | - João Marcos T Palheta
- Department of Physics, Federal University of Pelotas, PO Box 354, 96010-900 Pelotas, RS, Brazil.
| | - René Fournier
- Department of Chemistry, York University, Toronto, ON, Canada M3J 1P3.
| |
Collapse
|
4
|
Jia Y, Xu CQ, Cui C, Geng L, Zhang H, Zhang YY, Lin S, Yao J, Luo Z, Li J. Rh 19-: A high-spin super-octahedron cluster. SCIENCE ADVANCES 2023; 9:eadi0214. [PMID: 37585530 PMCID: PMC10431703 DOI: 10.1126/sciadv.adi0214] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Probing atomic clusters with magic numbers is of supreme importance but challenging in cluster science. Pronounced stability of a metal cluster often arises from coincident geometric and electronic shell closures. However, transition metal clusters do not simply abide by this constraint. Here, we report the finding of a magic-number cluster Rh19- with prominent inertness in the sufficient gas-collision reactions. Photoelectron spectroscopy experiments and global-minimum structure search have determined the geometry of Rh19- to be a regular Oh‑[Rh@Rh12@Rh6]- with unusual high-spin electronic configuration. The distinct stability of such a strongly magnetic cluster Rh19- consisting of a nonmagnetic element is fully unveiled on the basis of its unique bonding nature and superatomic states. The 1-nanometer-sized Oh-Rh19- cluster corresponds to a fragment of the face-centered cubic lattice of bulk rhodium but with altered magnetism and electronic property. This cluster features exceptional electron-spin state isomers confirmed in photoelectron spectra and suggests potential applications in atomically precise manufacturing involving spintronics and quantum computing.
Collapse
Affiliation(s)
- Yuhan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Qiao Xu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chaonan Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijun Geng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hanyu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang-Yang Zhang
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Shiquan Lin
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Ge M, Chu L, Guo M, Su Y, Zhang J. First-Principles Study of Ir n (n = 3-5) Clusters Adsorbed on Graphene and Hexagonal Boron Nitride: Structural and Magnetic Properties. NANOMATERIALS 2022; 12:nano12142436. [PMID: 35889660 PMCID: PMC9317977 DOI: 10.3390/nano12142436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022]
Abstract
Magnetic clusters have attracted great attention and interest due to their novel electronic properties, and they have potential applications in nanoscale information storage devices and spintronics. The interaction between magnetic clusters and substrates is still one of the challenging research focuses. Here, by using the density functional theory (DFT), we study the structural stability and magnetic properties of iridium clusters (Irn, n = 3–5) adsorbed on two-dimensional (2D) substrates, such as graphene and hexagonal boron nitride (hBN). We find that the most favorable configurations of free Irn clusters change when adsorbed on 2D substrates. In the meantime, the magnetic moments of the most stable Irn reduce to 53% (graphene) and 23.6% (hBN) compared with those of the free−standing ones. Interestingly, about 12-times enlargement on the magnetic anisotropy energy can be found on hBN substrates. These theoretical results indicate that the cluster–substrate interaction has vital effects on the properties of Irn clusters.
Collapse
Affiliation(s)
- Mei Ge
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China; (M.G.); (L.C.); (M.G.)
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Taiyuan 030031, China
| | - Leiting Chu
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China; (M.G.); (L.C.); (M.G.)
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Taiyuan 030031, China
| | - Miaomiao Guo
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China; (M.G.); (L.C.); (M.G.)
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Taiyuan 030031, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China;
| | - Junfeng Zhang
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China; (M.G.); (L.C.); (M.G.)
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Taiyuan 030031, China
- Correspondence: ; Tel.: +86-13935705526
| |
Collapse
|
6
|
Wang Y, Ren X, Jiang B, Deng M, Zhao X, Pang R, Li SF. Synergetic Catalysis of Magnetic Single-Atom Catalysts Confined in Graphitic-C 3N 4/CeO 2(111) Heterojunction for CO Oxidization. J Phys Chem Lett 2022; 13:6367-6375. [PMID: 35796604 DOI: 10.1021/acs.jpclett.2c01605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic single-atom catalysts (MSAC), due to the intrinsic spin degree of freedom, are of particular importance relative to other conventional SAC for applications in various catalytic processes, especially in those cases that involve spin-triplet O2. However, the bottleneck issue in this field is the clustering of the SAC during the processes. Here using first-principles calculations we predict that Mn atoms can be readily confined in the interface of the porous g-C3N4/CeO2(111) heterostructure, forming high-performance MSAC for O2 activation via a delicate synergetic mechanism of charge transfer, mainly provided by the p-block g-C3N4 overlayer mediated by the d-block Mn active site, and spin selection, preserved mainly through active participation of the f-block Ce atoms and/or g-C3N4, which effectively promotes the CO oxidization. Such a recipe is also demonstrated to be valid for V- and Nb-MSACs, which may shed new light on the design of highly efficient MSACs for various important chemical processes wherein spin-selection matters.
Collapse
Affiliation(s)
- Yueyang Wang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyan Ren
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Bojie Jiang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Deng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xingju Zhao
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Pang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - S F Li
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Derdare M, Boudjahem AG, Cheghib N. Stability and electronic properties of V-doped ruthenium nanoclusters and their adsorptive properties towards hydrogen sulphide and serine molecules. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2070088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Meryem Derdare
- Computational Catalysis Group, Laboratory of Applied Chemistry, University of Guelma, Guelma, Algeria
| | - Abdel-Ghani Boudjahem
- Computational Catalysis Group, Laboratory of Applied Chemistry, University of Guelma, Guelma, Algeria
| | - Nedjoua Cheghib
- Computational Catalysis Group, Laboratory of Applied Chemistry, University of Guelma, Guelma, Algeria
| |
Collapse
|
8
|
Ehrhard AA, Klein MP, Mohrbach J, Dillinger S, Niedner-Schatteburg G. Cryo kinetics of N2 adsorption onto bimetallic rhodium–iron clusters in isolation. J Chem Phys 2022; 156:054308. [DOI: 10.1063/5.0075286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Amelie A. Ehrhard
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Matthias P. Klein
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jennifer Mohrbach
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Sebastian Dillinger
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Gereon Niedner-Schatteburg
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
9
|
Robust LSPR Sensing Using Thermally Embedded Au Nanoparticles in Glass Substrates. NANOMATERIALS 2021; 11:nano11061592. [PMID: 34204448 PMCID: PMC8235226 DOI: 10.3390/nano11061592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022]
Abstract
The poor adhesion and chemical and thermal stability of plasmonic nanostructures deposited on solid surfaces are a hindrance to the longevity and long-term development of robust localized surface plasmon resonance (LSPR)-based systems. In this paper, we have deposited gold (Au) nanolayers with thicknesses above the percolation limit over glass substrates and have used a thermal annealing treatment at a temperature above the substrate’s glass transition temperature to promote the dewetting, recrystallization, and thermal embedding of Au nanoparticles (NPs). Due to the partial embedding in glass, the NPs were strongly adherent to the surface of the substrate and were able to resist to the commonly used cleaning procedures and mechanical adhesion tests alike. The reflectivity of the embedded nanostructures was studied and shown to be strongly dependent on the NP size/shape distributions and on the degree of NP embedding. Strong optical scattering bands with increasing width and redshifted LSPR peak position were observed with the Au content. Refractive index sensitivity (RIS) values between 150 and 360 nm/RIU (concerning LSPR band edge shift) or between 32 and 72 nm/RIU (concerning LSPR peak position shift) were obtained for the samples having narrower LSPR extinction bands. These robust LSPR sensors can be used following a simple excitation/detection scheme consisting of a reflectance measurement at a fixed angle and wavelength.
Collapse
|
10
|
Sun C. The BOLS-NEP theory reconciling the attributes of undercoordinated adatoms, defects, surfaces and nanostructures. NANO MATERIALS SCIENCE 2020. [DOI: 10.1016/j.nanoms.2019.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Guo X, Duan H, Cao B, Lu S, Long M, Chen F, Abliz A, Wu Z, Jing Q, Miao Z, Chen X. Adsorption of small molecules on transition metal doped rhodium clusters Rh 3X (X = 3 d, 4 d atom): a first-principles investigation. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1746424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Xiaolin Guo
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Haiming Duan
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Biaobing Cao
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Shuwei Lu
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Mengqiu Long
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
- Hunan Key laboratory of Super Micro-structure and Ultrafast Process, Central South University, Changsha, People’s Republic of China
| | - Fengjuan Chen
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Ablat Abliz
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Zhaofeng Wu
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Qun Jing
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Zhenzhen Miao
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Xuan Chen
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| |
Collapse
|
12
|
Gherib H, Boudjahem AG, Medjahdi G. Effect of Preparation Method and Support on Catalytic Behavior of Rhodium Nanoparticles in Styrene Hydrogenation. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420030106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
de Oliveira A, Jorge F. Structural, electronic, electrical, and magnetic properties of Rh (1 ≤ n ≤ 13) clusters. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Fan YW, Wang HQ, Li HF. The stability, electronic, and magnetic properties of rare-earth doped silicon-based clusters. J Mol Model 2019; 25:221. [PMID: 31302782 DOI: 10.1007/s00894-019-4111-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/26/2019] [Indexed: 11/26/2022]
Abstract
The rare-earth doped silicon-based clusters exhibit remarkable structural, physical, and chemical properties, which make them attractive candidates as building units in designing of cluster-based materials with special optical, electronic, and magnetic properties. The structural, stability, electronic, and magnetic properties of pure silicon Sin + 1 (n = 1-9) and rare-earth doped clusters SinEu (n = 1-9) are investigated using the "stochastic kicking" (SK) global search technique combined with density functional theory (DFT) calculations. It was found that: 1) the ground state structures of pure silicon clusters tend to form compact structures rather than cages with the increase of cluster size; 2) the ground state structures for doped species were found to be additional or substitutional sites, and the rare-earth atoms tend to locate on the surface of the silicon clusters; 3) the average binding energy of the doped clusters increased gradually and exhibited the final phenomenon of saturation with the increase of clusters size. The average binding energy of doped clusters was slightly higher than that of pure silicon clusters of the same size, which indicated that the rare-earth atom encapsulated by silicon enhanced the stability of the silicon clusters to some degree; 4) the doped clusters have strong total magnetic moments, which mainly originated from the contribution of rare-earth atoms, whereas the contribution of silicon atoms were almost negligible. As the cluster size increased, the total magnetic moments of binary mixed clusters tended to be stable.
Collapse
Affiliation(s)
- Yi-Wei Fan
- College of Information Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Huai-Qian Wang
- College of Engineering, Huaqiao University, Quanzhou, 362021, China.
| | - Hui-Fang Li
- College of Engineering, Huaqiao University, Quanzhou, 362021, China
| |
Collapse
|
15
|
Dutta A, Mondal P. Density functional studies on structural, electronic and magnetic properties of Rhn (n = 9–20) clusters and O–H bond of methanol activation by pure and ruthenium-doped rhodium clusters. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2399-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Boulbazine M, Boudjahem AG. Stability, Electronic and Magnetic Properties of Mn-Doped Copper Clusters: A Meta-GGA Functional Investigation. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1456-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Structural, Electronic and Tunable Magnetic Properties of Transition Metal Doped Rh8 Cluster from First Principles Calculation. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
18
|
Berry H, Wang B, Zhang Q. The Behavior of Magnetic Properties in the Clusters of 4d Transition Metals. Molecules 2018; 23:E1896. [PMID: 30060624 PMCID: PMC6222613 DOI: 10.3390/molecules23081896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 11/20/2022] Open
Abstract
The current focus of material science researchers is on the magnetic behavior of transition metal clusters due to its great hope for future technological applications. It is common knowledge that the 4d transition elements are not magnetic at their bulk size. However, studies indicate that their magnetic properties are strongly dependent on their cluster sizes. This study attempts to identify magnetic properties of 4d transition metal clusters. Using a tight-binding Friedel model for the density of d-electron states, we investigated the critical size for the magnetic-nonmagnetic transition of 4d transition-metal clusters. Approaching to the critical point, the density of states of the cluster near the Fermi level is higher than 1/J and the discrete energy levels form a quasi-continuous band. Where J is correlation integral. In order to determine the critical size, we considered a square shape band and fcc, bcc, icosahedral and cuboctahedral close-packed structures of the clusters. We also investigated this size dependent magnetic behavior using Heisenberg model. Taking some quantum mechanical approximations in to consideration, we determined magnetic behavior of the clusters. For practicality, we considered three clusters of transition metals (Ru, Rh and Pd) and the obtained results are in line with the results of previous studies.
Collapse
Affiliation(s)
- Habte Berry
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
- Department of Physics, College of Natural and Computational Sciences, Dilla University, P.O. Box 419, Dilla, Ethiopia.
| | - Baolin Wang
- School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China.
| | - Qinfang Zhang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
19
|
Jena P, Sun Q. Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials. Chem Rev 2018; 118:5755-5870. [DOI: 10.1021/acs.chemrev.7b00524] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Puru Jena
- Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284-2000, United States
| | - Qiang Sun
- Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284-2000, United States
| |
Collapse
|
20
|
Density functional theory study of structure, electronic and magnetic properties of non-metal (Group 13) doped stable $$\hbox {Rh}_{\mathrm{n}}({\mathrm{n}}=2{-}8)$$ Rh n ( n = 2 - 8 ) clusters and their catalytic activities towards methanol activation. J CHEM SCI 2018. [DOI: 10.1007/s12039-017-1402-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Dutta A, Mondal P. Structural, electronic and catalytic properties of single magnesium atom doped small neutral Rh n (n = 2–8) clusters: Density functional study. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Engineering Redox Potential of Lithium Clusters for Electrode Material in Lithium-Ion Batteries. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1260-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Boulbazine M, Boudjahem AG, Bettahar M. Stabilities, electronic and magnetic properties of Cu-doped nickel clusters: a DFT investigation. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1329561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mouhssin Boulbazine
- Nanomaterials Chemistry Group, University of Guelma, Guelma, Algeria
- Laboratoire de Chimie Appliquée, Université de Guelma, Guelma, Algérie
| | | | - Mohamed Bettahar
- Institut Jean Barriol, SRSMC, Faculté des Sciences et de la Technologie, Université de Lorraine, Boulevard des Aiguillettes, Vandoeuvre Cédex, France
| |
Collapse
|
24
|
Abstract
The relative role of electronic and geometric effects on the stability of clusters has been a contentious topic for quite some time, with the focus on electronic structure generally gaining the upper hand. In this Account, we hope to demonstrate that both electronic shell filling and geometric shell filling are necessary concepts for an intuitive understanding of the reactivity of metal clusters. This work will focus on the reactivity of aluminum based clusters, although these concepts may be applied to clusters of different metals and ligand protected clusters. First we highlight the importance of electronic shell closure in the stability of metallic clusters. Quantum confinement in small compact metal clusters results in the bunching of quantum states that are reminiscent of the electronic shells in atoms. Clusters with closed electronic shells and large HOMO-LUMO (highest occupied molecular orbital-lowest unoccupied molecular orbital) gaps have enhanced stability and reduced reactivity with O2 due to the need for the cluster to accommodate the spin of molecular oxygen during activation of the molecule. To intuitively understand the reactivity of clusters with protic species such as water and methanol, geometric effects are needed. Clusters with unsymmetrical structures and defects usually result in uneven charge distribution over the surface of the cluster, forming active sites. To reduce reactivity, these sites must be quenched. These concepts can also be applied to ligand protected clusters. Clusters with ligands that are balanced across the cluster are less reactive, while clusters with unbalanced ligands can result in induced active sites. Adatoms on the surface of a cluster that are bound to a ligand result in an activated adatom that reacts readily with protic species, offering a mechanism by which the defects will be etched off returning the cluster to a closed geometric shell. The goal of this Account is to argue that both geometric and electronic shell filling concepts serve as valuable organizational principles that explain a wide variety of phenomena in the reactivity of clusters. These concepts help to explain the fundamental interactions that allow for specific clusters to be described as superatoms. Superatoms are clusters that exhibit a well-defined valence. A superatom cluster's properties may be intuitively understood and predicted based on the energy gained when the cluster obtains its optimal electronic and geometric structure. This concept has been found to be a unifying principle among a wide variety of metal clusters ranging from free aluminum clusters to ligand protected noble metal clusters and even metal-chalcogenide ligand protected clusters. Thus, the importance of electronic and geometric shell closing concepts supports the superatom concept, because the properties of certain clusters with well-defined valence are controlled by the stability that is enhanced when they retain their closed electronic and geometric shells.
Collapse
Affiliation(s)
- Arthur C. Reber
- Department of Physics, Virginia Commonwealth University, 701 W. Grace St., Richmond, Virginia 23284, United States
| | - Shiv N. Khanna
- Department of Physics, Virginia Commonwealth University, 701 W. Grace St., Richmond, Virginia 23284, United States
| |
Collapse
|
25
|
Chaves AS, Piotrowski MJ, Da Silva JLF. Evolution of the structural, energetic, and electronic properties of the 3d, 4d, and 5d transition-metal clusters (30 TMn systems for n = 2–15): a density functional theory investigation. Phys Chem Chem Phys 2017; 19:15484-15502. [DOI: 10.1039/c7cp02240a] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Subnanometric transition-metal (TM) clusters have attracted great attention due to their unexpected physical and chemical properties, leastwise compared to their bulk counterparts.
Collapse
Affiliation(s)
- Anderson S. Chaves
- Gleb Wataghin Institute of Physics
- University of Campinas
- Campinas
- Brazil
- São Carlos Institute of Chemistry
| | | | | |
Collapse
|
26
|
Martins M, Wurth W. Magnetic properties of supported metal atoms and clusters. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:503002. [PMID: 27783566 DOI: 10.1088/0953-8984/28/50/503002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Clusters are small systems ranging from a few atoms up to several thousand atoms. They are of high interest in basic research, but also for applications due to their specific electronic, magnetic or chemical properties depending on size and composition. For small clusters, quantum size effects play an important role and specific material properties might be tailored by choosing a special size or composition of the cluster. Here, we review the magnetic properties of adatoms and supported small mass-selected transition-metal clusters in the few-atom limit investigated by x-ray magnetic circular dichroism spectroscopy in the soft x-ray regime. The influence of cluster size, composition, the cluster-surface and intra-cluster interaction on the spin and orbital magnetic moments will be discussed.
Collapse
Affiliation(s)
- Michael Martins
- Department of Physics, University of Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | | |
Collapse
|
27
|
Cooperative Effects in Clusters and Oligonuclear Complexes of Transition Metals in Isolation. STRUCTURE AND BONDING 2016. [DOI: 10.1007/430_2016_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
28
|
Zhao RN, Lu ZC. A density functional calculation on W doped Nn (n = 1–9) clusters. MAIN GROUP CHEMISTRY 2016. [DOI: 10.3233/mgc-160204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Run-Ning Zhao
- Institute of Applied Mathematics and Physics, Shanghai DianJi University, Shanghai, People’s Republic of China
| | - Zi-Chen Lu
- Technology Transfer Center, Chinese Academy of Sciences, Dongguan, People’s Republic of China
| |
Collapse
|
29
|
Liu Y, Zhang J, Li J, Liang X, Duan H. Hydrogen, oxygen and nitrogen adsorption on Rhn−1X (n=2–5, X=3d, 4d atoms) clusters: A DFT study. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Atomic carbon growth on yttrium clusters: Relativistic density functional theory investigations. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Liang X, Wu X, Huang X, Su Y, Hu J, Zhao J. Magnetic Anisotropy of Small Irn Clusters (n = 2–5). J CLUST SCI 2016. [DOI: 10.1007/s10876-016-0981-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Soltani A, Bouderbala W, Boudjahem AG. First Principles Study of the Geometries, Relative Stabilities and Magnetic Properties of Bimetallic RhnOs (n = 1–9) Clusters. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-0970-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
|
34
|
Insight into the Relationship Between Structural and Electronic Properties of Bimetallic RhnPt55−n (n = 0–55) Clusters with Cuboctahedral Structure: DFT Approaches. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-0967-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Alonso-Lanza T, Ayuela A, Aguilera-Granja F. Substitutional 4d and 5d impurities in graphene. Phys Chem Chem Phys 2016; 18:21913-20. [DOI: 10.1039/c6cp04677k] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We describe the structural and electronic properties of graphene doped with substitutional impurities of 4d and 5d transition metals.
Collapse
Affiliation(s)
- Tomás Alonso-Lanza
- Centro de Física de Materiales CFM-MPC CSIC-UPV/EHU
- Donostia International Physics Center (DIPC)
- Departamento de Física de Materiales
- Fac. de Químicas
- UPV-EHU
| | - Andrés Ayuela
- Centro de Física de Materiales CFM-MPC CSIC-UPV/EHU
- Donostia International Physics Center (DIPC)
- Departamento de Física de Materiales
- Fac. de Químicas
- UPV-EHU
| | - Faustino Aguilera-Granja
- Centro de Física de Materiales CFM-MPC CSIC-UPV/EHU
- Donostia International Physics Center (DIPC)
- Departamento de Física de Materiales
- Fac. de Químicas
- UPV-EHU
| |
Collapse
|
36
|
Dutta A, Mondal P. Structural evolution, electronic and magnetic manners of small rhodium Rhn+/− (n = 2–8) clusters: a detailed density functional theory study. RSC Adv 2016. [DOI: 10.1039/c5ra21600a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have evaluated the stable electronic structure and magnetic properties of all neutral and ionic Rhn (n = 2–8) clusters using density functional theory. This study reveals that Rh4 is the magic cluster based on the calculated reactivity parameters.
Collapse
Affiliation(s)
- Abhijit Dutta
- Department of Chemistry
- Assam University
- Silchar 788011
- India
| | | |
Collapse
|
37
|
Dieleman D, Tombers M, Peters L, Meyer J, Peredkov S, Jalink J, Neeb M, Eberhardt W, Rasing T, Niedner-Schatteburg G, Kirilyuk A. Orbit and spin resolved magnetic properties of size selected [ConRh]⁺ and [ConAu]⁺ nanoalloy clusters. Phys Chem Chem Phys 2015; 17:28372-8. [PMID: 26104269 DOI: 10.1039/c5cp01923k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bi-metallic nanoalloys of mixed 3d-4d or 3d-5d elements are promising candidates for technological applications. The large magnetic moment of the 3d materials in combination with a high spin-orbit coupling of the 4d or 5d materials give rise to a material with a large magnetic moment and a strong magnetic anisotropy, making them ideally suitable in for example magnetic storage devices. Especially for clusters, which already have a higher magnetic moment compared to the bulk, these alloys can profit from the cooperative role of alloying and size reduction in order to obtain magnetically stable materials with a large magnetic moment. Here, the influence of doping of small cobalt clusters on the spin and orbital magnetic moment has been studied for the cations [Co(8-14)Au](+) and [Co(10-14)Rh](+). Compared to the undoped pure cobalt [Co(N)](+) clusters we find a significant increase in the spin moment for specific Co(N-1)Au(+) clusters and a very strong increase in the orbital moment for some Co(N-1)Rh(+) clusters, with more than doubling for Co12Rh(+). This result shows that substitutional doping of a 3d metal with even just one atom of a 4d or 5d metal can lead to dramatic changes in both spin and orbital moment, opening up the route to novel applications.
Collapse
Affiliation(s)
- Dennis Dieleman
- Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Hang TD, Hung HM, Thiem LN, Nguyen HMT. Electronic structure and thermochemical properties of neutral and anionic rhodium clusters Rhn, n=2–13. Evolution of structures and stabilities of binary clusters RhmM (M=Fe, Co, Ni; m=1–6). COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Liu X, Zhang X, Bo M, Li L, Tian H, Nie Y, Sun Y, Xu S, Wang Y, Zheng W, Sun CQ. Coordination-resolved electron spectrometrics. Chem Rev 2015; 115:6746-810. [PMID: 26110615 DOI: 10.1021/cr500651m] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xinjuan Liu
- †Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
| | - Xi Zhang
- ‡Institute of Nanosurface Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Maolin Bo
- §Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education) and School of Materials Science and Engineering, Xiangtan University, Hunan 411105, China
| | - Lei Li
- ∥School of Materials Science, Jilin University, Changchun 130012, China
| | - Hongwei Tian
- ∥School of Materials Science, Jilin University, Changchun 130012, China
| | - Yanguang Nie
- ⊥School of Science, Jiangnan University, Wuxi 214122, China
| | - Yi Sun
- #Harris School of Public Policy, University of Chicago, Chicago, Illinois 60637, United States
| | - Shiqing Xu
- †Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yan Wang
- ∇School of Information Technology, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Weitao Zheng
- ∥School of Materials Science, Jilin University, Changchun 130012, China
| | - Chang Q Sun
- ○NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
41
|
Zhao J, Huang X, Jin P, Chen Z. Magnetic properties of atomic clusters and endohedral metallofullerenes. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.12.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Buendía F, Beltrán MR, Zhang X, Liu G, Buytendyk A, Bowen K. Ab initio and anion photoelectron study of AunRhm (n = 1–7, m = 1–2) clusters. Phys Chem Chem Phys 2015; 17:28219-27. [DOI: 10.1039/c5cp00115c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anion photoelectron spectroscopy and DFT calculations study on AunRhm (n = 1–7 and m = 1–2). PES spectra, vertical and adiabatic detachment energies, are compared. The characteristic planarity for gold clusters is preserved for many of the bimetallic clusters.
Collapse
Affiliation(s)
- Fernando Buendía
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- México D.F
- Mexico
| | - Marcela R. Beltrán
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- México D.F
- Mexico
| | - Xinxing Zhang
- Department of Chemistry
- Johns Hopkins University
- Baltimore
- USA
| | - Gaoxiang Liu
- Department of Chemistry
- Johns Hopkins University
- Baltimore
- USA
| | | | - Kit Bowen
- Department of Chemistry
- Johns Hopkins University
- Baltimore
- USA
| |
Collapse
|
43
|
Tang Z, Shahzad A, Kim WS, Yu T. Cost-effective aqueous-phase synthesis of long copper nanowires. RSC Adv 2015. [DOI: 10.1039/c5ra15751j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This work describes a simple and cost-effective aqueous-phase synthesis of Cu nanowires with long-term stability. Chloride ions and branched polyethyleneimine (BPEI) were found to be of great importance to the formation and stabilization of Cu nanowires.
Collapse
Affiliation(s)
- Zengmin Tang
- Department of Chemical Engineering
- College of Engineering
- Kyung Hee University
- Youngin
- Korea
| | - Aasim Shahzad
- Department of Chemical Engineering
- College of Engineering
- Kyung Hee University
- Youngin
- Korea
| | - Woo-Sik Kim
- Department of Chemical Engineering
- College of Engineering
- Kyung Hee University
- Youngin
- Korea
| | - Taekyung Yu
- Department of Chemical Engineering
- College of Engineering
- Kyung Hee University
- Youngin
- Korea
| |
Collapse
|
44
|
Soltani A, Boudjahem AG. Stabilities, electronic and magnetic properties of small Rhn (n=2–12) clusters: A DFT approach. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Structures, stabilities, electronic and magnetic properties of small RhxMny (x+y=2–4) clusters. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Size dependent structural, electronic, and magnetic properties of Sc(N) (N=2-14) clusters investigated by density functional theory. J Mol Model 2014; 20:2481. [PMID: 25337684 DOI: 10.1007/s00894-014-2481-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/28/2014] [Indexed: 10/24/2022]
Abstract
Structural, electronic, and magnetic properties of ScN (N=2-14) clusters have been investigated using density functional theory (DFT) calculations. Different spin states isomer for each cluster size has been optimized with symmetry relaxation. The structural stability, dissociation energy, binding energy, spin stability, vertical ionization energy, electron affinity, chemical hardness, and size dependent magnetic moment per atom are calculated for the energetically most stable spin isomer for each size. The structural stability for a specific size cluster has been explained in terms of atomic shell closing effect, close packed symmetric structure, and chemical bonding. Spin stability of each cluster size is determined by calculating the value of spin gaps. The maximum value for second-order energy difference is observed for the clusters of size N = 2, 6, 11, and 13, which implies that these clusters are relatively more stable. The magnetic moment per atom corresponding to lowest energy structure has also been calculated. The magnetic moment per atom corresponding to lowest energy structures has been calculated. The calculated values of magnetic moment per atom vary in an oscillatory fashion with cluster size. The calculated results are compared with the available experimental data.
Collapse
|
47
|
Heard CJ, Heiles S, Vajda S, Johnston RL. Pd(n)Ag(4-n) and Pd(n)Pt(4-n) clusters on MgO (100): a density functional surface genetic algorithm investigation. NANOSCALE 2014; 6:11777-11788. [PMID: 25158024 DOI: 10.1039/c4nr03363a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The novel surface mode of the Birmingham Cluster Genetic Algorithm (S-BCGA) is employed for the global optimisation of noble metal tetramers upon an MgO (100) substrate at the GGA-DFT level of theory. The effect of element identity and alloying in surface-bound neutral subnanometre clusters is determined by energetic comparison between all compositions of PdnAg(4-n) and PdnPt(4-n). While the binding strengths to the surface increase in the order Pt > Pd > Ag, the excess energy profiles suggest a preference for mixed clusters for both cases. The binding of CO is also modelled, showing that the adsorption site can be predicted solely by electrophilicity. Comparison to CO binding on a single metal atom shows a reversal of the 5σ-d activation process for clusters, weakening the cluster-surface interaction on CO adsorption. Charge localisation determines homotop, CO binding and surface site preferences. The electronic behaviour, which is intermediate between molecular and metallic particles allows for tunable features in the subnanometre size range.
Collapse
Affiliation(s)
- Christopher J Heard
- Department of Applied Physics, Chalmers University of Technology, SE 412-96 Gothenburg, Sweden
| | | | | | | |
Collapse
|
48
|
Ma L, Moro R, Bowlan J, de Heer WA, Kirilyuk A. Multiferroic rhodium clusters. PHYSICAL REVIEW LETTERS 2014; 113:157203. [PMID: 25375737 DOI: 10.1103/physrevlett.113.157203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 06/04/2023]
Abstract
Simultaneous magnetic and electric deflection measurements of rhodium clusters (Rh(N), 6 ≤ N ≤ 40) reveal ferromagnetism and ferroelectricity at low temperatures, while neither property exists in the bulk metal. Temperature-independent magnetic moments (up to 1 μ(B) per atom) are observed, and superparamagnetic blocking temperatures up to 20 K. Ferroelectric dipole moments on the order of 1D with transition temperatures up to 30 K are observed. Ferromagnetism and ferroelectricity coexist in rhodium clusters in the measured size range, with size-dependent variations in the transition temperatures that tend to be anticorrelated in the range n = 6-25. Both effects diminish with size and essentially vanish at N = 40. The ferroelectric properties suggest a Jahn-Teller ground state. These experiments represent the first example of multiferroic behavior in pure metal clusters.
Collapse
Affiliation(s)
- Lei Ma
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ramiro Moro
- Cameron University, Lawton, Oklahoma 73505, USA
| | - John Bowlan
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Walt A de Heer
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | |
Collapse
|
49
|
Mora MA, Mora-Ramirez MA. Structural and electronic study of neutral, positive, and negative small rhodium clusters [Rh(n), Rh(n)(+), Rh(n)(-) ; n = 10-13]. J Mol Model 2014; 20:2299. [PMID: 24944092 DOI: 10.1007/s00894-014-2299-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/06/2014] [Indexed: 11/29/2022]
Abstract
We have carried out a systematic study for the determination of the structure and the fundamental state of neutral and ionic small rhodium clusters [Rhn, Rhn(+), Rhn(-); n = 10-13] using ab initio Hartree-Fock methods with a LANL2DZ basis set. A range of spin multiplicities is investigated for each cluster. We present the bond lengths, angles, and geometric configuration adopted by the clusters in its minimum energy conformation showing the differences when the clusters have different number of unpaired electrons. Also we report the vertical ionization potential and the adiabatic one calculated by the Koopmans' theorem.
Collapse
Affiliation(s)
- M A Mora
- Departamento de Química, Universidad Autónoma Metropolitana, campus Iztapalapa, Av. San Rafael Atlixco 186, México, 09340, D. F, México,
| | | |
Collapse
|
50
|
Islam MF, Khanna SN. On the enhancement of magnetic anisotropy in cobalt clusters via non-magnetic doping. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:125303. [PMID: 24599083 DOI: 10.1088/0953-8984/26/12/125303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We show that the magnetic anisotropy energy (MAE) in cobalt clusters can be significantly enhanced by doping them with group IV elements. Our first-principles electronic structure calculations show that Co4C2 and Co12C4 clusters have MAEs of 25 K and 61 K, respectively. The large MAE is due to controlled mixing between Co d- and C p-states and can be further tuned by replacing C by Si. Larger assemblies of such primitive units are shown to be stable with MAEs exceeding 100 K in units as small as 1.2 nm, in agreement with the recent observation of large coercivity. These results may pave the way for the use of nano-clusters in high density magnetic memory devices for spintronics applications.
Collapse
Affiliation(s)
- M Fhokrul Islam
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284-2000, USA
| | | |
Collapse
|