1
|
Swain A, Das Anthuparambil N, Begam N, Chandran S, Basu JK. Harnessing interfacial entropic effects in polymer grafted nanoparticle composites for tailoring their thermo-mechanical and separation properties. SOFT MATTER 2025. [PMID: 40266282 DOI: 10.1039/d4sm01549e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Nanocomposites based on polymeric materials have been extensively studied to understand and control the thermodynamics, flow, and mechanical properties of the underlying matrix as well to create new materials with diverse optical, electrical, magnetic, separation, catalytic, and biomedical properties. In the form of thin films or membranes, such materials can impart remarkable improvements in various properties of the underlying substrates. Using nanoparticles with grafted polymer chains usually overcomes a major hurdle in achieving enhancements in various properties by enabling better dispersion in the matrix while at the same time introducing a new parameter - interfacial entropy - leading to the emergence of new parameter space for tuning dispersion, flow and thermal properties. In this article, we highlight how this interfacial entropic effect can be harnessed to control various properties in thin films and membranes of grafted nanoparticle composites, in particular their thermo-mechanical properties, viscosity, fragility, glass transition temperature (Tg), and dynamic heterogeneity as well as their ability to act as highly selective gas separation and water desalination membranes. We discuss the application of a range of experimental techniques as well as molecular dynamics simulation to extract these properties and obtain microscopic insight into how the interplay of various surface and interfacial effects lies at the centre of these significant property improvements and enhanced functionality. Finally, we provide an outlook on future opportunities for designing sustainable PNCs, emphasizing their potential in environmental, energy, and biomedical applications, with advanced experiments and modelling driving further innovations.
Collapse
Affiliation(s)
- Aparna Swain
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| | - Nimmi Das Anthuparambil
- Department of Physics, Universität Siegen, Walter-Flex-Str. 3, 57072 Siegen, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Nafisa Begam
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sivasurender Chandran
- Soft and Biological Matter Laboratory, Department of Physics, Indian Institute of Technology, Kanpur-208016, India.
| | - J K Basu
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| |
Collapse
|
2
|
Verde-Sesto E, Asenjo-Sanz I, Juranyi F, Pomposo JA, Maiz J. Probing the influence of composition and cross-linking degree on single-chain nanoparticles from poly(tetrahydrofuran-ran-epichlorohydrin) copolymers: Insights from neutron scattering, calorimetry, and dielectric spectroscopy. J Colloid Interface Sci 2025; 679:785-797. [PMID: 39393155 DOI: 10.1016/j.jcis.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/20/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
The industrial sector has made significant strides in the development of multicomponent and multiphasic polymer materials, including polymer blends, composites (such as nanocomposites), and various copolymers. Random copolymers, characterized by their statistical arrangement of repeating units, are particularly noteworthy due to their tunability from amorphous to semicrystalline states. In this study, we focus on poly(tetrahydrofuran-ran-epichlorohydrin) (P(THF-ran-ECH)) copolymers, which serve as precursors for single-chain nanoparticles (SCNPs). These SCNP-based materials are of particular interest as they bridge the gap between traditional polymers and colloids. This research comprehensively investigates how the type and degree of internal cross-linking influence the structure and dynamics of P(THF-ran-ECH) copolymers and their SCNPs. Techniques such as quasielastic neutron scattering (QENS), differential scanning calorimetry (DSC), and broadband dielectric spectroscopy (BDS) were employed to study copolymers with varying compositions and levels of cross-linking. By analyzing two samples with different epichlorohydrin (ECH) contents (13 mol% and 27 mol%), we aim to control crystallization and explore its effects on dynamic behavior. Our results show that both the composition and the degree of cross-linking significantly impact the dynamics of the SCNPs, with SCNPs exhibiting slower dynamics compared to their precursor copolymers. Furthermore, semicrystalline samples display faster dynamics in SCNPs than amorphous samples. These findings provide valuable insights for the design and optimization of advanced multicomponent polymer systems.
Collapse
Affiliation(s)
- Ester Verde-Sesto
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Isabel Asenjo-Sanz
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
| | - Fanni Juranyi
- Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - José A Pomposo
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Jon Maiz
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
| |
Collapse
|
3
|
Srinivasan H, Sharma VK, Mitra S. Breaking the Brownian barrier: models and manifestations of molecular diffusion in complex fluids. Phys Chem Chem Phys 2024. [PMID: 39584788 DOI: 10.1039/d4cp01813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Over a century ago, Einstein formulated a precise mathematical model for describing Brownian motion. While this model adequately explains the diffusion of micron-sized particles in fluids, its limitations become apparent when applied to molecular self-diffusion in fluids. The foundational principles of Gaussianity and Markovianity, central to the Brownian diffusion paradigm, are insufficient for describing molecular diffusion, particularly in complex fluids characterized by intricate intermolecular interactions and hindered relaxation processes. This perspective delves into the nuanced behavior observed in diverse complex fluids, including molecular self-assembly systems, deep eutectic solvents, and ionic liquids, with a specific focus on modeling self-diffusion within these media. We explore the possibility of extending diffusion models to incorporate non-Gaussian and non-Markovian effects by augmenting the Brownian model using non-local diffusion equations. Furthermore, we validate the applicability of these models by utilizing them to describe results from quasielastic neutron scattering and MD simulations.
Collapse
Affiliation(s)
- Harish Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Veerendra K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Subhankur Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| |
Collapse
|
4
|
Bichler KJ, Jakobi B, Klapproth A, Mole RA, Schneider GJ. Position-Dependent Segmental Relaxation in Bottlebrush Polymers. Macromolecules 2024; 57:4729-4736. [PMID: 38827960 PMCID: PMC11140752 DOI: 10.1021/acs.macromol.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024]
Abstract
Segmental dynamics of specifically labeled poly(propylene oxide), PPO, based bottlebrush polymers, PNB-g-PPO, were studied using quasi-elastic neutron scattering. The focus was set to different parts of the side chains to investigate the hypothetical gradual relaxation behavior within the side chains of a bottlebrush polymer. Different sections of the side chains were highlighted for QENS via sequential polymerization of protonated and deuterated monomers to allow the study of the relaxation behavior of the inner and outer parts of the side chain separately. A comparison of these two parts reveals a slowdown due to the grafting process happening across the different regions. This is seen for the segmental relaxation time as well as on the time-dependent mean-square displacement. Additionally, the non-Gaussian parameter, α, shows a decreasing difference from Gaussian behavior with the distance to the backbone. Altogether, this leads to the conclusion that gradual relaxation behavior exists.
Collapse
Affiliation(s)
- Karin J. Bichler
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bruno Jakobi
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alice Klapproth
- Australian
Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights 2234, NSW, Australia
| | - Richard A. Mole
- Australian
Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights 2234, NSW, Australia
| | - Gerald J. Schneider
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department
of Physics & Astronomy, Louisiana State
University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
5
|
Srinivasan H, Sharma VK, García Sakai V, Mitra S. Nature of Subdiffusion Crossover in Molecular and Polymeric Glassformers. PHYSICAL REVIEW LETTERS 2024; 132:058202. [PMID: 38364148 DOI: 10.1103/physrevlett.132.058202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/21/2023] [Accepted: 01/03/2024] [Indexed: 02/18/2024]
Abstract
A crossover from a non-Gaussian to Gaussian subdiffusion has been observed ubiquitously in various polymeric and molecular glassformers. We have developed a framework that generalizes the fractional Brownian motion model to incorporate non-Gaussian features by introducing a jump kernel. We illustrate that the non-Gaussian fractional Brownian motion model accurately characterizes the subdiffusion crossover. From the solutions of the non-Gaussian fractional Brownian motion model, we gain insights into the nature of van Hove self-correlation in non-Gaussian subdiffusive regime, which is found to exhibit exponential tails, providing first such experimental evidence in molecular glassformers. The validity of the model is supported by comparison with incoherent quasielastic neutron scattering data obtained from several molecular and polymeric glassformers.
Collapse
Affiliation(s)
- H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - V García Sakai
- ISIS Neutron and Muon Centre, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
6
|
Wan S, Bhati AP, Wade AD, Coveney PV. Ensemble-Based Approaches Ensure Reliability and Reproducibility. J Chem Inf Model 2023; 63:6959-6963. [PMID: 37965695 PMCID: PMC10685440 DOI: 10.1021/acs.jcim.3c01654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 11/16/2023]
Abstract
It is increasingly widely recognized that ensemble-based approaches are required to achieve reliability, accuracy, and precision in molecular dynamics calculations. The purpose of the present article is to address a frequently raised question: what is the optimal way to perform ensemble simulation to calculate quantities of interest?
Collapse
Affiliation(s)
- Shunzhou Wan
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U. K
| | - Agastya P. Bhati
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U. K
| | - Alexander D. Wade
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U. K
| | - Peter V. Coveney
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U. K
- Advanced
Research Computing Centre, University College
London, London WC1H 0AJ, U.K.
- Institute
for Informatics, Faculty of Science, University
of Amsterdam, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
7
|
Ghanta R, Burkhart C, Polińska P, Harmandaris V, Doxastakis M. The effect of chemical constitution on polyisoprene dynamics. J Chem Phys 2023; 159:044902. [PMID: 37486059 DOI: 10.1063/5.0155612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Polyisoprene (PI) melts have been studied, with most reports focusing on systems with high 1,4-cis content. In contrast, 1,4-trans PI homopolymers or random copolymers have seldom been examined, despite a handful of investigations suggesting a distinct dynamic behavior. Herein, we employ all-atom simulations to investigate the effect of chemical architecture on the dynamics of cis and trans-PI homopolymers, as well as copolymers. We examine the thermodynamic, conformational, and structural properties of the polymers and validate the performance of the models. We probe chain dynamics, revealing that cis-PI presents accelerated translation and reorientation modes relative to trans as recorded by the mean square displacement of the chain center-of-mass as well as by the characteristic times of the lower modes in a Rouse analysis. Interestingly, progressing to higher modes, we observe a reversal with trans units exhibiting faster dynamics. This was further confirmed by calculations of local carbon-hydrogen vector reorientation dynamics, which offer a microscopic view of segmental mobility. To obtain insight into the simulation trajectories, we evaluate the intermediate incoherent scattering function that supports a temperature-dependent crossover in relative mobility that extends over separations beyond the Kuhn-length level. Finally, we analyzed the role of non-Gaussian displacements, which demonstrate that cis-PI exhibits increased heterogeneity in dynamics over short-timescales in contrast to trans-PI, where deviations persist over times extending to terminal dynamics. Our all-atom simulations provide a fundamental understanding of PI dynamics and the impact of microstructure while providing important data for the design and optimization of PI-based materials.
Collapse
Affiliation(s)
- Rohit Ghanta
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Tennessee, Knoxville 37996, USA
| | - Craig Burkhart
- The Goodyear Tire & Rubber Company, Akron, Ohio 44305, USA
| | - Patrycja Polińska
- Goodyear Innovation Center Luxembourg, Avenue Gordon Smith, L-7750 Colmar-Berg, Luxembourg
| | - Vagelis Harmandaris
- Department of Applied Mathematics, University of Crete, and IACM FORTH, GR-71110 Heraklion, Greece
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Manolis Doxastakis
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Tennessee, Knoxville 37996, USA
| |
Collapse
|
8
|
Bichler KJ, Jakobi B, Klapproth A, Tominaga T, Mole RA, Schneider GJ. Side Chain Dynamics of Poly(norbornene)-g-Poly(propylene oxide) Bottlebrush Polymers. Macromol Rapid Commun 2022; 44:e2200902. [PMID: 36564928 DOI: 10.1002/marc.202200902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Indexed: 12/25/2022]
Abstract
The segmental dynamics of the side chains of poly(norbornene)-g-poly(propylene oxide) (PNB-g-PPO) bottlebrush polymer in comparison to PPO is studied by quasi-elastic neutron scattering. Having experimental time and length scale information simultaneously allows to extract spatial information in addition to relaxation time. Tethering one end of the PPO side chain onto a stiff PNB backbone slows down the segmental relaxation, over the length and time scales investigated. The power law dependence of the relaxation time on the momentum transfer, Q, indicates a more heterogeneous relaxation pattern for the bottlebrush polymer, whereas the linear PPO has less deviations from a homogenous relaxation. Similar conclusions can be drawn from the time dependent mean square displacement, 〈r2 (t)〉, and the non-Gaussian parameter, α2 (t). Herein, the bottlebrush polymer shows a more restricted dynamics, whereas the linear PPO reaches 〈r2 (t)〉∝t0.5 at the highest temperature. The deviations from Gaussian behavior are evident at the α2 (t). Both samples show a decaying α2 (t). The non-Gaussian parameter supports the results from the power law dependence of the relaxation times, with lower α2 (t) values for PPO compared to those for PNB-g-PPO, pointing to less deviations from Gaussian behavior.
Collapse
Affiliation(s)
- Karin J Bichler
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Bruno Jakobi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Alice Klapproth
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW, 2234, Australia
| | - Taiki Tominaga
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, 319-1106, Japan
| | - Richard A Mole
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW, 2234, Australia
| | - Gerald J Schneider
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.,Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| |
Collapse
|
9
|
Local conformations and heterogeneities in structures and dynamics of isotactic polypropylene adsorbed onto carbon fiber. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
10
|
Shen Z, Carrillo JMY, Sumpter BG, Wang Y. Decoding polymer self-dynamics using a two-step approach. Phys Rev E 2022; 106:014502. [PMID: 35974619 DOI: 10.1103/physreve.106.014502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
The self-correlation function and corresponding self-intermediate scattering function in Fourier space are important quantities for describing the molecular motions of liquids. This work draws attention to a largely overlooked issue concerning the analysis of these space-time density-density correlation functions of polymers. We show that the interpretation of non-Gaussian behavior of polymers is generally complicated by intrachain averaging of distinct self-dynamics of different segments. By the very nature of the mathematics involved, the averaging process not only conceals critical dynamical information, but also contributes to the observed non-Gaussian dynamics. To fully expose this issue and provide a thorough benchmark of polymer self-dynamics, we perform analyses of coarse-grained molecular dynamics simulations of linear and ring polymer melts as well as several theoretical models using a "two-step" approach, where interchain and intrachain averagings of segmental self-dynamics are separated. While past investigations primarily focused on the average behavior, our results indicate that a more nuanced approach to polymer self-dynamics is clearly required.
Collapse
Affiliation(s)
- Zhiqiang Shen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
11
|
Luo P, Zhai Y, Falus P, García Sakai V, Hartl M, Kofu M, Nakajima K, Faraone A, Z Y. Q-dependent collective relaxation dynamics of glass-forming liquid Ca 0.4K 0.6(NO 3) 1.4 investigated by wide-angle neutron spin-echo. Nat Commun 2022; 13:2092. [PMID: 35440658 PMCID: PMC9018732 DOI: 10.1038/s41467-022-29778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
The relaxation behavior of glass formers exhibits spatial heterogeneity and dramatically changes upon cooling towards the glass transition. However, the underlying mechanisms of the dynamics at different microscopic length scales are not fully understood. Employing the recently developed wide-angle neutron spin-echo spectroscopy technique, we measured the Q-dependent coherent intermediate scattering function of a prototypical ionic glass former Ca0.4K0.6(NO3)1.4, in the highly viscous liquid state. In contrast to the structure modulated dynamics for Q < 2.4 Å−1, i.e., at and below the structure factor main peak, for Q > 2.4 Å−1, beyond the first minimum above the structure factor main peak, the stretching exponent exhibits no temperature dependence and concomitantly the relaxation time shows smaller deviations from Arrhenius behavior. This finding indicates a change in the dominant relaxation mechanisms around a characteristic length of 2π/(2.4 Å−1) ≈ 2.6 Å, below which the relaxation process exhibits a temperature independent distribution and more Arrhenius-like behavior. Length scale dependence is important for understanding the collective relaxation dynamics in glass-forming liquids. Here, the authors find in liquid Ca0.4K0.6(NO3)1.4 a change in the dominant relaxation mechanisms around 2.6 Å, below which the relaxation process exhibits a temperature independent distribution and more Arrhenius-like behavior.
Collapse
Affiliation(s)
- Peng Luo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yanqin Zhai
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Peter Falus
- Institut Laue-Langevin (ILL), 38042, Grenoble, France
| | - Victoria García Sakai
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Science & Technology Facilities Council, Didcot, OX11 0QX, UK
| | - Monika Hartl
- European Spallation Source, SE-221 00, Lund, Sweden
| | - Maiko Kofu
- J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan
| | - Kenji Nakajima
- J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan
| | - Antonio Faraone
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899-1070, USA.
| | - Y Z
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
12
|
Maiz J, Verde-Sesto E, Asenjo-Sanz I, Mangin-Thro L, Frick B, Pomposo JA, Arbe A, Colmenero J. Disentangling Component Dynamics in an All-Polymer Nanocomposite Based on Single-Chain Nanoparticles by Quasielastic Neutron Scattering. Macromolecules 2022; 55:2320-2332. [PMID: 35355834 PMCID: PMC8945772 DOI: 10.1021/acs.macromol.1c02382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/11/2022] [Indexed: 11/30/2022]
Abstract
![]()
We
have investigated an all-polymer nanocomposite (NC) consisting
of single-chain nanoparticles (SCNPs) immersed in a matrix of linear
chains of their precursors (25/75% composition in weight). The SCNPs
were previously synthesized via “click” chemistry, which
induces intramolecular cross-links in the individual macromolecules
accompanied by a slight shift (5–8 K) of the glass transition
temperature toward higher values and a broadening of the dynamic response
with respect to the raw precursor material. The selective investigation
of the dynamics of the NC components has been possible by using properly
isotopically labeled materials and applying quasielastic neutron scattering
techniques. Results have been analyzed in the momentum transfer range
where the coherent scattering contribution is minimal, as determined
by complementary neutron diffraction experiments with polarization
analysis. We observe the development of dynamic heterogeneity in the
intermediate scattering function of the NC components, which grows
with increasing time. Local motions in the precursor matrix of the
NC are accelerated with respect to the reference bulk behavior, while
the displacements of SCNPs’ hydrogens show enhanced deviations
from Gaussian and exponential behavior compared with the pure melt
of SCNPs. The resulting averaged behavior in the NC coincides with
that of the pure precursor, in accordance with the macroscopic observations
by differential scanning calorimetry (DSC) experiments.
Collapse
Affiliation(s)
- Jon Maiz
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
| | - Isabel Asenjo-Sanz
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
| | - Lucile Mangin-Thro
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Bernhard Frick
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - José A. Pomposo
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
| | - Juan Colmenero
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizábal 4, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
13
|
Maiz J, Verde-Sesto E, Asenjo-Sanz I, Juranyi F, Pomposo JA, Arbe A, Colmenero J. Impact of composition on the crystal texture and on the dynamics of P(THF- co-ECH) copolymers. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227201005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a combined study by quasielastic neutron scattering (QENS), differential scanning calorimetry (DSC) and wide angle X-ray scattering (WAXS) on poly(tetrahydrofuran-co-epichlorohydrin) copolymers, to see how their composition can be used to tune their crystallizability and to elucidate the impact of this factor on the dynamical properties. QENS reveals a strong effect on the local dynamics upon cooling down, where the local motions of a sample that remains in the supercooled state at lower temperatures are less Gaussian and slower than those in a sample that crystallizes a few degrees below. This can be attributed to the enhancement of local heterogeneities in the former, which could be a determining factor preventing crystallization.
Collapse
|
14
|
Kruteva M, Zamponi M, Hoffmann I, Allgaier J, Monkenbusch M, Richter D. Non-Gaussian and Cooperative Dynamics of Entanglement Strands in Polymer Melts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Margarita Kruteva
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1: Neutron Scattering and Biological Matter), 52425 Jülich, Germany
| | - Michaela Zamponi
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Ingo Hoffmann
- Institut Laue-Langevin (ILL), B.P. 156, F-38042 Grenoble Cedex 9, France
| | - Jürgen Allgaier
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1: Neutron Scattering and Biological Matter), 52425 Jülich, Germany
| | - Michael Monkenbusch
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1: Neutron Scattering and Biological Matter), 52425 Jülich, Germany
| | - Dieter Richter
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1: Neutron Scattering and Biological Matter), 52425 Jülich, Germany
| |
Collapse
|
15
|
Salatto D, Carrillo JMY, Endoh MK, Taniguchi T, Yavitt BM, Masui T, Kishimoto H, Tyagi M, Ribbe AE, Garcia Sakai V, Kruteva M, Sumpter BG, Farago B, Richter D, Nagao M, Koga T. Structural and Dynamical Roles of Bound Polymer Chains in Rubber Reinforcement. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Salatto
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Jan-Michael Y. Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Maya K. Endoh
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Takashi Taniguchi
- Graduate School of Engineering, Department of Chemical Engineering, Kyoto University, Katsura-Campus, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Benjamin M. Yavitt
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Tomomi Masui
- Sumitomo Rubber Industries Ltd., 1-1, 2-chome, Tsutsui-cho, Chuo-ku, Kobe 671-0027, Japan
| | - Hiroyuki Kishimoto
- Sumitomo Rubber Industries Ltd., 1-1, 2-chome, Tsutsui-cho, Chuo-ku, Kobe 671-0027, Japan
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-6102, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Alexander E. Ribbe
- Department for Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Victoria Garcia Sakai
- ISIS Pulsed Neutron and Muon Facility, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Margarita Kruteva
- Jülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bela Farago
- Institut Laue−Langevin, 6 rue Jules Horowitz, BP 156-38042, Grenoble Cedex 9 38000, France
| | - Dieter Richter
- Jülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Michihiro Nagao
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-6102, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Tadanori Koga
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
16
|
Dynamic Processes and Mechanisms Involved in Relaxations of Single-Chain Nano-Particle Melts. Polymers (Basel) 2021; 13:polym13142316. [PMID: 34301072 PMCID: PMC8309259 DOI: 10.3390/polym13142316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
We present a combined study by quasielastic neutron scattering (QENS), dielectric and mechanical spectroscopy, calorimetry and wide-angle X-ray diffraction on single-chain nano-particles (SCNPs), using the corresponding linear precursor chains as reference, to elucidate the impact of internal bonds involving bulky cross-links on the properties of polymer melts. Internal cross-links do not appreciably alter local properties and fast dynamics. This is the case of the average inter-molecular distances, the β-relaxation and the extent of the atomic displacements at timescales faster than some picoseconds. Contrarily, the α-relaxation is slowed down with respect to the linear precursor, as detected by DSC, dielectric spectroscopy and QENS. QENS has also resolved broader response functions and stronger deviations from Gaussian behavior in the SCNPs melt, hinting at additional heterogeneities. The rheological properties are also clearly affected by internal cross-links. We discuss these results together with those previously reported on the deuterated counterpart samples and on SCNPs obtained through a different synthesis route to discern the effect of the nature of the cross-links on the modification of the diverse properties of the melts.
Collapse
|
17
|
Jhalaria M, Huang Y, Ruzicka E, Tyagi M, Zorn R, Zamponi M, García Sakai V, Benicewicz B, Kumar S. Activated Transport in Polymer Grafted Nanoparticle Melts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mayank Jhalaria
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Yucheng Huang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Eric Ruzicka
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Reiner Zorn
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), 52425 Jülich, Germany
| | - Michaela Zamponi
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstr. 1 85748 Garching, Germany
| | - Victoria García Sakai
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, UK
| | - Brian Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sanat Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
18
|
Khairy Y, Alvarez F, Arbe A, Colmenero J. Disentangling Self-Atomic Motions in Polyisobutylene by Molecular Dynamics Simulations. Polymers (Basel) 2021; 13:polym13040670. [PMID: 33672368 PMCID: PMC7927061 DOI: 10.3390/polym13040670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 01/16/2023] Open
Abstract
We present fully atomistic molecular dynamics simulations on polyisobutylene (PIB) in a wide temperature range above the glass transition. The cell is validated by direct comparison of magnitudes computed from the simulation and measured by neutron scattering on protonated samples reported in previous works. Once the reliability of the simulation is assured, we exploit the information in the atomic trajectories to characterize the dynamics of the different kinds of atoms in PIB. All of them, including main-chain carbons, show a crossover from Gaussian to non-Gaussian behavior in the intermediate scattering function that can be described in terms of the anomalous jump diffusion model. The full characterization of the methyl-group hydrogen motions requires accounting for rotational motions. We show that the usually assumed statistically independence of rotational and segmental motions fails in this case. We apply the rotational rate distribution model to correlation functions calculated for the relative positions of methyl-group hydrogens with respect to the carbon atom at which they are linked. The contributions to the vibrational density of states are also discussed. We conclude that methyl-group rotations are coupled with the main-chain dynamics. Finally, we revise in the light of the simulations the hypothesis and conclusions made in previously reported neutron scattering investigations on protonated samples trying to address the origin of the dielectric β-process.
Collapse
Affiliation(s)
- Yasmin Khairy
- Physics Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
- Centro de Física de Materiales (CSIC, UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (F.A.); (A.A.)
| | - Fernando Alvarez
- Centro de Física de Materiales (CSIC, UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (F.A.); (A.A.)
- Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología (UPV/EHU), Apartado 1072, E-20080 San Sebastián, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (F.A.); (A.A.)
- Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Juan Colmenero
- Centro de Física de Materiales (CSIC, UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (F.A.); (A.A.)
- Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología (UPV/EHU), Apartado 1072, E-20080 San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
- Correspondence:
| |
Collapse
|
19
|
Arbe A, Alvarez F, Colmenero J. Insight into the Structure and Dynamics of Polymers by Neutron Scattering Combined with Atomistic Molecular Dynamics Simulations. Polymers (Basel) 2020; 12:E3067. [PMID: 33371357 PMCID: PMC7767341 DOI: 10.3390/polym12123067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
Combining neutron scattering and fully atomistic molecular dynamics simulations allows unraveling structural and dynamical features of polymer melts at different length scales, mainly in the intermolecular and monomeric range. Here we present the methodology developed by us and the results of its application during the last years in a variety of polymers. This methodology is based on two pillars: (i) both techniques cover approximately the same length and time scales and (ii) the classical van Hove formalism allows easily calculating the magnitudes measured by neutron scattering from the simulated atomic trajectories. By direct comparison with experimental results, the simulated cell is validated. Thereafter, the information of the simulations can be exploited, calculating magnitudes that are experimentally inaccessible or extending the parameters range beyond the experimental capabilities. We show how detailed microscopic insight on structural features and dynamical processes of various kinds has been gained in polymeric systems with different degrees of complexity, and how intriguing questions as the collective behavior at intermediate length scales have been faced.
Collapse
Affiliation(s)
- Arantxa Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.A.); (F.A.)
| | - Fernando Alvarez
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.A.); (F.A.)
- Departamento de Polímeros y Materiales Avanzados, Física, Química y Tecnología (UPV/EHU), Apartado 1072, E-20080 San Sebastián, Spain
| | - Juan Colmenero
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.A.); (F.A.)
- Departamento de Polímeros y Materiales Avanzados, Física, Química y Tecnología (UPV/EHU), Apartado 1072, E-20080 San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| |
Collapse
|
20
|
Jhalaria M, Buenning E, Huang Y, Tyagi M, Zorn R, Zamponi M, García-Sakai V, Jestin J, Benicewicz BC, Kumar SK. Accelerated Local Dynamics in Matrix-Free Polymer Grafted Nanoparticles. PHYSICAL REVIEW LETTERS 2019; 123:158003. [PMID: 31702322 DOI: 10.1103/physrevlett.123.158003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/26/2019] [Indexed: 06/10/2023]
Abstract
The tracer diffusion coefficient of six different permanent gases in polymer-grafted nanoparticle (GNP) membranes, i.e., neat GNP constructs with no solvent, show a maximum as a function of the grafted chain length at fixed grafting density. This trend is reproduced for two different NP sizes and three different polymer chemistries. We postulate that nonmonotonic changes in local, segmental friction as a function of graft chain length (at fixed grafting density) must underpin these effects, and use quasielastic neutron scattering to probe the self-motions of polymer chains at the relevant segmental scale (i.e., sampling local friction or viscosity). These data, when interpreted with a jump diffusion model, show that, in addition to the speeding-up in local chain dynamics, the elementary distance over which segments hop is strongly dependent on graft chain length. We therefore conclude that transport modifications in these GNP layers, which are underpinned by a structural transition from a concentrated brush to semidilute polymer brush, are a consequence of both spatial and temporal changes, both of which are likely driven by the lower polymer densities of the GNPs relative to the neat polymer.
Collapse
Affiliation(s)
- Mayank Jhalaria
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| | - Eileen Buenning
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| | - Yucheng Huang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29201, USA
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Reiner Zorn
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Michaela Zamponi
- Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Victoria García-Sakai
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, United Kingdom
| | - Jacques Jestin
- CEA Saclay, Laboratoire Léon Brillouin, F-91191 Gif Sur Yvette, France
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29201, USA
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| |
Collapse
|
21
|
Varadarajan V, Dasgupta C, Ayappa KG. Influence of surface commensurability on the structure and relaxation dynamics of a confined monatomic fluid. J Chem Phys 2018; 149:064503. [DOI: 10.1063/1.5031422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Vadhana Varadarajan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Chandan Dasgupta
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - K. G. Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
22
|
Miyaguchi T. Elucidating fluctuating diffusivity in center-of-mass motion of polymer models with time-averaged mean-square-displacement tensor. Phys Rev E 2017; 96:042501. [PMID: 29347492 DOI: 10.1103/physreve.96.042501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 06/07/2023]
Abstract
There have been increasing reports that the diffusion coefficient of macromolecules depends on time and fluctuates randomly. Here a method is developed to elucidate this fluctuating diffusivity from trajectory data. Time-averaged mean-square displacement (MSD), a common tool in single-particle-tracking (SPT) experiments, is generalized to a second-order tensor with which both magnitude and orientation fluctuations of the diffusivity can be clearly detected. This method is used to analyze the center-of-mass motion of four fundamental polymer models: the Rouse model, the Zimm model, a reptation model, and a rigid rodlike polymer. It is found that these models exhibit distinctly different types of magnitude and orientation fluctuations of diffusivity. This is an advantage of the present method over previous ones, such as the ergodicity-breaking parameter and a non-Gaussian parameter, because with either of these parameters it is difficult to distinguish the dynamics of the four polymer models. Also, the present method of a time-averaged MSD tensor could be used to analyze trajectory data obtained in SPT experiments.
Collapse
Affiliation(s)
- Tomoshige Miyaguchi
- Department of Mathematics, Naruto University of Education, Tokushima 772-8502, Japan
| |
Collapse
|
23
|
Schönhals A, Zorn R, Frick B. Inelastic neutron spectroscopy as a tool to investigate nanoconfined polymer systems. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Miyaguchi T, Akimoto T, Yamamoto E. Langevin equation with fluctuating diffusivity: A two-state model. Phys Rev E 2016; 94:012109. [PMID: 27575079 DOI: 10.1103/physreve.94.012109] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 11/07/2022]
Abstract
Recently, anomalous subdiffusion, aging, and scatter of the diffusion coefficient have been reported in many single-particle-tracking experiments, though the origins of these behaviors are still elusive. Here, as a model to describe such phenomena, we investigate a Langevin equation with diffusivity fluctuating between a fast and a slow state. Namely, the diffusivity follows a dichotomous stochastic process. We assume that the sojourn time distributions of these two states are given by power laws. It is shown that, for a nonequilibrium ensemble, the ensemble-averaged mean-square displacement (MSD) shows transient subdiffusion. In contrast, the time-averaged MSD shows normal diffusion, but an effective diffusion coefficient transiently shows aging behavior. The propagator is non-Gaussian for short time and converges to a Gaussian distribution in a long-time limit; this convergence to Gaussian is extremely slow for some parameter values. For equilibrium ensembles, both ensemble-averaged and time-averaged MSDs show only normal diffusion and thus we cannot detect any traces of the fluctuating diffusivity with these MSDs. Therefore, as an alternative approach to characterizing the fluctuating diffusivity, the relative standard deviation (RSD) of the time-averaged MSD is utilized and it is shown that the RSD exhibits slow relaxation as a signature of the long-time correlation in the fluctuating diffusivity. Furthermore, it is shown that the RSD is related to a non-Gaussian parameter of the propagator. To obtain these theoretical results, we develop a two-state renewal theory as an analytical tool.
Collapse
Affiliation(s)
- Tomoshige Miyaguchi
- Department of Mathematics Education, Naruto University of Education, Tokushima 772-8502, Japan
| | - Takuma Akimoto
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| | - Eiji Yamamoto
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
25
|
Goracci G, Arbe A, Alegría A, García Sakai V, Rudić S, Schneider GJ, Lohstroh W, Juranyi F, Colmenero J. Influence of Solvent on Poly(2-(Dimethylamino)Ethyl Methacrylate) Dynamics in Polymer-Concentrated Mixtures: A Combined Neutron Scattering, Dielectric Spectroscopy, and Calorimetric Study. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guido Goracci
- Centro de Física
de Materiales (CFM) (CSIC−UPV/EHU) − Materials Physics
Center (MPC), Paseo Manuel de Lardizabal
5, 20018 San Sebastián, Spain
| | - Arantxa Arbe
- Centro de Física
de Materiales (CFM) (CSIC−UPV/EHU) − Materials Physics
Center (MPC), Paseo Manuel de Lardizabal
5, 20018 San Sebastián, Spain
| | - Angel Alegría
- Centro de Física
de Materiales (CFM) (CSIC−UPV/EHU) − Materials Physics
Center (MPC), Paseo Manuel de Lardizabal
5, 20018 San Sebastián, Spain
- Departamento de
Física de Materiales (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
| | - Victoria García Sakai
- ISIS
Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, Didcot, OX11 0QX, United Kingdom
| | - Svemir Rudić
- ISIS
Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, Didcot, OX11 0QX, United Kingdom
| | - Gerald J. Schneider
- Jülich
Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation
at MLZ, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Wiebke Lohstroh
- Heinz
Maier-Leibnitz Zentrum, Technische Universität München, Lichtenbergstraße
1, D-85748 Garching, Germany
| | - Fanni Juranyi
- Laboratory
for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Juan Colmenero
- Centro de Física
de Materiales (CFM) (CSIC−UPV/EHU) − Materials Physics
Center (MPC), Paseo Manuel de Lardizabal
5, 20018 San Sebastián, Spain
- Departamento de
Física de Materiales (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
- Donostia International
Physics Center, Paseo Manuel de Lardizabal
4, 20018 San Sebastián, Spain
| |
Collapse
|
26
|
Colmenero J, Alvarez F, Arbe A. Collective dynamics of glass-forming polymers at intermediate length scales. EPJ WEB OF CONFERENCES 2015. [DOI: 10.1051/epjconf/20158301001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
de Melo Marques FA, Angelini R, Zaccarelli E, Farago B, Ruta B, Ruocco G, Ruzicka B. Structural and microscopic relaxations in a colloidal glass. SOFT MATTER 2015; 11:466-471. [PMID: 25406421 DOI: 10.1039/c4sm02010c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aging dynamics of a colloidal glass has been studied by multiangle dynamic light scattering, neutron spin echo, X-ray photon correlation spectroscopy and molecular dynamics simulations. The two relaxation processes, microscopic (fast) and structural (slow), have been investigated in an unprecedentedly wide range of time and length scales covering both ergodic and nonergodic regimes. The microscopic relaxation time remains diffusive at all length scales across the glass transition scaling with wavevector Q as Q(-2). The length-scale dependence of structural relaxation time changes from diffusive, characterized by a Q(-2)-dependence in the early stages of aging, to a Q(-1)-dependence in the full aging regime which marks a discontinuous hopping dynamics. Both regimes are associated with a stretched behaviour of the correlation functions. We expect these findings to provide a general description of both relaxations across the glass transition.
Collapse
Affiliation(s)
- Flavio Augusto de Melo Marques
- Center for Life Nano Science, IIT@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, I-00161 Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Brás AR, Goossen S, Krutyeva M, Radulescu A, Farago B, Allgaier J, Pyckhout-Hintzen W, Wischnewski A, Richter D. Compact structure and non-Gaussian dynamics of ring polymer melts. SOFT MATTER 2014; 10:3649-3655. [PMID: 24667976 DOI: 10.1039/c3sm52717d] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a neutron scattering analysis of the structure and dynamics of PEO polymer rings with a molecular weight 2.5 times higher than the entanglement mass. The melt structure was found to be more compact than a Gaussian model would suggest. With increasing time the center of mass (c.o.m.) diffusion undergoes a transition from sub-diffusive to diffusive behavior. The transition time agrees well with the decorrelation time predicted by a mode coupling approach. As a novel feature well pronounced non-Gaussian behavior of the c.o.m. diffusion was found that shows surprising analogies to the cage effect known from glassy systems. Finally, the longest wavelength Rouse modes are suppressed possibly as a consequence of an onset of lattice animal features as hypothesized in theoretical approaches.
Collapse
Affiliation(s)
- Ana R Brás
- Jülich Centre for Neutron Science JCNS (JCNS-1) and Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bhowmik D, Pomposo JA, Juranyi F, García Sakai V, Zamponi M, Arbe A, Colmenero J. Investigation of a Nanocomposite of 75 wt % Poly(methyl methacrylate) Nanoparticles with 25 wt % Poly(ethylene oxide) Linear Chains: A Quasielatic Neutron Scattering, Calorimetric, and WAXS Study. Macromolecules 2014. [DOI: 10.1021/ma500215f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- D. Bhowmik
- Donostia International Physics
Center, Paseo Manuel de Lardizabal
4, 20018 San Sebastián, Spain
| | - J. A. Pomposo
- Centro de Física de Materiales (CSIC−UPV/EHU)
− Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento
de Física de Materiales, UPV/EHU, Apartado 1072, 20080 San Sebastián, Spain
- IKERBASQUE
- Basque Foundation for Science, Alameda
Urquijo 36, 48011 Bilbao, Spain
| | - F. Juranyi
- Laboratory for Neutron
Scattering, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - V. García Sakai
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Science & Innovation Campus, Chilton, Didcot OX11 0QX, United Kingdom
| | - M. Zamponi
- Jülich
Centre for Neutron Science, Forschungszentrum Jülich GmbH, outstation at Heinz
Maier-Leibnitz Zentrum, Lichtenbergstr. 1, 85747 Garching, Germany
| | - A. Arbe
- Centro de Física de Materiales (CSIC−UPV/EHU)
− Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - J. Colmenero
- Donostia International Physics
Center, Paseo Manuel de Lardizabal
4, 20018 San Sebastián, Spain
- Centro de Física de Materiales (CSIC−UPV/EHU)
− Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento
de Física de Materiales, UPV/EHU, Apartado 1072, 20080 San Sebastián, Spain
| |
Collapse
|
31
|
Piskorz TK, Ochab-Marcinek A. A Universal Model of Restricted Diffusion for Fluorescence Correlation Spectroscopy. J Phys Chem B 2014; 118:4906-12. [DOI: 10.1021/jp502467u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tomasz K. Piskorz
- Department
of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | - Anna Ochab-Marcinek
- Institute
of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka
44/52, 01-224 Warsaw, Poland
| |
Collapse
|
32
|
Bhowmik D, Pomposo JA, Juranyi F, García-Sakai V, Zamponi M, Su Y, Arbe A, Colmenero J. Microscopic Dynamics in Nanocomposites of Poly(ethylene oxide) and Poly(methyl methacrylate) Soft Nanoparticles: A Quasi-Elastic Neutron Scattering Study. Macromolecules 2013. [DOI: 10.1021/ma402023n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- D. Bhowmik
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - J. A. Pomposo
- Centro de Física de Materiales (CSIC−UPV/EHU)—Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Física de Materiales (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
- IKERBASQUE—Basque Foundation for Science, Alameda Urquijo 36, 48011 Bilbao, Spain
| | - F. Juranyi
- Laboratory
for Neutron Scattering, Paul Scherrer Institut CH-5232 Villigen, Switzerland
| | - V. García-Sakai
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Science & Innovation Campus, Chilton, Didcot, OX11 0QX, U.K
| | - M. Zamponi
- Jülich
Centre for Neutron Science, Forschungszentrum Jülich GmbH, outstation at Heinz
Maier-Leibnitz Zentrum, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Y. Su
- Jülich
Centre for Neutron Science, Forschungszentrum Jülich GmbH, outstation at Heinz
Maier-Leibnitz Zentrum, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - A. Arbe
- Centro de Física de Materiales (CSIC−UPV/EHU)—Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - J. Colmenero
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
- Centro de Física de Materiales (CSIC−UPV/EHU)—Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| |
Collapse
|
33
|
Zheng X, Ten Hagen B, Kaiser A, Wu M, Cui H, Silber-Li Z, Löwen H. Non-Gaussian statistics for the motion of self-propelled Janus particles: experiment versus theory. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:032304. [PMID: 24125265 DOI: 10.1103/physreve.88.032304] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Indexed: 06/02/2023]
Abstract
Spherical Janus particles are one of the most prominent examples for active Brownian objects. Here, we study the diffusiophoretic motion of such microswimmers in experiment and in theory. Three stages are found: simple Brownian motion at short times, superdiffusion at intermediate times, and finally diffusive behavior again at long times. These three regimes observed in the experiments are compared with a theoretical model for the Langevin dynamics of self-propelled particles with coupled translational and rotational motion. Besides the mean square displacement also higher displacement moments are addressed. In particular, theoretical predictions regarding the non-Gaussian behavior of self-propelled particles are verified in the experiments. Furthermore, the full displacement probability distribution is analyzed, where in agreement with Brownian dynamics simulations either an extremely broadened peak or a pronounced double-peak structure is found, depending on the experimental conditions.
Collapse
Affiliation(s)
- Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, CAS, Beijing 100190, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Colmenero J, Alvarez F, Khairy Y, Arbe A. Modeling the collective relaxation time of glass-forming polymers at intermediate length scales: Application to polyisobutylene. J Chem Phys 2013; 139:044906. [DOI: 10.1063/1.4816127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Fotiadou S, Karageorgaki C, Chrissopoulou K, Karatasos K, Tanis I, Tragoudaras D, Frick B, Anastasiadis SH. Structure and Dynamics of Hyperbranched Polymer/Layered Silicate Nanocomposites. Macromolecules 2013. [DOI: 10.1021/ma302405q] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- S. Fotiadou
- Institute of Electronic Structure
and Laser, Foundation for Research and Technology—Hellas, P.O. Box 1527, 711 10 Heraklion, Crete, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 541 24 Thessaloniki,
Greece
| | - C. Karageorgaki
- Institute of Electronic Structure
and Laser, Foundation for Research and Technology—Hellas, P.O. Box 1527, 711 10 Heraklion, Crete, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 541 24 Thessaloniki,
Greece
| | - K. Chrissopoulou
- Institute of Electronic Structure
and Laser, Foundation for Research and Technology—Hellas, P.O. Box 1527, 711 10 Heraklion, Crete, Greece
| | - K. Karatasos
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 541 24 Thessaloniki,
Greece
| | - I. Tanis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 541 24 Thessaloniki,
Greece
| | - D. Tragoudaras
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 541 24 Thessaloniki,
Greece
| | - B. Frick
- Institut Laue Langevin (ILL), 6 rue Jules Horowitz, F38042 Grenoble, France
| | - S. H. Anastasiadis
- Institute of Electronic Structure
and Laser, Foundation for Research and Technology—Hellas, P.O. Box 1527, 711 10 Heraklion, Crete, Greece
- Department of Chemistry, University of Crete, P.O. Box 2208, 710 03 Heraklion
Crete, Greece
| |
Collapse
|
36
|
Colmenero J, Brodeck M, Arbe A, Richter D. Dynamics of Poly(butylene oxide) Well above the Glass Transition. A Fully Atomistic Molecular Dynamics Simulation Study. Macromolecules 2013. [DOI: 10.1021/ma302452t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Colmenero
- Centro de Física de Materiales (CSIC-UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018
San Sebastián, Spain
| | - M. Brodeck
- Jülich Center for Neutron
Science and Institut for Complex Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - A. Arbe
- Centro de Física de Materiales (CSIC-UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - D. Richter
- Jülich Center for Neutron
Science and Institut for Complex Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Jülich Center for Neutron Science, Outstation at FRM II, 85747 Garching,
Germany
| |
Collapse
|
37
|
Dolgushev M, Krutyeva M. Coherent Dynamic Structure Factor of a Polymer Chain Confined Into a Harmonic Radial Potential. MACROMOL THEOR SIMUL 2012. [DOI: 10.1002/mats.201200045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Busselez R, Arbe A, Cerveny S, Capponi S, Colmenero J, Frick B. Component dynamics in polyvinylpyrrolidone concentrated aqueous solutions. J Chem Phys 2012; 137:084902. [DOI: 10.1063/1.4746020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Gerstl C, Schneider GJ, Fuxman A, Zamponi M, Frick B, Seydel T, Koza M, Genix AC, Allgaier J, Richter D, Colmenero J, Arbe A. Quasielastic Neutron Scattering Study on the Dynamics of Poly(alkylene oxide)s. Macromolecules 2012. [DOI: 10.1021/ma3003399] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. Gerstl
- Jülich Centre
for Neutron Science (JCNS 1) and Institut for Complex Systems (ICS
1), Forschungszentrum Jülich GmbH, D−52425 Jülich, Germany
- Jülich Centre for Neutron Science (JCNS 1), Outstation at FRM II, 85747 Garching, Germany
| | - G. J. Schneider
- Jülich Centre for Neutron Science (JCNS 1), Outstation at FRM II, 85747 Garching, Germany
| | - A. Fuxman
- Jülich Centre for Neutron Science (JCNS 1), Outstation at FRM II, 85747 Garching, Germany
| | - M. Zamponi
- Jülich Centre for Neutron Science (JCNS 1), Outstation at FRM II, 85747 Garching, Germany
| | - B. Frick
- Institut Laue−Langevin, BP 156, 38042 Grenoble Cedex 9, France
| | - T. Seydel
- Institut Laue−Langevin, BP 156, 38042 Grenoble Cedex 9, France
| | - M. Koza
- Institut Laue−Langevin, BP 156, 38042 Grenoble Cedex 9, France
| | - A.-C. Genix
- Laboratoire Charles Coulomb, UMR 5221, CNRS and Université Montpellier 2, 34095 Montpellier,
France
| | - J. Allgaier
- Jülich Centre
for Neutron Science (JCNS 1) and Institut for Complex Systems (ICS
1), Forschungszentrum Jülich GmbH, D−52425 Jülich, Germany
| | - D. Richter
- Jülich Centre
for Neutron Science (JCNS 1) and Institut for Complex Systems (ICS
1), Forschungszentrum Jülich GmbH, D−52425 Jülich, Germany
- Jülich Centre for Neutron Science (JCNS 1), Outstation at FRM II, 85747 Garching, Germany
| | - J. Colmenero
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San
Sebastián, Spain
- Departamento de Física de Materiales (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián,
Spain
| | - A. Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San
Sebastián, Spain
| |
Collapse
|
40
|
Genix AC, Arbe A, Colmenero J, Wuttke J, Richter D. Neutron Scattering and X-ray Investigation of the Structure and Dynamics of Poly(ethyl methacrylate). Macromolecules 2012. [DOI: 10.1021/ma202653k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A.-C. Genix
- Laboratoire Charles Coulomb,
UMR 5221, CNRS, Université Montpellier 2, 34095 Montpellier, France
| | - A. Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal
5, E-20018 San Sebastián, Spain
| | - J. Colmenero
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal
5, E-20018 San Sebastián, Spain
- Departamento de Física de Materiales (UPV/EHU),
Apartado 1072, 20080 San Sebastián, Spain
- Donostia International Physics Center, Paseo
Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - J. Wuttke
- Outstation at FRM II, Jülich
Center for Neutron Science JCNS 1, Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747
Garching, Gemany
| | - D. Richter
- Jülich
Center for Neutron Science (JCNS 1) and Institut for Complex Systems
(ICS 1), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| |
Collapse
|
41
|
Busselez R, Lefort R, Ghoufi A, Beuneu B, Frick B, Affouard F, Morineau D. The non-Gaussian dynamics of glycerol. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:505102. [PMID: 22051524 DOI: 10.1088/0953-8984/23/50/505102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We have combined incoherent quasielastic neutron scattering experiments and atomistic molecular simulations to investigate the microscopic dynamics of glycerol moving away from the hydrodynamic limit. We relate changes in the momentum transfer (Q) dependence of the relaxation time to distinct changes of the single-particle dynamics. Going from small to large values of Q, a first crossover at about 0.5 Å(-1) is related to the coupling of the translational diffusion dynamics to the non-Debye structural relaxation, while the second crossover at a Q-value near the main diffraction peak is associated with the Gaussian to non-Gaussian crossover of the short-time molecular dynamics, related to the decaging processes. We offer an unprecedented extension of previous studies on polymeric systems towards the case of the typical low-molecular-weight glass-forming system glycerol.
Collapse
Affiliation(s)
- R Busselez
- Institute of Physics of Rennes, CNRS-University of Rennes 1, UMR 6251, F-35042 Rennes, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Capponi S, Arbe A, Cerveny S, Busselez R, Frick B, Embs JP, Colmenero J. Quasielastic neutron scattering study of hydrogen motions in an aqueous poly(vinyl methyl ether) solution. J Chem Phys 2011; 134:204906. [PMID: 21639476 DOI: 10.1063/1.3592560] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a quasielastic neutron scattering (QENS) investigation of the component dynamics in an aqueous Poly(vinyl methyl ether) (PVME) solution (30% water content in weight). In the glassy state, an important shift in the Boson peak of PVME is found upon hydration. At higher temperatures, the diffusive-like motions of the components take place with very different characteristic times, revealing a strong dynamic asymmetry that increases with decreasing T. For both components, we observe stretching of the scattering functions with respect to those in the bulk and non-Gaussian behavior in the whole momentum transfer range investigated. To explain these observations we invoke a distribution of mobilities for both components, probably originated from structural heterogeneities. The diffusive-like motion of PVME in solution takes place faster and apparently in a more continuous way than in bulk. We find that the T-dependence of the characteristic relaxation time of water changes at T ≲ 225 K, near the temperature where a crossover from a low temperature Arrhenius to a high temperature cooperative behavior has been observed by broadband dielectric spectroscopy (BDS) [S. Cerveny, J. Colmenero and A. Alegría, Macromolecules, 38, 7056 (2005)]. This observation might be a signature of the onset of confined dynamics of water due to the freezing of the PVME dynamics, that has been selectively followed by these QENS experiments. On the other hand, revisiting the BDS results on this system we could identify an additional "fast" process that can be attributed to water motions coupled with PVME local relaxations that could strongly affect the QENS results. Both kinds of interpretations, confinement effects due to the increasing dynamic asymmetry and influence of localized motions, could provide alternative scenarios to the invoked "strong-to-fragile" transition.
Collapse
Affiliation(s)
- S Capponi
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain.
| | | | | | | | | | | | | |
Collapse
|
43
|
Busselez R, Arbe A, Alvarez F, Colmenero J, Frick B. Study of the structure and dynamics of poly(vinyl pyrrolidone) by molecular dynamics simulations validated by quasielastic neutron scattering and x-ray diffraction experiments. J Chem Phys 2011; 134:054904. [DOI: 10.1063/1.3533771] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Fotiadou S, Chrissopoulou K, Frick B, Anastasiadis SH. Structure and dynamics of polymer chains in hydrophilic nanocomposites. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/polb.21974] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Bhattacharyya SM, Bagchi B, Wolynes PG. Subquadratic wavenumber dependence of the structural relaxation of supercooled liquid in the crossover regime. J Chem Phys 2010; 132:104503. [DOI: 10.1063/1.3330911] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
46
|
Krutyeva M, Martin J, Arbe A, Colmenero J, Mijangos C, Schneider GJ, Unruh T, Su Y, Richter D. Neutron scattering study of the dynamics of a polymer melt under nanoscopic confinement. J Chem Phys 2010; 131:174901. [PMID: 19895040 DOI: 10.1063/1.3258329] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Poly(ethylene oxide) confined in an anodic aluminum oxide solid matrix has been studied by different neutron scattering techniques in the momentum transfer (Q) range 0.2<or=Q=/Q/<or=1.9 A(-1). The cylindrical pores of the matrix present a diameter (40 nm) much smaller than their length (150 microm) and are parallel and hexagonally ordered. In particular, we investigated the neutron intensity scattered for two orientations of the sample with respect to the incident beam, for which the Q direction was either parallel or perpendicular to the pores for a scattering angle of 90 degrees . Diffuse neutron scattering at room temperature has shown that the aluminum oxide has amorphous structure and the polymer in the nanoporous matrix is partially crystallized. Concerning the dynamical behavior, for Q<1 A(-1), the spectra show Rouse-like motions indistinguishable from those in the bulk within the uncertainties. In the high-Q limit we observe a slowing down of the dynamics with respect to the bulk behavior that evidences an effect of confinement. This effect is more pronounced for molecular displacements perpendicular to the pore axis than for parallel displacements. Our results clearly rule out the strong corset effect proposed for this polymer from nuclear magnetic resonance (NMR) studies and can be rationalized by assuming that the interactions with the pore walls affect one to two adjacent monomer monolayers.
Collapse
|
47
|
|
48
|
Capponi S, Arbe A, Alvarez F, Colmenero J, Frick B, Embs JP. Atomic motions in poly(vinyl methyl ether): A combined study by quasielastic neutron scattering and molecular dynamics simulations in the light of the mode coupling theory. J Chem Phys 2009; 131:204901. [DOI: 10.1063/1.3258857] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Arbe A, Colmenero J. Characterization of the "simple-liquid" state in a polymeric system: coherent and incoherent scattering functions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:041805. [PMID: 19905331 DOI: 10.1103/physreve.80.041805] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Indexed: 05/28/2023]
Abstract
By means of time-of-flight neutron scattering, we have characterized the dynamic structure factor and the hydrogen motions of polyethylene above its melting point. As signatures of simple-liquid dynamics, we observe that (i) in the explored dynamic window, the intermediate scattering functions display a single-step decay, without reminiscence of cage effects, and (ii) the structural relaxation as observed at the intermolecular structure factor peak shows a weak temperature dependence, indicating a low degree of interchain cooperativity. However, stretched functional forms are observed for all length scales and temperatures investigated. An apparent direct crossover from the microscopic regime to Rouse-like dynamics suggests an essential role of connectivity in the observed stretching. Finally, while at momentum-transfer values above the structure factor peak the relation between coherent and incoherent characteristic times is reasonably described by the de Gennes narrowing, at larger length scales it is not reproduced by any existing approach.
Collapse
Affiliation(s)
- A Arbe
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center, Apartado 1072, 20080 San Sebastián, Spain.
| | | |
Collapse
|
50
|
Mahrous S, Hanfy TA. Dielectric analysis of chlorinated polyvinyl chloride stabilized with di-n-octyltin maleate. J Appl Polym Sci 2009. [DOI: 10.1002/app.29490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|