1
|
Andrade E, Carrillo-Bastos R, Naumis GG. Topical review: electronic and optical properties of Kekulé and other short wavelength spatial modulated textures of graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:193003. [PMID: 40153943 DOI: 10.1088/1361-648x/adc6e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/28/2025] [Indexed: 04/01/2025]
Abstract
A review of the electronic and optical properties of Kekulé and other short wavelength modulations textures on graphene is presented. Starting from the experimental realization of such textures, the review discusses the electronic and optical properties in terms of several theoretical models like the tight-binding Hamiltonian and effective low energy models based on the Dirac equation. Other surveyed subjects are, strain effects, valley engineering, Kekulé bilayers, zitterbewegung, Kekulé interfaces, valley birefringence and the skew valley scattering. Specific signatures in the optical and electronic conductivities of Kekule textures are next discussed using several approaches like linear response theory, the random phase approximation, and Floquet theory. Plasmons are also presented by considering the dielectric function. Finally, a discussion is presented on how Kekulé textures are related with highly correlated phases, including its importance in magic angle twisted bilayer graphene superconductivity and related quantum phases.
Collapse
Affiliation(s)
- Elias Andrade
- Posgrado de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México 01000, Mexico
| | - R Carrillo-Bastos
- Facultad de Ciencias, Universidad Autónoma de Baja California, Apartado Postal 1880, Ensenada, Baja California 22800, Mexico
| | - Gerardo G Naumis
- Depto. de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 20-364, CDMX 01000, Mexico
| |
Collapse
|
2
|
Wen W, Liang J, Xu H, Jin F, Rubo YG, Liew TCH, Su R. Trembling Motion of Exciton Polaritons Close to the Rashba-Dresselhaus Regime. PHYSICAL REVIEW LETTERS 2024; 133:116903. [PMID: 39331969 DOI: 10.1103/physrevlett.133.116903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/25/2024] [Indexed: 09/29/2024]
Abstract
We report the experimental observation of trembling quantum motion, or Zitterbewegung, of exciton polaritons in a perovskite microcavity at room temperature. By introducing liquid-crystal molecules into the microcavity, we achieve spinor states with synthetic Rashba-Dresselhaus spin-orbit coupling and tunable energy splitting. Under a resonant excitation, the polariton fluid exhibits clear trembling motion perpendicular to its flowing direction, accompanied by a unique spin pattern resembling interlocked fingers. Furthermore, leveraging the sizable tunability of energy gaps by external electrical voltages, we observe the continuous transition of polariton Zitterbewegung from relativistic (small gaps) to nonrelativistic (large gaps) regimes. Our findings pave the way for using exciton polaritons in the emulation of relativistic quantum physics.
Collapse
|
3
|
Lovett S, Walker PM, Osipov A, Yulin A, Naik PU, Whittaker CE, Shelykh IA, Skolnick MS, Krizhanovskii DN. Observation of Zitterbewegung in photonic microcavities. LIGHT, SCIENCE & APPLICATIONS 2023; 12:126. [PMID: 37221208 DOI: 10.1038/s41377-023-01162-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023]
Abstract
We present and experimentally study the effects of the photonic spin-orbit coupling on the real space propagation of polariton wavepackets in planar semiconductor microcavities and polaritonic analogues of graphene. In particular, we demonstrate the appearance of an analogue Zitterbewegung effect, a term which translates as 'trembling motion' in English, which was originally proposed for relativistic Dirac electrons and consisted of the oscillations of the centre of mass of a wavepacket in the direction perpendicular to its propagation. For a planar microcavity, we observe regular Zitterbewegung oscillations whose amplitude and period depend on the wavevector of the polaritons. We then extend these results to a honeycomb lattice of coupled microcavity resonators. Compared to the planar cavity, such lattices are inherently more tuneable and versatile, allowing simulation of the Hamiltonians of a wide range of important physical systems. We observe an oscillation pattern related to the presence of the spin-split Dirac cones in the dispersion. In both cases, the experimentally observed oscillations are in good agreement with theoretical modelling and independently measured bandstructure parameters, providing strong evidence for the observation of Zitterbewegung.
Collapse
Affiliation(s)
- Seth Lovett
- Department of Physics and Astronomy, University of Sheffield, S3 7RH, Sheffield, UK
| | - Paul M Walker
- Department of Physics and Astronomy, University of Sheffield, S3 7RH, Sheffield, UK.
| | - Alexey Osipov
- Department of Physics and Technology, ITMO University, St. Petersburg, 197101, Russia
| | - Alexey Yulin
- Department of Physics and Technology, ITMO University, St. Petersburg, 197101, Russia
| | - Pooja Uday Naik
- Department of Physics and Astronomy, University of Sheffield, S3 7RH, Sheffield, UK
| | - Charles E Whittaker
- Department of Physics and Astronomy, University of Sheffield, S3 7RH, Sheffield, UK
| | - Ivan A Shelykh
- Department of Physics and Technology, ITMO University, St. Petersburg, 197101, Russia
- Science Institute, University of Iceland, Dunhagi 3, IS-107, Reykjavik, Iceland
| | - Maurice S Skolnick
- Department of Physics and Astronomy, University of Sheffield, S3 7RH, Sheffield, UK
| | | |
Collapse
|
4
|
Cai W, Liu J, Gao Y, Ye W. Diverse lateral shifts of beams in non-Hermitian waveguide arrays. OPTICS EXPRESS 2022; 30:46982-46990. [PMID: 36558636 DOI: 10.1364/oe.476424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Non-Hermitian systems have attracted considerable attention in optics due to the rich physics introduced by the existence of real spectra and exceptional points (EPs), which is exploited in lasers, optical sensors and on-chip manipulations of light. Here, focusing on the dynamics of beams in non-Hermitian waveguide arrays supporting a ring of EPs (exceptional ring) and 3rd-order EPs, we theoretically demonstrate that the center of energy of a beam prepared around an eigenstate of the waveguide array near EPs could exhibit non-zero shifts in the lateral direction during its propagation. When the initial state of the beam prepared around an eigenstate inside (outside) the exceptional ring with the imaginary (real) eigenvalue, the lateral shifts of the beams are manifested by the non-oscillating (Zitterbewegung-like) motions, which are robust to the perturbations of coupling coefficients between waveguides. Remarkably, the amplitude of the non-oscillating shift is dependent on a non-Hermitian Berry connection (U(1) gauge invariance). It contradicts the conventional wisdom that the Berry connection cannot induce the dynamic effect. Furthermore, near the high-order EPs, the initial-state-dependent lateral shifts of the beams present diversity, such as multifrequencies and destructive interferences. The counterintuitive lateral shifts of the beams stem from the non-orthogonal nature of eigenstate of the non-Hermitian systems, which may open a gateway towards the non-Hermitian beam dynamics and manipulations of beams.
Collapse
|
5
|
Lavor IR, da Costa DR, Covaci L, Milošević MV, Peeters FM, Chaves A. Zitterbewegung of Moiré Excitons in Twisted MoS_{2}/WSe_{2} Heterobilayers. PHYSICAL REVIEW LETTERS 2021; 127:106801. [PMID: 34533367 DOI: 10.1103/physrevlett.127.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The moiré pattern observed in stacked noncommensurate crystal lattices, such as heterobilayers of transition metal dichalcogenides, produces a periodic modulation of their band gap. Excitons subjected to this potential landscape exhibit a band structure that gives rise to a quasiparticle dubbed the moiré exciton. In the case of MoS_{2}/WSe_{2} heterobilayers, the moiré trapping potential has honeycomb symmetry and, consequently, the moiré exciton band structure is the same as that of a Dirac-Weyl fermion, whose mass can be further tuned down to zero with a perpendicularly applied field. Here we show that, analogously to other Dirac-like particles, the moiré exciton exhibits a trembling motion, also known as Zitterbewegung, whose long timescales are compatible with current experimental techniques for exciton dynamics. This promotes the study of the dynamics of moiré excitons in van der Waals heterostructures as an advantageous solid-state platform to probe Zitterbewegung, broadly tunable by gating and interlayer twist angle.
Collapse
Affiliation(s)
- I R Lavor
- Departamento de Física, Universidade Federal do Ceará, 60455-760 Fortaleza, Ceará, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, KM-04, Enseada, 65200-000 Pinheiro, Maranhão, Brazil
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - D R da Costa
- Departamento de Física, Universidade Federal do Ceará, 60455-760 Fortaleza, Ceará, Brazil
| | - L Covaci
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - M V Milošević
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - F M Peeters
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - A Chaves
- Departamento de Física, Universidade Federal do Ceará, 60455-760 Fortaleza, Ceará, Brazil
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
6
|
Lavor IR, da Costa DR, Chaves A, Sena SHR, Farias GA, Van Duppen B, Peeters FM. Effect of zitterbewegung on the propagation of wave packets in ABC-stacked multilayer graphene: an analytical and computational approach. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:095503. [PMID: 33232944 DOI: 10.1088/1361-648x/abcd7f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The time evolution of a low-energy two-dimensional Gaussian wave packet in ABC-stacked n-layer graphene (ABC-NLG) is investigated. Expectation values of the position (x, y) of center-of-mass and the total probability densities of the wave packet are calculated analytically using the Green's function method. These results are confirmed using an alternative numerical method based on the split-operator technique within the Dirac approach for ABC-NLG, which additionally allows to include external fields and potentials. The main features of the zitterbewegung (trembling motion) of wave packets in graphene are demonstrated and are found to depend not only on the wave packet width and initial pseudospin polarization, but also on the number of layers. Moreover, the analytical and numerical methods proposed here allow to investigate wave packet dynamics in graphene systems with an arbitrary number of layers and arbitrary potential landscapes.
Collapse
Affiliation(s)
- I R Lavor
- Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, KM-04, Enseada, 65200-000, Pinheiro, Maranhão, Brazil
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - D R da Costa
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
| | - Andrey Chaves
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - S H R Sena
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Centro, 62790-000 Redenção, Ceará, Brasil
| | - G A Farias
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
| | - B Van Duppen
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - F M Peeters
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
7
|
Yar A, Zubair M, Sabeeh K. Optical radiation induced chaotic dynamics of electrons in a uniform magnetic field. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:095403. [PMID: 31769412 DOI: 10.1088/1361-648x/ab5767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigate the effects of linearly polarized optical radiation on the cyclotron motion of an electron wave packet, considering the full quantum dynamics of the system. Analysis of the Landau-level (LL) spectrum reveals that only intra band cyclotron oscillation frequencies contribute to the effective oscillation frequency of the motion, whereas scattering between electron and hole Landau levels are forbidden. We find that the wave packet dynamics is significantly affected by varying the polarization direction of the electromagnetic radiation. The optical radiation is also affected by its interaction with electrons. Interestingly, we find that chaotic effects are induced by radiation in the dynamics of electron wave packet in an applied uniform magnetic field. Chaotic signatures in the dynamics are diagnosed by computing the relevant out-of-time-order correlation function and analyzed by using Poincaré maps. We attribute the appearance of such chaotic transport of electron wave packet to the nonlinear interaction between the optical radiation and internal cooperative oscillating mode produced by the interplay of relativistic (zitterbewegung) and cyclotron oscillations.
Collapse
Affiliation(s)
- Abdullah Yar
- Department of Physics, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | | | | |
Collapse
|
8
|
Yar A, Ullah Khan S. Chaotic transport of electron wave packet in Weyl semimetal slab. Phys Rev E 2019; 99:052213. [PMID: 31212456 DOI: 10.1103/physreve.99.052213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 11/07/2022]
Abstract
We theoretically study the quantum transport of an electron wave packet on the Fermi arcs and in the bulk of a Weyl semimetal slab. The numerical analysis of the dynamical equations obtained from the Heisenberg equation of motion reveals that the electron motion in the Weyl semimetal exhibits interesting unusual effects. In particular, signatures of chaotic behavior in the transport of the electron wave packet are observed that are diagnosed by the relevant out-of-time-order correlation function and are analyzed using Poincaré maps. We attribute the appearance of such chaotic transport of the electron wave packet to the interplay of Zitterbewegung and cyclotron oscillations in the Weyl semimetal slab. The chaotic nature of the electron transport is exhibited both along the Fermi arcs and in the bulk of the slab, depending strongly upon the spin orientation of the electron. In the presence of a magnetic field, both interband and intraband (cyclotron) frequencies contribute to the resulting oscillation frequency of the electron motion.
Collapse
Affiliation(s)
- Abdullah Yar
- Department of Physics, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Safi Ullah Khan
- Department of Physics, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
9
|
Luan J, Li S, Ma T, Wang LG. Zitterbewegung near new Dirac points in graphene superlattices. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:395502. [PMID: 30129929 DOI: 10.1088/1361-648x/aadbe0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
New Dirac points may appear when periodic potentials are applied to graphene, and there are many interesting effects near them. Here we investigate the Zitterbewegung effect of fermions described by a Gaussian wave packet in graphene superlattice near these points. The Zitterbewegung near different Dirac points has similar characteristics, while fermions near new ones have different group velocities in both x- and y-direction, which causes the different properties of the Zitterbewegung near them. We also investigate the Zitterbewegung effect influenced by multi Dirac points, and get the evolution with changing potential. Our results suggest that graphene superlattice may provide an appropriate system to study the Zitterbewegung effect near new Dirac points experimentally.
Collapse
Affiliation(s)
- Jianli Luan
- Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | | | | | | |
Collapse
|
10
|
Huang T, Ma T, Wang LG. Zitterbewegung in time-reversal Weyl semimetals. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:245501. [PMID: 29722679 DOI: 10.1088/1361-648x/aac23b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We perform a systematic study of the Zitterbewegung effect of fermions, which are described by a Gaussian wave with broken spatial-inversion symmetry in a three-dimensional low-energy Weyl semimetal. Our results show that the motion of fermions near the Weyl points is characterized by rectilinear motion and Zitterbewegung oscillation. The ZB oscillation is affected by the width of the Gaussian wave packet, the position of the Weyl node, and the chirality and anisotropy of the fermions. By introducing a one-dimensional cosine potential, the new generated massless fermions have lower Fermi velocities, which results in a robust relativistic oscillation. Modulating the height and periodicity of periodic potential demonstrates that the ZB effect of fermions in the different Brillouin zones exhibits quasi-periodic behavior. These results may provide an appropriate system for probing the Zitterbewegung effect experimentally.
Collapse
Affiliation(s)
- Tongyun Huang
- Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | | | | |
Collapse
|
11
|
Stephanovich VA, Sherman EY. Chaotization of internal motion of excitons in ultrathin layers by spin-orbit coupling. Phys Chem Chem Phys 2018; 20:7836-7843. [PMID: 29505626 DOI: 10.1039/c7cp07949d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show that Rashba spin-orbit coupling (SOC) can generate chaotic behavior of excitons in two-dimensional semiconductor structures. To model this chaos, we study a Kepler system with spin-orbit coupling and numerically obtain a transition to chaos at a sufficiently strong coupling. The chaos emerges since the SOC reduces the number of integrals of motion as compared to the number of degrees of freedom. Dynamically, the dependence of the exciton energy on the spin orientation in the presence of SOC produces an anomalous spin-dependent velocity resulting in chaotic motion. We observe numerically the critical dependence of the dynamics on the initial conditions, where the system can return to and exit a stability domain through very small changes in the initial spin orientation. This chaos can have a strong influence on the lifetime of optically injected carriers in semiconductors and organometallic perovskites. Hence, this effect should be taken into account while designing structures for photovoltaic and optical spintronics applications, where excitons play a significant role.
Collapse
|
12
|
Biswas T, Kanti Ghosh T. Dynamics of a quasiparticle in the α-T 3 model: role of pseudospin polarization and transverse magnetic field on zitterbewegung. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:075301. [PMID: 29355111 DOI: 10.1088/1361-648x/aaa60b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We consider the α-T 3 model which provides a smooth crossover between the honeycomb lattice with pseudospin 1/2 and the dice lattice with pseudospin 1 through the variation of a parameter α. We study the dynamics of a wave packet representing a quasiparticle in the α-T3 model with zero and finite transverse magnetic field. For zero field, it is shown that the wave packet undergoes a transient zitterbewegung (ZB). Various features of ZB depending on the initial pseudospin polarization of the wave packet have been revealed. For an intermediate value of the parameter α i.e. for [Formula: see text] the resulting ZB consists of two distinct frequencies when the wave packet was located initially in rim site. However, the wave packet exhibits single frequency ZB for [Formula: see text] and [Formula: see text]. It is also unveiled that the frequency of ZB corresponding to [Formula: see text] gets exactly half of that corresponding to the [Formula: see text] case. On the other hand, when the initial wave packet was in hub site, the ZB consists of only one frequency for all values of α. Using stationary phase approximation, we find analytical expression of velocity average which can be used to extract the associated timescale over which the transient nature of ZB persists. On the contrary, the wave packet undergoes permanent ZB in presence of a transverse magnetic field. Due to the presence of a large number of Landau energy levels, the oscillations in ZB appear to be much more complicated. The oscillation pattern depends significantly on the initial pseudospin polarization of the wave packet. Furthermore, it is revealed that the number of the frequency components involved in ZB depends on the parameter α.
Collapse
Affiliation(s)
- Tutul Biswas
- Department of Physics, University of North Bengal, Raja Rammohunpur-734013, India. Department of Physics, Vivekananda Mahavidyalaya, Burdwan-713103, India
| | | |
Collapse
|
13
|
Yar A, Naeem M, Khan SU, Sabeeh K. Hybridization effects on wave packet dynamics in topological insulator thin films. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:465002. [PMID: 28714858 DOI: 10.1088/1361-648x/aa801a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Theoretical study of electron wave packet dynamics in topological insulator (TI) thin films is presented. We have investigated real space trajectories and spin dynamics of electron wave packets in TI thin films. Our focus is on the role of hybridization between the electronic states of the two surfaces. This allows us to access the crossover regime of a thick film with no hybridization to a thin film with finite hybridization. We show that the electron wave packet undergoes side-jump motion in addition to zitterbewegung. The oscillation frequency of zitterbewegung can be tuned by the strength of hybridization, which in turn can be tuned by the thickness of the film. We find that the spin expectations also exhibit zitterbewegung tunable by hybridization. We also show that it is possible to obtain persistent zitterbewegung, oscillations which do not decay, in both the real space trajectories as well as spin dynamics. The zitterbewegung oscillation frequency in TI thin films falls in a parameter regime where it might be possible to observe these effects using present day experimental techniques.
Collapse
Affiliation(s)
- Abdullah Yar
- Department of Physics, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | | | | | | |
Collapse
|
14
|
Conductance fluctuations in InAs quantum wells possibly driven by Zitterbewegung. Sci Rep 2017; 7:7909. [PMID: 28801598 PMCID: PMC5554240 DOI: 10.1038/s41598-017-06818-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/19/2017] [Indexed: 11/09/2022] Open
Abstract
The highly successful Dirac equation predicts peculiar phenomena such as Klein tunnelling and Zitterbewegung (ZB) of electrons. From its conception by Erwin Schrödinger, ZB has been considered key in understanding relativistic quantum mechanics. However, observing the ZB of electrons has proved difficult, and instead various emulations of the phenomenon have been proposed producing several successes. Concerning charge transport in semiconductors and graphene, expectations were high but little has been reported. Here, we report a surprisingly large ZB effect on charge transport in a semiconductor nanostructure playing "flat pinball". The setup is a narrow strip of InAs two-dimensional electron gas with strong Rashba spin-orbit coupling. Six quantum point contacts act as pinball pockets. In transiting between two contacts, ZB appears as a large reproducible conductance fluctuation that depends on the in-plane magnetic field. Numerical simulations successfully reproduced our experimental observations confirming that ZB causes this conductance fluctuation.
Collapse
|
15
|
Guo RP, Guo QH, Wu LT, Chen J, Fan D. Optical spin-sensitive Zitterbewegung in bianisotropic metamaterials. OPTICS EXPRESS 2016; 24:13788-13799. [PMID: 27410542 DOI: 10.1364/oe.24.013788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a theoretical analysis on optical spin-sensitive Zitterbewegung (ZB) in metamaterials. By developing some formulas about the dispersions and eigenstates of optical modes we show that spin-sensitive ZB can be obtained in a bianisotropic metamaterial with a proper coupling between the electric and magnetic responses. A close analogue of the developed analytical results with these of Dirac equation is proposed. Numerical simulation proves the existence of ZB on the refracted optical beam along a direction determined by the optical spin of incidence. Furthermore, we show that when the incident optical field is linearly polarized, although ZB on field intensity does not exist, the optical spin possesses an interesting spatial split and trembling phenomena. Significance of this investigation is discussed.
Collapse
|
16
|
|
17
|
Rusin TM, Zawadzki W. Zitterbewegung of electrons in carbon nanotubes created by laser pulses. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:215301. [PMID: 24786978 DOI: 10.1088/0953-8984/26/21/215301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We describe a possibility of creating non-stationary electron wave packets in zigzag carbon nanotubes (CNT) illuminated by short laser pulses. After the disappearance of the pulse the packet experiences a trembling motion (Zitterbewegung, ZB). The band structure of CNT is calculated using the tight-binding approximation generalized for the presence of radiation. By employing realistic pulse and CNT parameters we obtain the ZB oscillations with interband frequencies corresponding to specific pairs of energy bands. A choice of optimal parameters is presented in order to observe the phenomenon of ZB experimentally. The use of Gaussian wave packets to trigger the electron Zitterbewegung, as used in the literature, is critically reexamined.
Collapse
Affiliation(s)
- T M Rusin
- Orange Customer Service sp. z o. o., Al. Jerozolimskie, 02-326 Warsaw, Poland
| | | |
Collapse
|
18
|
Firoz Islam SK, Ghosh TK. Thermoelectric probe for the Rashba spin-orbit interaction strength in a two dimensional electron gas. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:345301. [PMID: 22850341 DOI: 10.1088/0953-8984/24/34/345301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The thermoelectric coefficients of a two dimensional electron gas (2DEG) with the Rashba spin-orbit interaction (SOI) are presented here. In the absence of a magnetic field, thermoelectric coefficients are enhanced due to the Rashba SOI. In the presence of a magnetic field, the thermoelectric coefficients of spin-up and spin-down electrons oscillate with different frequencies and produces beating patterns in the components of the total thermoelectric power and the total thermal conductivity. We also provide analytical expressions for the thermoelectric coefficients to explain the formation of the beating pattern. We obtain a simple relation which determines the strength of the Rashba SOI if the magnetic fields corresponding to any two successive beat nodes are known from the experiment.
Collapse
Affiliation(s)
- S K Firoz Islam
- Department of Physics, Indian Institute of Technology-Kanpur, Kanpur-208 016, India
| | | |
Collapse
|
19
|
Biswas T, Ghosh TK. Zitterbewegung of electrons in quantum wells and dots in the presence of an in-plane magnetic field. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:185304. [PMID: 22481374 DOI: 10.1088/0953-8984/24/18/185304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We study the effect of an in-plane magnetic field on the zitterbewegung (ZB) of electrons in a semiconductor quantum well (QW) and in a quantum dot (QD) with the Rashba and Dresselhaus spin-orbit interactions (SOIs). We obtain a general expression of the time-evolution of the position vector and current of the electron in a semiconductor QW. The amplitude of the oscillatory motion is directly related to the Berry connection in momentum space. We find that in presence of the magnetic field the ZB in a QW does not vanish when the strengths of the Rashba and Dresselhaus SOIs are equal. The in-plane magnetic field helps to sustain the ZB in QWs even at a low value of k(0)d (where d is the width of the Gaussian wavepacket and k(0) is the initial wavevector). The trembling motion of an electron in a semiconductor QW with high Landé g-factor (e.g. InSb) is sustained over a long time, even at a low value of k(0)d. Further, we study the ZB of an electron in QDs within the two sub-band model numerically. The trembling motion persists in time even when the magnetic field is absent as well as when the strengths of the SOI are equal. The ZB in QDs is due to the superposition of oscillatory motions corresponding to all possible differences of the energy eigenvalues of the system. This is an another example of multi-frequency ZB phenomenon.
Collapse
Affiliation(s)
- Tutul Biswas
- Department of Physics, Indian Institute of Technology-Kanpur, Kanpur-208 016, India.
| | | |
Collapse
|
20
|
Zawadzki W, Rusin TM. Zitterbewegung (trembling motion) of electrons in semiconductors: a review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:143201. [PMID: 21422506 DOI: 10.1088/0953-8984/23/14/143201] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We review recent research on Zitterbewegung (ZB, trembling motion) of electrons in semiconductors. A brief history of the subject is presented, the trembling motion in semi-relativistic and spin systems is considered and its main features are emphasized. ZB of charge carriers in monolayer and bilayer graphene as well as in carbon nanotubes is elaborated in some detail. We describe the effects of an external magnetic field on ZB using monolayer graphene as an example. The nature of electron ZB in crystalline solids is explained. We also review various simulations of the trembling motion in a vacuum and in semiconductors, and mention ZB-like wave phenomena in sonic and photonic periodic structures. An attempt is made to quote all the relevant literature on the subject.
Collapse
Affiliation(s)
- Wlodek Zawadzki
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, Warsaw, Poland.
| | | |
Collapse
|
21
|
Barbier M, Vasilopoulos P, Peeters FM. Single-layer and bilayer graphene superlattices: collimation, additional Dirac points and Dirac lines. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:5499-5524. [PMID: 21041227 DOI: 10.1098/rsta.2010.0218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We review the energy spectrum and transport properties of several types of one-dimensional superlattices (SLs) on single-layer and bilayer graphene. In single-layer graphene, for certain SL parameters an electron beam incident on an SL is highly collimated. On the other hand, there are extra Dirac points generated for other SL parameters. Using rectangular barriers allows us to find analytical expressions for the location of new Dirac points in the spectrum and for the renormalization of the electron velocities. The influence of these extra Dirac points on the conductivity is investigated. In the limit of δ-function barriers, the transmission T through and conductance G of a finite number of barriers as well as the energy spectra of SLs are periodic functions of the dimensionless strength P of the barriers, Pδ(x) = V(x)/ħv(F), with v(F) the Fermi velocity. For a Kronig-Penney SL with alternating sign of the height of the barriers, the Dirac point becomes a Dirac line for P = π/2+nπ with n an integer. In bilayer graphene, with an appropriate bias applied to the barriers and wells, we show that several new types of SLs are produced and two of them are similar to type I and type II semiconductor SLs. Similar to single-layer graphene SLs, extra 'Dirac' points are found in bilayer graphene SLs. Non-ballistic transport is also considered.
Collapse
Affiliation(s)
- Michaël Barbier
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | | | | |
Collapse
|
22
|
Quantum simulation of the Dirac equation. Nature 2010; 463:68-71. [PMID: 20054392 DOI: 10.1038/nature08688] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 11/11/2009] [Indexed: 11/09/2022]
|
23
|
Friedland KJ, Hey R, Kostial H, Riedel A. Longitudinal-commensurable resistance oscillations in the ballistic transport of electrons on cylindrical surfaces. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/pssc.200779237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Vaishnav JY, Clark CW. Observing Zitterbewegung with ultracold atoms. PHYSICAL REVIEW LETTERS 2008; 100:153002. [PMID: 18518102 DOI: 10.1103/physrevlett.100.153002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Indexed: 05/26/2023]
Abstract
We propose an optical lattice scheme which would permit the experimental observation of Zitterbewegung (ZB) with ultracold, neutral atoms. A four-level tripod variant of the setup for stimulated Raman adiabatic passage (STIRAP) has previously been proposed for generating non-Abelian gauge fields. Dirac-like Hamiltonians, which exhibit ZB, are simple examples of such non-Abelian gauge fields; we show how a variety of them can arise, and how ZB can be observed, in a tripod system. We predict that the ZB should occur at experimentally accessible frequencies and amplitudes.
Collapse
Affiliation(s)
- J Y Vaishnav
- Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | |
Collapse
|
25
|
Zhang X. Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal. PHYSICAL REVIEW LETTERS 2008; 100:113903. [PMID: 18517788 DOI: 10.1103/physrevlett.100.113903] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 02/13/2008] [Indexed: 05/26/2023]
Abstract
It is shown, for the first time, that the Zitterbewegung of photons can appear near the Dirac point in a two-dimensional photonic crystal. The superiority of such a phenomenon for photons is that it can be found in different scaling structures with wide frequency regions. It can be observed by measuring the time dependence of the transmission coefficient through photonic crystal slabs. Thus, it is particularly suited for experimentally observing this effect. We have observed such a phenomenon by exact numerical simulations, confirming a long-standing theoretical prediction.
Collapse
Affiliation(s)
- Xiangdong Zhang
- Department of Physics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
26
|
Bernardes E, Schliemann J, Lee M, Egues JC, Loss D. Spin-orbit interaction in symmetric wells with two subbands. PHYSICAL REVIEW LETTERS 2007; 99:076603. [PMID: 17930912 DOI: 10.1103/physrevlett.99.076603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Indexed: 05/25/2023]
Abstract
We investigate the spin-orbit (SO) interaction in two-dimensional electron gases in quantum wells with two subbands. From the 8x8 Kane model, we derive a new intersubband-induced SO term which resembles the functional form of the Rashba SO but is nonzero even in symmetric structures. This follows from the distinct parity of the confined states (even or odd) which obliterates the need for asymmetric potentials. We self-consistently calculate the new SO coupling strength for realistic wells and find it comparable to the usual Rashba constant. Our new SO term gives rise to a nonzero ballistic spin-Hall conductivity, which changes sign as a function of the Fermi energy (epsilonF) and can induce an unusual Zitterbewegung with cycloidal trajectories without magnetic fields.
Collapse
Affiliation(s)
- Esmerindo Bernardes
- Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
27
|
Abstract
Semiconductor spintronicsSpintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin or magnetism. While metal spintronics has already found its niche in the computer industry—giant magnetoresistance systems are used as hard disk read heads—semiconductor spintronics is yet to demonstrate its full potential. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin injection, Silsbee-Johnson spin-charge coupling, and spin-dependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent interaction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In view of the importance of ferromagnetic semiconductor materials, a brief discussion of diluted magnetic semiconductors is included. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief reviews of relevant recent achievements in the field.
Collapse
|
28
|
Lamata L, León J, Schätz T, Solano E. Dirac equation and quantum relativistic effects in a single trapped ion. PHYSICAL REVIEW LETTERS 2007; 98:253005. [PMID: 17678023 DOI: 10.1103/physrevlett.98.253005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Indexed: 05/16/2023]
Abstract
We present a method of simulating the Dirac equation in 3+1 dimensions for a free spin-1/2 particle in a single trapped ion. The Dirac bispinor is represented by four ionic internal states, and position and momentum of the Dirac particle are associated with the respective ionic variables. We show also how to simulate the simplified 1+1 case, requiring the manipulation of only two internal levels and one motional degree of freedom. Moreover, we study relevant quantum-relativistic effects, like the Zitterbewegung and Klein's paradox, the transition from massless to massive fermions, and the relativistic and nonrelativistic limits, via the tuning of controllable experimental parameters.
Collapse
Affiliation(s)
- L Lamata
- Instituto de Matemáticas y Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
29
|
Abstract
Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.
Collapse
Affiliation(s)
- A K Geim
- Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | |
Collapse
|
30
|
Culcer D, Lechner C, Winkler R. Spin precession and alternating spin polarization in spin-3/2 hole systems. PHYSICAL REVIEW LETTERS 2006; 97:106601. [PMID: 17025835 DOI: 10.1103/physrevlett.97.106601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Indexed: 05/12/2023]
Abstract
The spin density matrix for spin-3/2 hole systems can be decomposed into a sequence of multipoles which has important higher-order contributions beyond the ones known for electron systems [R. Winkler, Phys. Rev. B 70, 125301 (2004)]. We show here that the hole spin polarization and the higher-order multipoles can precess due to the spin-orbit coupling in the valence band, yet in the absence of external or effective magnetic fields. Hole spin precession is important in the context of spin relaxation and offers the possibility of new device applications. We discuss this precession in the context of recent experiments and suggest a related experimental setup in which hole spin precession gives rise to an alternating spin polarization.
Collapse
Affiliation(s)
- Dimitrie Culcer
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | | | |
Collapse
|
31
|
Wang Y, Xia K, Su ZB, Ma Z. Consistency in formulation of spin current and torque associated with a variance of angular momentum. PHYSICAL REVIEW LETTERS 2006; 96:066601. [PMID: 16606024 DOI: 10.1103/physrevlett.96.066601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2005] [Indexed: 05/08/2023]
Abstract
Based on the Noether's theorem, we develop systematically and rigorously the spin-dependent formulation of the conservation laws. The effect of the electronic polarization due to the spin-orbit coupling is included in the Maxwell equations. The polarization is related to the antisymmetric components of spin current, and it provides a possibility to measure the spin current directly. The variances of spin and orbit angular momentum currents imply a torque on the "electric dipole" associated with the moving electron. The dependencies of the torque on the polarization and the force on the motions of spin-polarized electrons in a two-dimensional electron gas with the Rashba spin-orbit coupling are discussed.
Collapse
Affiliation(s)
- Yong Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | |
Collapse
|
32
|
Shen SQ. Spin transverse force on spin current in an electric field. PHYSICAL REVIEW LETTERS 2005; 95:187203. [PMID: 16383940 DOI: 10.1103/physrevlett.95.187203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Indexed: 05/05/2023]
Abstract
As a relativistic quantum mechanical effect, it is shown that the electron field exerts a transverse force on an electron spin 1/2 only if the electron is moving. The spin force, analogue to the Lorentz for an electron charge in a magnetic field, is perpendicular to the electric field and the spin current whose spin polarization is projected along the electric field. This spin-dependent force can be used to understand the Zitterbewegung of the electron wave packet with spin-orbit coupling and is relevant to the generation of the charge Hall effect driven by the spin current in semiconductors.
Collapse
Affiliation(s)
- Shun-Qing Shen
- Department of Physics, Center for Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|