1
|
Pack J, Guo Y, Liu Z, Jessen BS, Holtzman L, Liu S, Cothrine M, Watanabe K, Taniguchi T, Mandrus DG, Barmak K, Hone J, Dean CR. Charge-transfer contacts for the measurement of correlated states in high-mobility WSe 2. NATURE NANOTECHNOLOGY 2024; 19:948-954. [PMID: 39054388 DOI: 10.1038/s41565-024-01702-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Two-dimensional semiconductors, such as transition metal dichalcogenides, have demonstrated tremendous promise for the development of highly tunable quantum devices. Realizing this potential requires low-resistance electrical contacts that perform well at low temperatures and low densities where quantum properties are relevant. Here we present a new device architecture for two-dimensional semiconductors that utilizes a charge-transfer layer to achieve large hole doping in the contact region, and implement this technique to measure the magnetotransport properties of high-purity monolayer WSe2. We measure a record-high hole mobility of 80,000 cm2 V-1 s-1 and access channel carrier densities as low as 1.6 × 1011 cm-2, an order of magnitude lower than previously achievable. Our ability to realize transparent contact to high-mobility devices at low density enables transport measurements of correlation-driven quantum phases including the observation of a low-temperature metal-insulator transition in a density and temperature regime where Wigner crystal formation is expected and the observation of the fractional quantum Hall effect under large magnetic fields. The charge-transfer contact scheme enables the discovery and manipulation of new quantum phenomena in two-dimensional semiconductors and their heterostructures.
Collapse
Affiliation(s)
- Jordan Pack
- Department of Physics, Columbia University, New York, NY, USA
| | - Yinjie Guo
- Department of Physics, Columbia University, New York, NY, USA
| | - Ziyu Liu
- Department of Physics, Columbia University, New York, NY, USA
| | - Bjarke S Jessen
- Department of Physics, Columbia University, New York, NY, USA
| | - Luke Holtzman
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, US
| | - Song Liu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Matthew Cothrine
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, US
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - David G Mandrus
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, US
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, US
| | - Katayun Barmak
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, US
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Cory R Dean
- Department of Physics, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Ribeiro-Palau R, Chen S, Zeng Y, Watanabe K, Taniguchi T, Hone J, Dean CR. High-Quality Electrostatically Defined Hall Bars in Monolayer Graphene. NANO LETTERS 2019; 19:2583-2587. [PMID: 30839210 DOI: 10.1021/acs.nanolett.9b00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Realizing graphene's promise as an atomically thin and tunable platform for fundamental studies and future applications in quantum transport requires the ability to electrostatically define the geometry of the structure and control the carrier concentration, without compromising the quality of the system. Here, we demonstrate the working principle of a new generation of high-quality gate-defined graphene samples, where the challenge of doing so in a gapless semiconductor is overcome by using the ν = 0 insulating state, which emerges at modest applied magnetic fields. In order to verify that the quality of our devices is not compromised, we compare the electronic transport response of different sample geometries, paying close attention to fragile quantum states, such as the fractional quantum Hall states that are highly susceptible to disorder. The ability to define local depletion regions without compromising device quality establishes a new approach toward structuring graphene-based quantum transport devices.
Collapse
Affiliation(s)
- Rebeca Ribeiro-Palau
- Department of Physics , Columbia University , New York , New York 10027 , United States
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
| | - Shaowen Chen
- Department of Physics , Columbia University , New York , New York 10027 , United States
- Department of Applied Physics and Applied Mathematics , Columbia University , New York , New York 10027 , United States
| | - Yihang Zeng
- Department of Physics , Columbia University , New York , New York 10027 , United States
| | - Kenji Watanabe
- National Institute for Materials Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Takashi Taniguchi
- National Institute for Materials Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - James Hone
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
| | - Cory R Dean
- Department of Physics , Columbia University , New York , New York 10027 , United States
| |
Collapse
|
3
|
Zeng Y, Li JIA, Dietrich SA, Ghosh OM, Watanabe K, Taniguchi T, Hone J, Dean CR. High-Quality Magnetotransport in Graphene Using the Edge-Free Corbino Geometry. PHYSICAL REVIEW LETTERS 2019; 122:137701. [PMID: 31012609 DOI: 10.1103/physrevlett.122.137701] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 06/09/2023]
Abstract
We report fabrication of graphene devices in a Corbino geometry consisting of concentric circular electrodes with no physical edge connecting the inner and outer electrodes. High device mobility is realized using boron nitride encapsulation together with a dual-graphite gate structure. Bulk conductance measurement in the quantum Hall effect (QHE) regime outperforms previously reported Hall bar measurements, with improved resolution observed for both the integer and fractional QHE states. We identify apparent phase transitions in the fractional sequence in both the lowest and first excited Landau levels (LLs) and observe features consistent with electron solid phases in higher LLs.
Collapse
Affiliation(s)
- Y Zeng
- Department of Physics, Columbia University, New York, New York 10025, USA
| | - J I A Li
- Department of Physics, Columbia University, New York, New York 10025, USA
| | - S A Dietrich
- Department of Physics, Columbia University, New York, New York 10025, USA
| | - O M Ghosh
- Department of Physics, Columbia University, New York, New York 10025, USA
| | - K Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - T Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - J Hone
- Department of Mechanical Engineering, Columbia University, New York, New York 10025, USA
| | - C R Dean
- Department of Physics, Columbia University, New York, New York 10025, USA
| |
Collapse
|
4
|
Pan W, Baldwin KW, West KW, Pfeiffer LN, Tsui DC. Spin transition in the ν=8/3 fractional quantum Hall effect. PHYSICAL REVIEW LETTERS 2012; 108:216804. [PMID: 23003291 DOI: 10.1103/physrevlett.108.216804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Indexed: 06/01/2023]
Abstract
We present here the results from a density dependent study of the activation energy gaps of the fractional quantum Hall effect states at Landau level fillings ν=8/3 and 7/3 in a series of high quality quantum wells. In the density range from 0.5×10(11) to 3×10(11) cm(-2), the 7/3 energy gap increases monotonically with increasing density, supporting its ground state being spin polarized. For the 8/3 state, however, its energy gap first decreases with increasing density, almost vanishes at n~0.8×10(11) cm(-2), and then turns around and increases with increasing density, clearly demonstrating a spin transition.
Collapse
Affiliation(s)
- W Pan
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | | | | | | | | |
Collapse
|
5
|
Khrapai VS, Shashkin AA, Trokina MG, Dolgopolov VT, Pellegrini V, Beltram F, Biasiol G, Sorba L. Filling factor dependence of the fractional quantum Hall effect gap. PHYSICAL REVIEW LETTERS 2008; 100:196805. [PMID: 18518475 DOI: 10.1103/physrevlett.100.196805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Indexed: 05/26/2023]
Abstract
We directly measure the chemical potential jump in the low-temperature limit when the filling factor traverses the nu=1/3 and nu=2/5 fractional gaps in two-dimensional (2D) electron system in GaAs/AlGaAs single heterojunctions. In high magnetic fields B, both gaps are linear functions of B with slopes proportional to the inverse fraction denominator, 1/q. The fractional gaps close partially when the Fermi level lies outside. An empirical analysis indicates that the chemical potential jump for an ideal 2D electron system, in the highest accessible magnetic fields, is proportional to q(-1) B(1/2).
Collapse
Affiliation(s)
- V S Khrapai
- Institute of Solid State Physics, Chernogolovka, Moscow District, Russia
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Groshaus JG, Plochocka-Polack P, Rappaport M, Umansky V, Bar-Joseph I, Dennis BS, Pfeiffer LN, West KW, Gallais Y, Pinczuk A. Absorption in the fractional quantum Hall regime: trion dichroism and spin polarization. PHYSICAL REVIEW LETTERS 2007; 98:156803. [PMID: 17501371 DOI: 10.1103/physrevlett.98.156803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Indexed: 05/15/2023]
Abstract
We present measurements of optical interband absorption in the fractional quantum Hall regime in a GaAs quantum well in the range 0<nu<or=1. We investigate the mechanism of singlet trion absorption, and show that its circular dichroism can be used as a probe of the spin polarization of the ground state of the two-dimensional electron system (2DES). We find that at nu<or=1/3 the 2DES is fully spin polarized. Increasing the filling factor results in a gradual depolarization, with a sharp minimum in the dichroism near nu=2/3. We find that in the range 0.5<or=nu<0.85 the 2DES remains partially polarized for the broad range of magnetic fields from 2.75 to 11 T. This is consistent with the presence of a mixture of polarized and depolarized regions.
Collapse
Affiliation(s)
- J G Groshaus
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel and Bell Laboratories, Lucent Technology, Murray Hill, New Jersey 07974, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Schulze-Wischeler F, Hohls F, Zeitler U, Reuter D, Wieck AD, Haug RJ. Phonon excitations of composite-fermion landau levels. PHYSICAL REVIEW LETTERS 2004; 93:026801. [PMID: 15323936 DOI: 10.1103/physrevlett.93.026801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Indexed: 05/24/2023]
Abstract
Phonon excitations of fractional quantum Hall states at filling factors nu = 1/3, 2/5, 4/7, 3/5, 4/3, and 5/3 are experimentally shown to be based on Landau-level transitions of composite fermions. At filling factor nu = 2/3, however, a linear field dependence of the excitation energy in the high-field regime rather hints towards a spin transition excited by the phonons. We propose to explain this surprising observation by an only partially polarized 2/3 ground state, making the energetically lower lying spin transition also allowed for phonon excitations.
Collapse
Affiliation(s)
- F Schulze-Wischeler
- Institut für Festkörperphysik, Universität Hannover, Appelstrasse 2, 30167 Hannover, Germany
| | | | | | | | | | | |
Collapse
|