1
|
Smucker J, Pérez-Ríos J. Alignment transport between ultracold polar molecules. Phys Chem Chem Phys 2024; 26:21513-21519. [PMID: 39081230 DOI: 10.1039/d4cp01956c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
We propose an array of ultracold polar molecules as a platform to study alignment transport between molecules. We envision a polar molecule being aligned with an intense off-resonant laser field whose alignment migrates to a nearby molecule due to dipole-dipole interactions. Our results show that the transport of the alignment is due to a complex interplay between electric field-driven excitations and dipole-dipole interactions. All mechanisms for alignment transfer are elucidated and analyzed. Using NaCs as a prototype molecule, we find that the time for alignment transfer is (10 μs), which makes the phenomena readily observable in the lab.
Collapse
Affiliation(s)
- Jonathan Smucker
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, 11790, USA.
| | - Jesus Pérez-Ríos
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, 11790, USA.
| |
Collapse
|
2
|
Yang B, Chen Z, Wang C, Zhang L, Xiao S. Regular arrangement of dispersed 2D flakes detected by polarization of light. OPTICS EXPRESS 2024; 32:15586-15596. [PMID: 38859206 DOI: 10.1364/oe.520357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/02/2024] [Indexed: 06/12/2024]
Abstract
Regular arrangement of dispersed 2D flakes, as the "Wind-Chime" model, has been regarded as possible mechanism of spatial self-phase modulation. But this regular arrangement caused by the laser have not been confirmed, and the relation with the concentration of dispersed 2D flakes is still unclear. Here, the relationship between arrangement caused by electric field and polarized transmittance have been explored at first. Then, the model of flakes rotation to regular arrangement were established, which were proof by the response time by turning on/off electric field. On this basis, by building the polarization-related cross optical switch system, light-induced regular arrangement were observed and proven.
Collapse
|
3
|
Abstract
SignificanceExcitation of molecules by an ultrashort laser pulse creates rotational wave packets that lead to transient alignment of the molecules along the laser polarization direction. Here, we show that a train of ultrashort laser pulses can be used to enhance the degree of alignment to a high level such that the diffraction from precisely timed ultrashort electron beams may be used to reconstruct the structure of the isolated molecules with atomic resolution through a coherent diffraction imaging technique. Our results mark a great step toward imaging noncrystallized molecules with atomic resolution and pave the way for creation of three-dimensional "molecular movies" at the femtosecond time scale and atomic spatial scale.
Collapse
|
4
|
Nautiyal VV, Devi S, Tyagi A, Vidhani B, Maan A, Prasad V. Orientation and Alignment dynamics of polar molecule driven by shaped laser pulses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119663. [PMID: 33827039 DOI: 10.1016/j.saa.2021.119663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
We review the theoretical status of intense laser induced orientation and alignment-a field of study which lies at the interface of intense laser physics and chemical dynamics and having potential applications such as high harmonic generation, nano-scale processing and control of chemical reactions. The evolution of the rotational wave packet and its dynamics leading to orientation and alignment is the topic of the present discussion. The major part of this article primarily presents an overview of recent theoretical progress in controlling the orientation and alignment dynamics of a molecule by means of shaped laser pulses. The various theoretical approaches that lead to orientation and alignment such as static electrostatic field in combination with laser field(s), combination of orienting and aligning field, combination of aligning fields, combination of orienting fields, application of train of pulses etc. are discussed. It is observed that the train of pulses is quite an efficient tool for increasing the orientation or alignment of a molecule without causing the molecule to ionize. The orientation and alignment both can occur in adiabatic and non-adiabatic conditions with the rotational period of the molecule taken under consideration. The discussion is mostly limited to non-adiabatic rotational excitation (NAREX) i.e. cases in which the pulse duration is shorter than the rotational period of the molecule. We have emphasised on the so called half-cycle pulse (HCP) and square pulse (SQP). The effect of ramped pulses and of collision on the various laser parameters is also studied. We summarize the current discussion by presenting a consistent theoretical approach for describing the action of such pulses on movement of molecules. The impact of a particular pulse shape on the post-pulse dynamics is also calculated and analysed. In addition to this, the roles played by various laser parameters including the laser frequency, the pulse duration and the system temperature etc. are illustrated and discussed. The concept of alignment is extended from one-dimensional alignment to three-dimensional alignment with the proper choice of molecule and the polarised light. We conclude the article by discussing the potential applications of intense laser orientation and alignment.
Collapse
Affiliation(s)
- Vijit V Nautiyal
- Department of Physics and Astrophysics, University of Delhi, Delhi, Delhi 110007, India
| | - Sumana Devi
- Department of Physics and Astrophysics, University of Delhi, Delhi, Delhi 110007, India; Department of Physics, Miranda House College, University of Delhi, Delhi, Delhi 110007, India
| | - Ashish Tyagi
- Department of Physics, Swami Shradhanand College, University of Delhi, Delhi, Delhi 110036, India
| | - Bhavna Vidhani
- Department of Physics, Hansraj College, University of Delhi, Delhi, Delhi 110007, India
| | - Anjali Maan
- Department of Physics, Pt.N.R.S.G.C.Rohtak, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Vinod Prasad
- Department of Physics, Swami Shradhanand College, University of Delhi, Delhi, Delhi 110036, India.
| |
Collapse
|
5
|
Qi H, Lian Z, Fei D, Chen Z, Hu Z. Manipulation of matter with shaped-pulse light field and its applications. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1949390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Hongxia Qi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, China
- Advanced Light Field and Modern Medical Treatment Science and Technology Innovation Center of Jilin Province, Jilin University, Changchun, China
| | - Zhenzhong Lian
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, China
| | - Dehou Fei
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, China
| | - Zhou Chen
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, China
- Advanced Light Field and Modern Medical Treatment Science and Technology Innovation Center of Jilin Province, Jilin University, Changchun, China
| | - Zhan Hu
- Advanced Light Field and Modern Medical Treatment Science and Technology Innovation Center of Jilin Province, Jilin University, Changchun, China
| |
Collapse
|
6
|
Akagi H, Kumada T, Otobe T, Itakura R, Hasegawa H, Ohshima Y. Bromine-isotope Selective Ionization Using Field-free Alignment of IBr Isotopologues with a Switched Nanosecond Laser Pulse. CHEM LETT 2020. [DOI: 10.1246/cl.200024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hiroshi Akagi
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum and Radiological Science and Technology (QST), Kizugawa, Kyoto 619-0215, Japan
| | - Takayuki Kumada
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Tomohito Otobe
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum and Radiological Science and Technology (QST), Kizugawa, Kyoto 619-0215, Japan
| | - Ryuji Itakura
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum and Radiological Science and Technology (QST), Kizugawa, Kyoto 619-0215, Japan
| | - Hirokazu Hasegawa
- Department of Integrated Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Yasuhiro Ohshima
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| |
Collapse
|
7
|
Chatterley AS, Baatrup MO, Schouder CA, Stapelfeldt H. Laser-induced alignment dynamics of gas phase CS 2 dimers. Phys Chem Chem Phys 2020; 22:3245-3253. [PMID: 31995073 DOI: 10.1039/c9cp06260b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rotational dynamics of gas phase carbon disulfide (CS2) dimers were induced by a moderately intense, circularly polarized alignment laser pulse and measured as a function of time by Coulomb explosion imaging with an intense fs probe pulse. For the alignment pulse, two different temporal intensity profiles were used: a truncated pulse with a 150 ps turn-on and a 8 ps turn-off, or a 'kick' pulse with a duration of 1.3 ps. For both types of pulse, rich rotational dynamics with characteristic full and fractional revivals were recorded, showing that the intermolecular carbon-carbon axis periodically aligns along the propagation direction of the laser pulses. The truncated pulse gave the strongest alignment, which we rationalize as being due to a flat relative phase between the components in the rotational wave packet generated. Fourier analysis of the alignment dynamics gave well-spaced peaks which were fit to determine the rotational constant, B, and the centrifugal constant, DJ, for the ground state of the dimer. Our results agree with values from high-resolution IR spectroscopy. Numerical simulations of the alignment accurately reproduced the experimental dynamics when the truncated pulse or a low intensity kick pulse was used, but failed to reproduce the dynamics induced by a high intensity kick pulse. We posit that the discrepancy is due to excitation of the intermolecular torsional motion by the kick pulse.
Collapse
Affiliation(s)
| | - Mia O Baatrup
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Constant A Schouder
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
8
|
Ohtsuki Y, Namba T. Locally optimized control pulses with nonlinear interactions. J Chem Phys 2019; 151:164107. [PMID: 31675899 DOI: 10.1063/1.5127563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The local control theory has been extended to deal with nonlinear interactions, such as polarizability interaction, as well as a combination of dipole and polarizability interactions. We explain herein how to implement the developed pulse-design algorithm in a standard computer code that numerically integrates the Liouville equation and/or the Schrödinger equation without incurring additional high computational cost. Through a case study of the rotational dynamics control of crystalline orbital molecules, the effectiveness of the locally optimized control pulses is demonstrated by adopting four types of control objectives, namely, two types of state-selective excitation, alignment, and orientation control.
Collapse
Affiliation(s)
- Yukiyoshi Ohtsuki
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Tomotaro Namba
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
9
|
Karamatskos ET, Raabe S, Mullins T, Trabattoni A, Stammer P, Goldsztejn G, Johansen RR, Długołecki K, Stapelfeldt H, Vrakking MJJ, Trippel S, Rouzée A, Küpper J. Molecular movie of ultrafast coherent rotational dynamics of OCS. Nat Commun 2019; 10:3364. [PMID: 31358749 PMCID: PMC6662765 DOI: 10.1038/s41467-019-11122-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 06/25/2019] [Indexed: 11/09/2022] Open
Abstract
Recording molecular movies on ultrafast timescales has been a longstanding goal for unravelling detailed information about molecular dynamics. Here we present the direct experimental recording of very-high-resolution and -fidelity molecular movies over more than one-and-a-half periods of the laser-induced rotational dynamics of carbonylsulfide (OCS) molecules. Utilising the combination of single quantum-state selection and an optimised two-pulse sequence to create a tailored rotational wavepacket, an unprecedented degree of field-free alignment, 〈cos2θ2D〉 = 0.96 (〈cos2θ〉 = 0.94) is achieved, exceeding the theoretical limit for single-pulse alignment. The very rich experimentally observed quantum dynamics is fully recovered by the angular probability distribution obtained from solutions of the time-dependent Schrödinger equation with parameters refined against the experiment. The populations and phases of rotational states in the retrieved time-dependent three-dimensional wavepacket rationalises the observed very high degree of alignment.
Collapse
Affiliation(s)
- Evangelos T Karamatskos
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Sebastian Raabe
- Max Born Institute, Max-Born-Straße 2a, 12489, Berlin, Germany
| | - Terry Mullins
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Andrea Trabattoni
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Philipp Stammer
- Max Born Institute, Max-Born-Straße 2a, 12489, Berlin, Germany
| | | | - Rasmus R Johansen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Karol Długołecki
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | | | - Sebastian Trippel
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Arnaud Rouzée
- Max Born Institute, Max-Born-Straße 2a, 12489, Berlin, Germany.
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany.
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| |
Collapse
|
10
|
Lin K, Tutunnikov I, Qiang J, Ma J, Song Q, Ji Q, Zhang W, Li H, Sun F, Gong X, Li H, Lu P, Zeng H, Prior Y, Averbukh IS, Wu J. All-optical field-free three-dimensional orientation of asymmetric-top molecules. Nat Commun 2018; 9:5134. [PMID: 30510201 PMCID: PMC6277449 DOI: 10.1038/s41467-018-07567-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022] Open
Abstract
Orientation and alignment of molecules by ultrashort laser pulses is crucial for a variety of applications and has long been of interest in physics and chemistry, with the special emphasis on stereodynamics in chemical reactions and molecular orbitals imaging. As compared to the laser-induced molecular alignment, which has been extensively studied and demonstrated, achieving molecular orientation is a much more challenging task, especially in the case of asymmetric-top molecules. Here, we report the experimental demonstration of all-optical field-free three-dimensional orientation of asymmetric-top molecules by means of phase-locked cross-polarized two-color laser pulse. This approach is based on nonlinear optical mixing process caused by the off-diagonal elements of the molecular hyperpolarizability tensor. It is demonstrated on SO2 molecules and is applicable to a variety of complex nonlinear molecules.
Collapse
Affiliation(s)
- Kang Lin
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200062, Shanghai, China
| | - Ilia Tutunnikov
- AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Junjie Qiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200062, Shanghai, China
| | - Junyang Ma
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200062, Shanghai, China
| | - Qiying Song
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200062, Shanghai, China
| | - Qinying Ji
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200062, Shanghai, China
| | - Wenbin Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200062, Shanghai, China
| | - Hanxiao Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200062, Shanghai, China
| | - Fenghao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200062, Shanghai, China
| | - Xiaochun Gong
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200062, Shanghai, China
| | - Hui Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200062, Shanghai, China
| | - Peifen Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200062, Shanghai, China
| | - Heping Zeng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200062, Shanghai, China
| | - Yehiam Prior
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200062, Shanghai, China.
- AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| | - Ilya Sh Averbukh
- AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200062, Shanghai, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, Shanxi, China.
| |
Collapse
|
11
|
Mirahmadi M, Schmidt B, Karra M, Friedrich B. Dynamics of polar polarizable rotors acted upon by unipolar electromagnetic pulses: From the sudden to the adiabatic regime. J Chem Phys 2018; 149:174109. [DOI: 10.1063/1.5051591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Marjan Mirahmadi
- Institute for Mathematics, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin, Germany
| | - Burkhard Schmidt
- Institute for Mathematics, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin, Germany
| | - Mallikarjun Karra
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Bretislav Friedrich
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| |
Collapse
|
12
|
Søndergaard AA, Shepperson B, Stapelfeldt H. Nonadiabatic laser-induced alignment of molecules: Reconstructing ⟨𝖼𝗈𝗌 𝟤 θ⟩ directly from ⟨𝖼𝗈𝗌 𝟤 θ 2D⟩ by Fourier analysis. J Chem Phys 2018; 147:013905. [PMID: 28688434 DOI: 10.1063/1.4975817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an efficient, noise-robust method based on Fourier analysis for reconstructing the three-dimensional measure of the alignment degree, ⟨cos2θ⟩, directly from its two-dimensional counterpart, ⟨cos2θ2D⟩. The method applies to nonadiabatic alignment of linear molecules induced by a linearly polarized, nonresonant laser pulse. Our theoretical analysis shows that the Fourier transform of the time-dependent ⟨cos2θ2D⟩ trace over one molecular rotational period contains additional frequency components compared to the Fourier transform of ⟨cos2θ⟩. These additional frequency components can be identified and removed from the Fourier spectrum of ⟨cos2θ2D⟩. By rescaling of the remaining frequency components, the Fourier spectrum of ⟨cos2θ⟩ is obtained and, finally, ⟨cos2θ⟩ is reconstructed through inverse Fourier transformation. The method allows the reconstruction of the ⟨cos2θ⟩ trace from a measured ⟨cos2θ2D⟩ trace, which is the typical observable of many experiments, and thereby provides direct comparison to calculated ⟨cos2θ⟩ traces, which is the commonly used alignment metric in theoretical descriptions. We illustrate our method by applying it to the measurement of nonadiabatic alignment of I2 molecules. In addition, we present an efficient algorithm for calculating the matrix elements of cos2θ2D and any other observable in the symmetric top basis. These matrix elements are required in the rescaling step, and they allow for highly efficient numerical calculation of ⟨cos2θ2D⟩ and ⟨cos2θ⟩ in general.
Collapse
|
13
|
Grohmann T, Seideman T, Leibscher M. Theory of torsional control for G16-type molecules. J Chem Phys 2018. [DOI: 10.1063/1.4997462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas Grohmann
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, USA
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Tamar Seideman
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, USA
| | - Monika Leibscher
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstr. 2, 30167 Hannover, Germany
- Institut für Physikalische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| |
Collapse
|
14
|
Yu H, Ho TS, Rabitz H. Optimal control of orientation and entanglement for two dipole–dipole coupled quantum planar rotors. Phys Chem Chem Phys 2018; 20:13008-13029. [DOI: 10.1039/c8cp00231b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optimal control simulations are performed for orientation and entanglement of two dipole–dipole coupled identical quantum rotors.
Collapse
Affiliation(s)
- Hongling Yu
- State Key Laboratory of Precision
- East China Normal University
- Shanghai 200062
- China
- Department of Chemistry
| | - Tak-San Ho
- Department of Chemistry
- Princeton University
- Princeton
- USA
| | | |
Collapse
|
15
|
Grohmann T, Leibscher M, Seideman T. Laser-Controlled Torsions: Four-Dimensional Theory and the Validity of Reduced Dimensionality Models. PHYSICAL REVIEW LETTERS 2017; 118:203201. [PMID: 28581807 DOI: 10.1103/physrevlett.118.203201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 06/07/2023]
Abstract
A multitude of possible applications along with unique coherence, chirality, and symmetry properties makes the control of molecular torsion with moderately strong, nonresonant laser pulses a fascinating subject. A description of combined rotation and torsion requires at least four angular degrees of freedom, which is challenging for the majority of systems. Lower-dimensional models have been proposed but also questioned. Here, we develop a four-dimensional model for the coupled rotational-torsional motions of molecules consisting of two identical moieties. By comparing four-dimensional calculations with a two-dimensional model, we define conditions under which the lower-dimensional model is valid. In particular, we point to the crucial role of coordinate dependence of the polarizability tensor. Our results do not agree with those of previous four-dimensional calculations but support the conclusions of recent experiments.
Collapse
Affiliation(s)
- Thomas Grohmann
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Monika Leibscher
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
- Institut für Physikalische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Tamar Seideman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| |
Collapse
|
16
|
Jia D, Manz J, Paulus B, Pohl V, Tremblay JC, Yang Y. Quantum control of electronic fluxes during adiabatic attosecond charge migration in degenerate superposition states of benzene. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Nakashima K, Yoshida M, Nakajima T, Ohtsuki Y. Isotope-selective molecular alignment induced by optimal laser pulses. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1246761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kaoru Nakashima
- Department of Chemistry, Graduate School of Science, Tohoku University , Sendai, Japan
| | - Masataka Yoshida
- Department of Chemistry, Graduate School of Science, Tohoku University , Sendai, Japan
| | | | - Yukiyoshi Ohtsuki
- Department of Chemistry, Graduate School of Science, Tohoku University , Sendai, Japan
| |
Collapse
|
18
|
Katsuki H, Ohmori K. Simultaneous manipulation and observation of multiple ro-vibrational eigenstates in solid para-hydrogen. J Chem Phys 2016; 145:124316. [PMID: 27782629 DOI: 10.1063/1.4963223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have experimentally performed the coherent control of delocalized ro-vibrational wave packets (RVWs) of solid para-hydrogen (p-H2) by the wave packet interferometry (WPI) combined with coherent anti-Stokes Raman scattering (CARS). RVWs of solid p-H2 are delocalized in the crystal, and the wave function with wave vector k ∼ 0 is selectively excited via the stimulated Raman process. We have excited the RVW twice by a pair of femtosecond laser pulses with delay controlled by a stabilized Michelson interferometer. Using a broad-band laser pulse, multiple ro-vibrational states can be excited simultaneously. We have observed the time-dependent Ramsey fringe spectra as a function of the inter-pulse delay by a spectrally resolved CARS technique using a narrow-band probe pulse, resolving the different intermediate states. Due to the different fringe oscillation periods among those intermediate states, we can manipulate their amplitude ratio by tuning the inter-pulse delay on the sub-femtosecond time scale. The state-selective manipulation and detection of the CARS signal combined with the WPI is a general and efficient protocol for the control of the interference of multiple quantum states in various quantum systems.
Collapse
Affiliation(s)
- Hiroyuki Katsuki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Kenji Ohmori
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| |
Collapse
|
19
|
Sharma K, Friedrich B. Pair-eigenstates and mutual alignment of coupled molecular rotors in a magnetic field. Phys Chem Chem Phys 2016; 18:13467-77. [PMID: 27126576 DOI: 10.1039/c6cp00390g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We examine the rotational states of a pair of polar (2)Σ molecules subject to a uniform magnetic field. The electric dipole-dipole interaction between the molecules creates entangled pair-eigenstates of two types. In one type, the Zeeman interaction between the inherently paramagnetic molecules and the magnetic field destroys the entanglement of the pair-eigenstates, whereas in the other type it does not. The pair-eigenstates exhibit numerous intersections, which become avoided for pair-eigenstates comprised of individual states that meet the selection rules ΔJi = 0, ± 1, ΔNi = 2n (n = 0, ±1, ±2,…), and ΔMi = 0, ± 1 imposed by the electric dipole-dipole operator. Here Ji, Ni and Mi are the total, rotational and projection angular momentum quantum numbers of molecules i = 1, 2 in the absence of the electric dipole-dipole interaction. We evaluate the mutual alignment of the pair-eigenstates and find it to be independent of the magnetic field, except for states that undergo avoided crossings, in which case the alignment of the interacting states is interchanged at the magnetic field corresponding to the crossing point. We present an analytic model which provides ready estimates of the pairwise alignment cosine that characterises the mutual alignment of the pair of coupled rotors.
Collapse
Affiliation(s)
- Ketan Sharma
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.
| | - Bretislav Friedrich
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.
| |
Collapse
|
20
|
Pulse shape effect on rotational excitation and 2-D alignment alternation by elliptic laser pulses. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.02.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
|
22
|
Bredtmann T, Manz J, Zhao JM. Concerted Electronic and Nuclear Fluxes During Coherent Tunnelling in Asymmetric Double-Well Potentials. J Phys Chem A 2016; 120:3142-54. [PMID: 26799383 DOI: 10.1021/acs.jpca.5b11295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The quantum theory of concerted electronic and nuclear fluxes (CENFs) during coherent periodic tunnelling from reactants (R) to products (P) and back to R in molecules with asymmetric double-well potentials is developed. The results are deduced from the solution of the time-dependent Schrödinger equation as a coherent superposition of two eigenstates; here, these are the two states of the lowest tunnelling doublet. This allows the periodic time evolutions of the resulting electronic and nuclear probability densities (EPDs and NPDs) as well as the CENFs to be expressed in terms of simple sinusodial functions. These analytical results reveal various phenomena during coherent tunnelling in asymmetric double-well potentials, e.g., all EPDs and NPDs as well as all CENFs are synchronous. Distortion of the symmetric reference to a system with an asymmetric double-well potential breaks the spatial symmetry of the EPDs and NPDs, but, surprisingly, the symmetry of the CENFs is conserved. Exemplary application to the Cope rearrangement of semibullvalene shows that tunnelling of the ideal symmetric system can be suppressed by asymmetries induced by rather small external electric fields. The amplitude for the half tunnelling, half nontunnelling border is as low as 0.218 × 10(-8) V/cm. At the same time, the delocalized eigenstates of the symmetric reference, which can be regarded as Schrödinger's cat-type states representing R and P with equal probabilities, get localized at one or the other minima of the asymmetric double-well potential, representing either R or P.
Collapse
Affiliation(s)
| | - Jörn Manz
- Freie Universität Berlin , Institut für Chemie und Biochemie, 14195 Berlin, Germany
| | | |
Collapse
|
23
|
Huang Y, Xu S, Zhang S. Selective excitation and control of the molecular orientation by a phase shaped laser pulse. RSC Adv 2016. [DOI: 10.1039/c6ra16259b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Selective excitation and control of the molecular orientation is realized by a dual-color phase-shaped laser pulse.
Collapse
Affiliation(s)
| | - Shuwu Xu
- School of Science
- Nantong University
- Nantong
- China
| | - Shian Zhang
- State Key Laboratory of Precision Spectroscopy
- East China Normal University
- Shanghai
- China
| |
Collapse
|
24
|
Ashwell BA, Ramakrishna S, Seideman T. Strong field coherent control of molecular torsions—Analytical models. J Chem Phys 2015; 143:064307. [DOI: 10.1063/1.4927917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Benjamin A. Ashwell
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - S. Ramakrishna
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Tamar Seideman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
25
|
Yoshida M, Ohtsuki Y. Control of molecular orientation with combined near-single-cycle THz and optimally designed non-resonant laser pulses: Carrier-envelope phase effects. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.05.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Karras G, Hertz E, Billard F, Lavorel B, Hartmann JM, Faucher O, Gershnabel E, Prior Y, Averbukh IS. Orientation and alignment echoes. PHYSICAL REVIEW LETTERS 2015; 114:153601. [PMID: 25933313 DOI: 10.1103/physrevlett.114.153601] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 06/04/2023]
Abstract
We present one of the simplest classical systems featuring the echo phenomenon-a collection of randomly oriented free rotors with dispersed rotational velocities. Following excitation by a pair of time-delayed impulsive kicks, the mean orientation or alignment of the ensemble exhibits multiple echoes and fractional echoes. We elucidate the mechanism of the echo formation by the kick-induced filamentation of phase space, and provide the first experimental demonstration of classical alignment echoes in a thermal gas of CO_{2} molecules excited by a pair of femtosecond laser pulses.
Collapse
Affiliation(s)
- G Karras
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, BP 47870, 21078 Dijon, France
| | - E Hertz
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, BP 47870, 21078 Dijon, France
| | - F Billard
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, BP 47870, 21078 Dijon, France
| | - B Lavorel
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, BP 47870, 21078 Dijon, France
| | - J-M Hartmann
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA) CNRS (UMR 7583), Université Paris Est Créteil, Université Paris Diderot, Institut Pierre-Simon Laplace, Université Paris Est Créteil, 94010 Créteil Cedex, France
| | - O Faucher
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, BP 47870, 21078 Dijon, France
| | - Erez Gershnabel
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yehiam Prior
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ilya Sh Averbukh
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
27
|
Eyles CJ, Floß J, Averbukh IS, Leibscher M. Atom-diatom scattering dynamics of spinning molecules. J Chem Phys 2015; 142:024311. [DOI: 10.1063/1.4905251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- C. J. Eyles
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - J. Floß
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - I. Sh. Averbukh
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - M. Leibscher
- Institut für Theoretische Physik, Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
28
|
Korobenko A, Hepburn JW, Milner V. Observation of nondispersing classical-like molecular rotation. Phys Chem Chem Phys 2015; 17:951-6. [DOI: 10.1039/c4cp04434g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Using the technique of an optical centrifuge, we produce rotational wave packets which evolve in time along either classical-like or non-classical trajectories.
Collapse
Affiliation(s)
- Aleksey Korobenko
- Department of Physics & Astronomy
- University of British Columbia
- Vancouver
- Canada V6T 1Z1
| | - John W. Hepburn
- Department of Physics & Astronomy
- University of British Columbia
- Vancouver
- Canada V6T 1Z1
- Department of Chemistry
| | - Valery Milner
- Department of Physics & Astronomy
- University of British Columbia
- Vancouver
- Canada V6T 1Z1
| |
Collapse
|
29
|
Bredtmann T, Diestler DJ, Li SD, Manz J, Pérez-Torres JF, Tian WJ, Wu YB, Yang Y, Zhai HJ. Quantum theory of concerted electronic and nuclear fluxes associated with adiabatic intramolecular processes. Phys Chem Chem Phys 2015; 17:29421-64. [DOI: 10.1039/c5cp03982g] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Example of concerted electronic (right) and nuclear (left) fluxes: isomerization of B4.
Collapse
Affiliation(s)
- Timm Bredtmann
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | - Dennis J. Diestler
- Freie Universität Berlin
- Institut für Chemie und Biochemie
- 14195 Berlin
- Germany
- University of Nebraska-Lincoln
| | - Si-Dian Li
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | | | - Wen-Juan Tian
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Yan-Bo Wu
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | - Hua-Jin Zhai
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
30
|
Christensen L, Nielsen JH, Brandt CB, Madsen CB, Madsen LB, Slater CS, Lauer A, Brouard M, Johansson MP, Shepperson B, Stapelfeldt H. Dynamic stark control of torsional motion by a pair of laser pulses. PHYSICAL REVIEW LETTERS 2014; 113:073005. [PMID: 25170706 DOI: 10.1103/physrevlett.113.073005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Indexed: 06/03/2023]
Abstract
The torsional motion of a molecule composed of two substituted benzene rings, linked by a single bond, is coherently controlled by a pair of strong (3×10^{13} W cm^{-2}), nonresonant (800 nm) 200-fs-long laser pulses-both linearly polarized perpendicular to the single-bond axis. If the second pulse is sent at the time when the two benzene rings rotate toward (away from) each other the amplitude of the torsion is strongly enhanced (reduced). The torsional motion persists for more than 150 ps corresponding to approximately 120 torsional oscillations. Our calculations show that the key to control is the strong transient modification of the natural torsional potential by the laser-induced dynamic Stark effect.
Collapse
Affiliation(s)
- Lauge Christensen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Jens H Nielsen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Christian B Brandt
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Christian B Madsen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Lars Bojer Madsen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Craig S Slater
- Department of Chemistry, University of Oxford, the Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Alexandra Lauer
- Department of Chemistry, University of Oxford, the Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Mark Brouard
- Department of Chemistry, University of Oxford, the Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Mikael P Johansson
- Department of Chemistry, Laboratory for Instruction in Swedish, University of Helsinki, A.I. Virtanens Plats 1, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Benjamin Shepperson
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
31
|
Ren X, Makhija V, Kumarappan V. Multipulse three-dimensional alignment of asymmetric top molecules. PHYSICAL REVIEW LETTERS 2014; 112:173602. [PMID: 24836246 DOI: 10.1103/physrevlett.112.173602] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Indexed: 06/03/2023]
Abstract
We show, by computation and experiment, that a sequence of nonresonant and impulsive laser pulses with different ellipticities can effectively align asymmetric top molecules in three dimensions under field-free conditions. By solving the Schrödinger equation for the evolution of the rotational wave packet, we show that the 3D alignment of 3,5 difluoroiodobenzene molecules improves with each successive pulse. Experimentally, a sequence of three pulses is used to demonstrate these results, which extend the multipulse schemes used for 1D alignment to full 3D control of rotational motion.
Collapse
Affiliation(s)
- Xiaoming Ren
- J. R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506, USA
| | - Varun Makhija
- J. R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506, USA
| | - Vinod Kumarappan
- J. R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
32
|
Guerrero RD, Arango CA, Reyes A. Optimal control of wave-packets: a semiclassical approach. Mol Phys 2014. [DOI: 10.1080/00268976.2013.834085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Schmidt B, Friedrich B. Topology of surfaces for molecular Stark energy, alignment, and orientation generated by combined permanent and induced electric dipole interactions. J Chem Phys 2014; 140:064317. [DOI: 10.1063/1.4864465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Zhao ZY, Han YC, Yu J, Cong SL. The influence of field-free orientation on the predissociation dynamics of the NaI molecule. J Chem Phys 2014; 140:044316. [DOI: 10.1063/1.4863176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Steinitz U, Prior Y, Averbukh IS. Optics of a gas of coherently spinning molecules. PHYSICAL REVIEW LETTERS 2014; 112:013004. [PMID: 24483895 DOI: 10.1103/physrevlett.112.013004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Indexed: 06/03/2023]
Abstract
We consider the optical properties of a gas of molecules that are brought to fast unidirectional spinning by a pulsed laser field. It is shown that a circularly polarized probe light passing through the medium inverts its polarization handedness and experiences a frequency shift controllable by the sense and the rate of molecular rotation. Our analysis is supported by two recent experiments on the laser-induced rotational Doppler effect in molecular gases and provides a good qualitative and quantitative description of the experimental observations.
Collapse
Affiliation(s)
- Uri Steinitz
- Department of Chemical Physics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | - Yehiam Prior
- Department of Chemical Physics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | - Ilya Sh Averbukh
- Department of Chemical Physics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| |
Collapse
|
36
|
Eyles CJ, Leibscher M. Reactive scattering dynamics of rotational wavepackets: a case study using the model H+H2 and F+H2 reactions with aligned and anti-aligned H2. J Chem Phys 2013; 139:104315. [PMID: 24050352 DOI: 10.1063/1.4820881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose a method to steer the outcome of reactive atom-diatom scattering, using rotational wavepackets excited by strong non-resonant laser pulses. Full close-coupled quantum mechanical scattering calculations of the D+H2 and F+H2 reactions are presented, where the H2 molecule exists as a coherent superposition of rotational states. The nuclear spin selective control over the molecular bond axis alignment afforded by the creation of rotational wavepackets is applied to reactive scattering systems, enabling a nuclear spin selective influence to be exerted over the reactive dynamics. The extension of the conventional eigenstate-to-eigenstate scattering problem to the case in which the initial state is composed of a coherent superposition of rotational states is detailed, and a selection of example calculations are discussed, along with their mechanistic implications. The feasibility of the corresponding experiments is considered, and a suitable simple two pulse laser scheme is shown to strongly differentiate the reactivities of o-H2 and p-H2.
Collapse
Affiliation(s)
- C J Eyles
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | | |
Collapse
|
37
|
Affiliation(s)
- Mikhail Lemeshko
- a ITAMP, Harvard-Smithsonian Center for Astrophysics , Cambridge , MA , 02138 , USA
- b Physics Department , Harvard University , Cambridge , MA , 02138 , USA
- c Kavli Institute for Theoretical Physics , University of California , Santa Barbara , CA , 93106 , USA
| | - Roman V. Krems
- c Kavli Institute for Theoretical Physics , University of California , Santa Barbara , CA , 93106 , USA
- d Department of Chemistry , University of British Columbia , BC V6T 1Z1, Vancouver , Canada
| | - John M. Doyle
- b Physics Department , Harvard University , Cambridge , MA , 02138 , USA
| | - Sabre Kais
- e Departments of Chemistry and Physics , Purdue University , West Lafayette , IN , 47907 , USA
| |
Collapse
|
38
|
Vindel-Zandbergen P, Falge M, Chang BY, Engel V, Sola IR. Manipulating the singlet–triplet transition in ion strings by nonresonant dynamic Stark effect. Theor Chem Acc 2013. [DOI: 10.1007/s00214-013-1359-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Fleischer S, Field RW, Nelson KA. Commensurate two-quantum coherences induced by time-delayed THz fields. PHYSICAL REVIEW LETTERS 2012; 109:123603. [PMID: 23005948 DOI: 10.1103/physrevlett.109.123603] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Indexed: 06/01/2023]
Abstract
The interaction of carbonyl sulfide dipolar gas molecules with two time-delayed, single-cycle THz pulses is shown both experimentally and theoretically to induce two-quantum rotational coherences that are significantly enhanced with respect to those induced by one THz pulse, depending on the relative delay of the pulses. The underlying phenomenon is quite general in that it can occur even after a single THz pulse if more than one molecular species is present, since the free induction decay emitted by one species (demonstrated here by atmospheric water vapor) can provide the second field interaction for the other.
Collapse
Affiliation(s)
- Sharly Fleischer
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | |
Collapse
|
40
|
Zhdanovich S, Bloomquist C, Floß J, Averbukh IS, Hepburn JW, Milner V. Quantum resonances in selective rotational excitation of molecules with a sequence of ultrashort laser pulses. PHYSICAL REVIEW LETTERS 2012; 109:043003. [PMID: 23006083 DOI: 10.1103/physrevlett.109.043003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Indexed: 06/01/2023]
Abstract
We experimentally investigate the effect of quantum resonance in the rotational excitation of the simplest quantum rotor--a diatomic molecule. Using the techniques of high-resolution femtosecond pulse shaping and rotational state-resolved detection, we measure directly the amount of energy absorbed by molecules interacting with a periodic train of laser pulses, and study their dependence on the train period. We show that the energy transfer is significantly enhanced at quantum resonance, and use this effect to demonstrate selective rotational excitation of two nitrogen isotopologs, (14)N(2) and (15)N(2). Moreover, by tuning the period of the pulse train in the vicinity of a fractional quantum resonance, we achieve selective rotational excitation of para- and ortho-isomers of (15)N(2).
Collapse
Affiliation(s)
- S Zhdanovich
- Department of Physics and Astronomy and The Laboratory for Advanced Spectroscopy and Imaging Research, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Abe H, Ohtsuki Y. Development of nonresonant optimal control simulation to include polarization effects of laser pulses. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2012.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Fleischer S, Khodorkovsky Y, Gershnabel E, Prior Y, Averbukh IS. Molecular Alignment Induced by Ultrashort Laser Pulses and Its Impact on Molecular Motion. Isr J Chem 2012. [DOI: 10.1002/ijch.201100161] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
|
44
|
Zhang S, Lu C, Jia T, Sun Z. Manipulation of molecular rotational dynamics with multiple laser pulses. Phys Chem Chem Phys 2012; 14:11994-8. [DOI: 10.1039/c2cp23850k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Zhang S, Lu C, Jia T, Sun Z, Qiu J. Field-free molecular alignment control by phase-shaped femtosecond laser pulse. J Chem Phys 2011; 135:224308. [PMID: 22168695 DOI: 10.1063/1.3666850] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we theoretically show that the field-free molecular alignment can be controlled by shaping the femtosecond laser pulse with a periodic phase step modulation, involving the maximum degree and temporal structure of the molecular alignment. We show that the molecular alignment can be completely suppressed or reconstructed as that by the transform-limited laser pulse, the temporal structure of the alignment transient can be controlled with a desired shape, and the molecular alignment and antialignment for any temporal structure can be switched. Furthermore, we also show that both the degree and direction of the molecular alignment at a fix time delay can be continuously modulated.
Collapse
Affiliation(s)
- Shian Zhang
- State Key Laboratory of Precision Spectroscopy, and Department of Physics, East China Normal University, Shanghai 200062, People's Republic of China.
| | | | | | | | | |
Collapse
|
46
|
Zhdanovich S, Milner AA, Bloomquist C, Floss J, Averbukh IS, Hepburn JW, Milner V. Control of molecular rotation with a chiral train of ultrashort pulses. PHYSICAL REVIEW LETTERS 2011; 107:243004. [PMID: 22242996 DOI: 10.1103/physrevlett.107.243004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Indexed: 05/31/2023]
Abstract
Trains of ultrashort laser pulses separated by the time of rotational revival (typically, tens of picoseconds) have been exploited for creating ensembles of aligned molecules. In this work we introduce a chiral pulse train--a sequence of linearly polarized pulses with the polarization direction rotating from pulse to pulse by a controllable angle. The chirality of such a train, expressed through the period and direction of its polarization rotation, is used as a new control parameter for achieving selectivity and directionality of laser-induced rotational excitation. The method employs chiral trains with a large number of pulses separated on the time scale much shorter than the rotational revival (a few hundred femtosecond), enabling the use of conventional pulse shapers.
Collapse
Affiliation(s)
- S Zhdanovich
- Department of Physics and Astronomy and The Laboratory for Advanced Spectroscopy and Imaging Research (LASIR), The University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhang S, Lu C, Jia T, Wang Z, Sun Z. Field-free molecular orientation enhanced by two dual-color laser subpulses. J Chem Phys 2011; 135:034301. [PMID: 21786997 DOI: 10.1063/1.3610956] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this paper, we theoretically show that the field-free molecular orientation created by a single dual-color laser pulse can be significantly enhanced by separating it into two time-delayed dual-color subpulses. It is indicated that the maximum enhancement of the molecular orientation created by two time-delayed dual-color subpulses can be achieved with their intensity ratio of about 1:2 and by simultaneously applying the second one at the beginning of the rotational wave packet rephasing or the end of the rotational wave packet dephasing induced by the first one. It is also shown that the enhancement or suppression of the molecular orientation can be coherently manipulated by varying the relative phase between the fundamental field and its second harmonic field of the second dual-color subpulse, and its enhancement is obtained around half rotational period.
Collapse
Affiliation(s)
- Shian Zhang
- State Key Laboratory of Precision Spectroscopy, and Department of Physics, East China Normal University, Shanghai 200062, People's Republic of China
| | | | | | | | | |
Collapse
|
48
|
Baek D, Hasegawa H, Ohshima Y. Unveiling the nonadiabatic rotational excitation process in a symmetric-top molecule induced by two intense laser pulses. J Chem Phys 2011; 134:224302. [DOI: 10.1063/1.3598962] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
49
|
Panagiotopoulos P, Couairon A, Efremidis NK, Papazoglou DG, Tzortzakis S. Intense dynamic bullets in a periodic lattice. OPTICS EXPRESS 2011; 19:10057-10062. [PMID: 21643264 DOI: 10.1364/oe.19.010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Femtosecond filamentation inside a periodic lattice in air is numerically shown to form intense dynamic bullets. The long propagation distance of the bullet structure is primarily attributed to the effect of the lattice that regulates the competition between linear and nonlinear spatiotemporal effects in the region of normal dispersion.
Collapse
Affiliation(s)
- P Panagiotopoulos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, PO Box 1527, 71110 Heraklion, Greece.
| | | | | | | | | |
Collapse
|
50
|
Owschimikow N, Schmidt B, Schwentner N. Laser-induced alignment and anti-alignment of rotationally excited molecules. Phys Chem Chem Phys 2011; 13:8671-80. [PMID: 21290046 DOI: 10.1039/c0cp02260h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We numerically investigate the post-pulse alignment of rotationally excited diatomic molecules upon nonresonant interaction with a linearly polarized laser pulse. In addition to the simulations, we develop a simple model which qualitatively describes the shape and amplitude of post-pulse alignment induced by a laser pulse of moderate power density. In our treatment we take into account that molecules in rotationally excited states can interact with a laser pulse not only by absorbing energy but also by stimulated emission. The extent to which these processes are present in the interaction depends, on the one hand, on the directionality of the molecular angular momentum (given by the M quantum number), and on the other hand on the ratio of transition frequencies and pulse duration (determined by the J number). A rotational wave packet created by a strong pulse from an initially pure state contains a broad range of rotational levels, over which the character of the interaction can change from non-adiabatic to adiabatic. Depending on the laser pulse duration and amplitude, the transition from the non-adiabatic to the adiabatic limit proceeds through a region with dominant rotational heating, or alignment, for short pulses and a large region with rotational cooling, and correspondingly preferred anti-alignment, for longer pulses.
Collapse
Affiliation(s)
- Nina Owschimikow
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | | | | |
Collapse
|