1
|
Chauhan A, Gogoi D, Puri S, Singh A. Effect of amphiphilic polymers on phase separating binary mixtures: A DPD simulation study. J Chem Phys 2023; 159:204901. [PMID: 37991159 DOI: 10.1063/5.0173817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023] Open
Abstract
We present the phase separation dynamics of a binary (AB), simple fluid (SF), and amphiphilic polymer (AP) mixture using dissipative particle dynamics simulation at d = 3. We study the effect of different AP topologies, including block copolymers, ring block copolymers (RCP), and miktoarm star polymers, on the evolution morphologies, dynamic scaling functions, and length scale of the AB mixture. Our results demonstrate that the presence of APs leads to significantly different evolution morphologies in SF. However, the deviation from dynamical scaling is prominent, mainly for RCP. Typically, the characteristic length scale for SF follows the power law R(t) ∼ tϕ, where ϕ is the growth exponent. In the presence of high AP, we observe diffusive growth (ϕ → 1/3) at early times, followed by saturation in length scale (ϕ → 0) at late times. The extent of saturation varies with constraints imposed on the APs, such as topology, composition ratio, chain length, and stiffness. At lower composition ratios, the system exhibits inertial hydrodynamic growth (ϕ → 2/3) at asymptotic times without clearly exhibiting the viscous hydrodynamic regime (ϕ → 1) at earlier times in our simulations. Our results firmly establish the existence of hydrodynamic growth regimes in low surfactant-influenced phase separation kinetics of binary fluids and settle the related ambiguity in d = 3 systems.
Collapse
Affiliation(s)
- Avinash Chauhan
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Dorothy Gogoi
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sanjay Puri
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
2
|
Seo HM, Kim S, Kwon S, Kim Y, Sung M, Yang J, Lee B, Sung J, Kang MH, Park J, Shin K, Lee WB, Kim JW. Two-dimensional demixing within multilayered nanoemulsion films. SCIENCE ADVANCES 2022; 8:eabn0597. [PMID: 36260677 PMCID: PMC9581487 DOI: 10.1126/sciadv.abn0597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Benefiting from the demixing of substances in the two-phase region, a smart polymer laminate film system that exhibits direction-controlled phase separation behavior was developed in this study. Here, nanoemulsion films (NEFs) in which liquid nanodrops were uniformly confined in a polymer laminate film through the layer-by-layer deposition of oppositely charged emulsion nanodrops and polyelectrolytes were fabricated. Upon reaching a critical temperature, the NEFs exhibited a micropore-guided demixing phenomenon. A simulation study based on coarse-grained molecular dynamics revealed that the perpendicular diffusion of oil droplets through the micropores generated in the polyelectrolyte layer is crucial for determining the coarsening kinetics and phase separation level, which is consistent with the experimental results. Considering the substantial advantages of this unique and tunable two-dimensional demixing behavior, the viability of using the as-proposed NEF system for providing an efficient route for the development of smart drug delivery patches was demonstrated.
Collapse
Affiliation(s)
- Hye Min Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seulwoo Kim
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangwoo Kwon
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - YongJoo Kim
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Minchul Sung
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongryeol Yang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Boryeong Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongbaek Sung
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Min-Ho Kang
- Department of Biomedical-Chemical Engineering, Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Kyounghee Shin
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Molecular Dynamics Simulation of Tolman Length and Interfacial Tension of Symmetric Binary Lennard–Jones Liquid. Symmetry (Basel) 2021. [DOI: 10.3390/sym13081376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Tolman length and interfacial tension of partially miscible symmetric binary Lennard–Jones (LJ) fluids (A, B) was revealed by performing a large-scale molecular dynamics (MD) simulation with a sufficient interfacial area and cutting distance. A unique phenomenon was observed in symmetric binary LJ fluids, where two surfaces of tension existed on both sides of an equimolar dividing surface. The range of interaction εAB between the different liquids and the temperature in which the two LJ fluids partially mixed was clarified, and the Tolman length exceeded 3 σ when εAB was strong at higher temperatures. The results show that as the temperature or εAB increases, the Tolman length increases and the interfacial tension decreases. This very long Tolman length indicates that one should be very careful when applying the concept of the liquid–liquid interface in the usual continuum approximation to nanoscale droplets and capillary phase separation in nanopores.
Collapse
|
4
|
Midya J, Das SK. Kinetics of domain growth and aging in a two-dimensional off-lattice system. Phys Rev E 2021; 102:062119. [PMID: 33465989 DOI: 10.1103/physreve.102.062119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/18/2020] [Indexed: 11/07/2022]
Abstract
We have used molecular dynamics simulations for a comprehensive study of phase separation in a two-dimensional single-component off-lattice model where particles interact through the Lennard-Jones potential. Via state-of-the-art methods we have analyzed simulation data on structure, growth, and aging for nonequilibrium evolutions in the model. These data were obtained following quenches of well-equilibrated homogeneous configurations, with density close to the critical value, to various temperatures inside the miscibility gap, having vapor-"liquid" as well as vapor-"solid" coexistence. For the vapor-liquid phase separation we observe that ℓ, the average domain length, grows with time (t) as t^{1/2}, a behavior that has connection with hydrodynamics. At low-enough temperature, a sharp crossover of this time dependence to a much slower, temperature-dependent, growth is identified within the timescale of our simulations, implying "solid"-like final state of the high-density phase. This crossover is, interestingly, accompanied by strong differences in domain morphology and other structural aspects between the two situations. For aging, we have presented results for the order-parameter autocorrelation function. This quantity exhibits data collapse with respect to ℓ/ℓ_{w}, ℓ, and ℓ_{w} being the average domain lengths at times t and t_{w} (≤t), respectively, the latter being the age of a system. Corresponding scaling function follows a power-law decay: ∼(ℓ/ℓ_{w})^{-λ} for t≫t_{w}. The decay exponent λ, for the vapor-liquid case, is accurately estimated via the application of an advanced finite-size scaling method. The obtained value is observed to satisfy a bound.
Collapse
Affiliation(s)
- Jiarul Midya
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany.,Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
5
|
Ghaffari S, Chan PK, Mehrvar M. Long-Range Surface-Directed Polymerization-Induced Phase Separation: A Computational Study. Polymers (Basel) 2021; 13:256. [PMID: 33466703 PMCID: PMC7828815 DOI: 10.3390/polym13020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 11/16/2022] Open
Abstract
The presence of a surface preferably attracting one component of a polymer mixture by the long-range van der Waals surface potential while the mixture undergoes phase separation by spinodal decomposition is called long-range surface-directed spinodal decomposition (SDSD). The morphology achieved under SDSD is an enrichment layer(s) close to the wall surface and a droplet-type structure in the bulk. In the current study of the long-range surface-directed polymerization-induced phase separation, the surface-directed spinodal decomposition of a monomer-solvent mixture undergoing self-condensation polymerization was theoretically simulated. The nonlinear Cahn-Hilliard and Flory-Huggins free energy theories were applied to investigate the phase separation phenomenon. The long-range surface potential led to the formation of a wetting layer on the surface. The thickness of the wetting layer was found proportional to time t*1/5 and surface potential parameter h 1 1/5. A larger diffusion coefficient led to the formation of smaller droplets in the bulk and a thinner depletion layer, while it did not affect the thickness of the enrichment layer close to the wall. A temperature gradient imposed in the same direction of long-range surface potential led to the formation of a stripe morphology near the wall, while imposing it in the opposite direction of surface potential led to the formation of large particles at the high-temperature side, the opposite side of the interacting wall.
Collapse
Affiliation(s)
| | - Philip K. Chan
- Department of Chemical Engineering, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada; (S.G.); (M.M.)
| | | |
Collapse
|
6
|
Mukherjee B, Chakrabarti B. Gelation Impairs Phase Separation and Small Molecule Migration in Polymer Mixtures. Polymers (Basel) 2020; 12:E1576. [PMID: 32708547 PMCID: PMC7407309 DOI: 10.3390/polym12071576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022] Open
Abstract
Surface segregation of the low molecular weight component of a polymeric mixture is a ubiquitous phenomenon that leads to degradation of industrial formulations. We report a simultaneous phase separation and surface migration phenomena in oligomer-polymer ( O P ) and oligomer-gel ( O G ) systems following a temperature quench that induces demixing of components. We compute equilibrium and time varying migrant (oligomer) density profiles and wetting layer thickness in these systems using coarse grained molecular dynamics (CGMD) and mesoscale hydrodynamics (MH) simulations. Such multiscale methods quantitatively describe the phenomena over a wide range of length and time scales. We show that surface migration in gel-oligomer systems is significantly reduced on account of network elasticity. Furthermore, the phase separation processes are significantly slowed in gels leading to the modification of the well known Lifshitz-Slyozov-Wagner (LSW) law ℓ ( τ ) ∼ τ 1 / 3 . Our work allows for rational design of polymer/gel-oligomer mixtures with predictable surface segregation characteristics that can be compared against experiments.
Collapse
|
7
|
Roy S, Maciołek A. Phase separation around a heated colloid in bulk and under confinement. SOFT MATTER 2018; 14:9326-9335. [PMID: 30230509 DOI: 10.1039/c8sm01258j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We study the non-equilibrium coarsening dynamics of a binary liquid solvent around a colloidal particle in the presence of a time-dependent temperature gradient that emerges after a temperature quench of a suitable coated colloid surface. The solvent is maintained at its critical concentration and the colloid is fixed in space. The coarsening patterns near the surface are shown to be strongly dependent on the colloid surface adsorption properties and on the temperature evolution. The temperature gradient alters the morphology of the binary solvent near the surface of the colloid as compared to the coarsening proceeding at a constant temperature everywhere. We also present results for the evolution of coarsening in thin films with confining surfaces preferring one species of the binary liquid mixture over the other. Confinement leads to a faster phase segregation process and formation of a bridge connecting the colloid and both confining walls.
Collapse
Affiliation(s)
- Sutapa Roy
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | | |
Collapse
|
8
|
Wise MB, Millett PC. Two-dimensional bicontinuous structures from symmetric surface-directed spinodal decomposition in thin films. Phys Rev E 2018; 98:022601. [PMID: 30253514 DOI: 10.1103/physreve.98.022601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Indexed: 11/07/2022]
Abstract
We present numerical simulations of symmetric surface-directed spinodal decomposition in thin films with varying film thickness and film composition. The simulations utilize a Cahn-Hilliard model to describe phase separation kinetics in confined film geometries. The systems consist of two phases: a wetting phase that completely wets the top and bottom surfaces, and a nonwetting phase. Three distinct morphologies emerge including a discrete nonwetting morphology, a discrete wetting morphology, as well as a unique two-dimensional bicontinuous morphology that forms for specific values of film thickness and composition. The morphologies are analyzed with a Hoshen-Kopelman algorithm to quantify the degree of continuity of the nonwetting phase, and a morphology map is presented to guide future work.
Collapse
Affiliation(s)
- Michael B Wise
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Paul C Millett
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
9
|
Singh A, Chakraborti A, Singh A. Role of a polymeric component in the phase separation of ternary fluid mixtures: a dissipative particle dynamics study. SOFT MATTER 2018; 14:4317-4326. [PMID: 29757341 DOI: 10.1039/c8sm00625c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present the results from dissipative particle dynamics (DPD) simulations of phase separation dynamics in ternary (ABC) fluids mixture in d = 3 where components A and B represent the simple fluids, and component C represents a polymeric fluid. Here, we study the role of polymeric fluid (C) on domain morphology by varying composition ratio, polymer chain length, and polymer stiffness. We observe that the system under consideration lies in the same dynamical universality class as a simple ternary fluids mixture. However, the scaling functions depend upon the parameters mentioned above as they change the time scale of the evolution morphologies. In all cases, the characteristic domain size follows l(t) ∼ tφ with dynamic growth exponent φ, showing a crossover from the viscous hydrodynamic regime (φ = 1) to the inertial hydrodynamic regime (φ = 2/3) in the system at late times.
Collapse
Affiliation(s)
- Amrita Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | |
Collapse
|
10
|
Roy S, Dietrich S, Maciolek A. Solvent coarsening around colloids driven by temperature gradients. Phys Rev E 2018; 97:042603. [PMID: 29758678 DOI: 10.1103/physreve.97.042603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 06/08/2023]
Abstract
Using mesoscopic numerical simulations and analytical theory, we investigate the coarsening of the solvent structure around a colloidal particle emerging after a temperature quench of the colloid surface. Qualitative differences in the coarsening mechanisms are found, depending on the composition of the binary liquid mixture forming the solvent and on the adsorption preferences of the colloid. For an adsorptionwise neutral colloid, the phase next to its surface alternates as a function of time. This behavior sets in on the scale of the relaxation time of the solvent and is absent for colloids with strong adsorption preferences. A Janus colloid, with a small temperature difference between its two hemispheres, reveals an asymmetric structure formation and surface enrichment around it, even if the solvent is within its one-phase region and if the temperature of the colloid is above the critical demixing temperature T_{c} of the solvent. Our phenomenological model turns out to capture recent experimental findings according to which, upon laser illumination of a Janus colloid and due to the ensuing temperature gradient between its two hemispheres, the surrounding binary liquid mixture develops a concentration gradient.
Collapse
Affiliation(s)
- Sutapa Roy
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Siegfried Dietrich
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Anna Maciolek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Poland
| |
Collapse
|
11
|
Terasaki M, Khasanah, Ozaki Y, Takahashi I, Sato H. Study on phase separation in an ultra-thin poly(methyl methacrylate)/poly(4-vinyl phenol) film by infrared reflection absorption spectroscopy. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Singh A, Singh A, Chakraborti A. Effect of bond-disorder on the phase-separation kinetics of binary mixtures: A Monte Carlo simulation study. J Chem Phys 2017; 147:124902. [PMID: 28964037 DOI: 10.1063/1.5004563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present Monte Carlo (MC) simulation studies of phase separation in binary (AB) mixtures with bond-disorder that is introduced in two different ways: (i) at randomly selected lattice sites and (ii) at regularly selected sites. The Ising model with spin exchange (Kawasaki) dynamics represents the segregation kinetics in conserved binary mixtures. We find that the dynamical scaling changes significantly by varying the number of disordered sites in the case where bond-disorder is introduced at the randomly selected sites. On the other hand, when we introduce the bond-disorder in a regular fashion, the system follows the dynamical scaling for the modest number of disordered sites. For a higher number of disordered sites, the evolution morphology illustrates a lamellar pattern formation. Our MC results are consistent with the Lifshitz-Slyozov power-law growth in all the cases.
Collapse
Affiliation(s)
- Awaneesh Singh
- Department of Physics, Institute of Chemical Technology, Mumbai 400019, India
| | - Amrita Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anirban Chakraborti
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
13
|
Midya J, Das SK. Kinetics of Vapor-Solid Phase Transitions: Structure, Growth, and Mechanism. PHYSICAL REVIEW LETTERS 2017; 118:165701. [PMID: 28474902 DOI: 10.1103/physrevlett.118.165701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 06/07/2023]
Abstract
The kinetics of the separation between low and high density phases in a single component Lennard-Jones model is studied via molecular dynamics simulations, at very low temperatures, in the space dimension d=2. For densities close to the vapor branch of the coexistence curve, disconnected nanoscale clusters of the high density phase exhibit essentially ballistic motion. Starting from nearly circular shapes, at the time of nucleation, these clusters grow via sticky collisions, gaining filamentlike nonequilibrium structure at a later time, with a very low fractal dimensionality. The origin of the latter is shown to lie in the low mobility of the constituent particles, in the corresponding cluster reference frame, due to the (quasi-long-range) crystalline order. Standard self-similarity in the domain pattern, typically observed in the kinetics of phase transitions, is found to be absent. This invalidates the common method, that provides a growth law comparable to that in solid mixtures, of quantifying growth. An appropriate alternative approach, involving the fractality, quantifies the growth of the characteristic "length" to be a power law with time, the exponent being strongly temperature dependent. The observed growth law is in agreement with the outcome of a nonequilibrium kinetic theory.
Collapse
Affiliation(s)
- Jiarul Midya
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
14
|
Krishnan R, Puri S. Molecular dynamics study of phase separation in fluids with chemical reactions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052316. [PMID: 26651704 DOI: 10.1103/physreve.92.052316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 06/05/2023]
Abstract
We present results from the first d=3 molecular dynamics (MD) study of phase-separating fluid mixtures (AB) with simple chemical reactions (A⇌B). We focus on the case where the rates of forward and backward reactions are equal. The chemical reactions compete with segregation, and the coarsening system settles into a steady-state mesoscale morphology. However, hydrodynamic effects destroy the lamellar morphology which characterizes the diffusive case. This has important consequences for the phase-separating structure, which we study in detail. In particular, the equilibrium length scale (ℓ(eq)) in the steady state suggests a power-law dependence on the reaction rate ε:ℓ(eq)∼ε(-θ) with θ≃1.0.
Collapse
Affiliation(s)
- Raishma Krishnan
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sanjay Puri
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
15
|
Carmack JM, Millett PC. Numerical simulations of bijel morphology in thin films with complete surface wetting. J Chem Phys 2015; 143:154701. [PMID: 26493916 DOI: 10.1063/1.4932191] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bijels are a relatively new class of soft materials that have many potential energy and environmental applications. In this work, simulation results of bijel evolution confined within thin films with preferential surface wetting are presented. The computational approach used is a hybrid Cahn-Hilliard/Brownian dynamics method. In the absence of suspended particles, we demonstrate that the model accurately captures the rich kinetics associated with diffusion-based surface-directed spinodal decomposition, as evidenced by comparison with previous theoretical and simulation-based studies. When chemically neutral particles are included in the films, the simulations capture surface-modified bijel formation, with stabilized domain structures comparable with the experimental observations of Composto and coworkers. Namely, two basic morphologies - bicontinuous or discrete - are seen to emerge, with direct dependence on the film thickness, particle volume fraction, and particle radius.
Collapse
Affiliation(s)
- Joseph M Carmack
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Paul C Millett
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
16
|
Das SK. Atomistic simulations of liquid–liquid coexistence in confinement: comparison of thermodynamics and kinetics with bulk. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2014.998214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Krishnan R, Jaiswal PK, Puri S. Phase separation in antisymmetric films: a molecular dynamics study. J Chem Phys 2013; 139:174705. [PMID: 24206320 DOI: 10.1063/1.4827882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have used molecular dynamics (MD) simulations to study phase-separation kinetics in a binary fluid mixture (AB) confined in an antisymmetric thin film. One surface of the film (located at z = 0) attracts the A-atoms, and the other surface (located at z = D) attracts the B-atoms. We study the kinetic processes which lead to the formation of equilibrium morphologies subsequent to a deep quench below the miscibility gap. In the initial stages, one observes the formation of a layered structure, consisting of an A-rich layer followed by a B-rich layer at z = 0; and an analogous structure at z = D. This multi-layered morphology is time-dependent and propagates into the bulk, though it may break up into a laterally inhomogeneous structure at a later stage. We characterize the evolution morphologies via laterally averaged order parameter profiles; the growth laws for wetting-layer kinetics and layer-wise length scales; and the scaling properties of layer-wise correlation functions.
Collapse
Affiliation(s)
- Raishma Krishnan
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | |
Collapse
|
18
|
Winkler A, Virnau P, Binder K, Winkler RG, Gompper G. Hydrodynamic mechanisms of spinodal decomposition in confined colloid-polymer mixtures: a multiparticle collision dynamics study. J Chem Phys 2013; 138:054901. [PMID: 23406143 DOI: 10.1063/1.4789267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A multiscale model for a colloid-polymer mixture is developed. The colloids are described as point particles interacting with each other and with the polymers with strongly repulsive potentials, while polymers interact with each other with a softer potential. The fluid in the suspension is taken into account by the multiparticle collision dynamics method (MPC). Considering a slit geometry where the suspension is confined between parallel repulsive walls, different possibilities for the hydrodynamic boundary conditions (b.c.) at the walls (slip versus stick) are treated. Quenching experiments are considered, where the system volume is suddenly reduced (keeping the density of the solvent fluid constant, while the colloid and polymer particle numbers are kept constant) and thus an initially homogeneous system is quenched deeply into the miscibility gap, where it is unstable. For various relative concentrations of colloids and polymers, the time evolution of the growing colloid-rich and polymer-rich domains are studied by molecular dynamics simulation, taking hydrodynamic effects mediated by the solvent into account via MPC. It is found that the domain size [script-l](d)(t) grows with time t as [script-l](d)(t) [proportionality] t(1/3) for stick and (at late stages) as [script-l](d)(t) [proportionality] t(2/3) for slip b.c., while break-up of percolating structures can cause a transient "arrest" of growth. While these findings apply for films that are 5-10 colloid diameters wide, for ultrathin films (1.5 colloid diameters wide) a regime with [script-l](d)(t) [proportionality] t(1/2) is also identified for rather shallow quenches.
Collapse
Affiliation(s)
- Alexander Winkler
- Insitut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
19
|
Majumder S, Das SK. Temperature and composition dependence of kinetics of phase separation in solid binary mixtures. Phys Chem Chem Phys 2013; 15:13209-18. [DOI: 10.1039/c3cp50612f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Ahmad S, Corberi F, Das SK, Lippiello E, Puri S, Zannetti M. Aging and crossovers in phase-separating fluid mixtures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:061129. [PMID: 23367915 DOI: 10.1103/physreve.86.061129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 11/22/2012] [Indexed: 06/01/2023]
Abstract
We use state-of-the-art molecular dynamics simulations to study hydrodynamic effects on aging during kinetics of phase separation in a fluid mixture. The domain growth law shows a crossover from a diffusive regime to a viscous hydrodynamic regime. There is a corresponding crossover in the autocorrelation function from a power-law behavior to an exponential decay. While the former is consistent with theories for diffusive domain growth, the latter results as a consequence of faster advective transport in fluids for which an analytical justification has been provided.
Collapse
Affiliation(s)
- Shaista Ahmad
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560064, India
| | | | | | | | | | | |
Collapse
|
21
|
Roy S, Das SK. Nucleation and growth of droplets in vapor-liquid transitions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:050602. [PMID: 23004695 DOI: 10.1103/physreve.85.050602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Indexed: 06/01/2023]
Abstract
Results for the kinetics of vapor-liquid transitions, following temperature quenches with different densities, are presented from molecular dynamics simulations of a Lennard-Jones system. For a critical density, bicontinuous liquid and vapor domains are observed which grow with time, obeying the predictions for the hydrodynamic mechanism. On the other hand, for quenches with density significantly below the critical one, phase separation progresses via nucleation and growth of liquid droplets. In the latter case, the Brownian diffusion and collision mechanism for the droplet growth is confirmed. We also discuss the possibility of interdroplet interaction leading to a different amplitude in the growth law. Arguments for faster growth, observed at early times, are also provided.
Collapse
Affiliation(s)
- Sutapa Roy
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India
| | | |
Collapse
|
22
|
Jaiswal PK, Puri S, Das SK. Surface-directed spinodal decomposition: a molecular dynamics study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:051137. [PMID: 23004733 DOI: 10.1103/physreve.85.051137] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Indexed: 06/01/2023]
Abstract
We use molecular dynamics simulations to study surface-directed spinodal decomposition in unstable binary AB fluid mixtures at wetting surfaces. The thickness of the wetting layer R1 grows with time t as a power law (R1∼tθ). We find that hydrodynamic effects result in a crossover of the growth exponent from θ≃1/3 to 1. We also present results for the layerwise correlation functions and domain length scales.
Collapse
Affiliation(s)
- Prabhat K Jaiswal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | |
Collapse
|
23
|
Jaiswal PK, Binder K, Puri S. Phase separation of binary mixtures in thin films: Effects of an initial concentration gradient across the film. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:041602. [PMID: 22680483 DOI: 10.1103/physreve.85.041602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/20/2012] [Indexed: 06/01/2023]
Abstract
We study the kinetics of phase separation of a binary (A,B) mixture confined in a thin film of thickness D by numerical simulations of the corresponding Cahn-Hilliard-Cook (CHC) model. The initial state consisted of 50% A:50% B with a concentration gradient across the film, i.e., the average order parameter profile is Ψav(z,t=0)=(2z/D-1)Ψg,0≤z≤D, for various choices of Ψg and D. The equilibrium state (for time t→∞) consists of coexisting A-rich and B-rich domains separated by interfaces oriented perpendicular to the surfaces. However, for sufficiently large Ψg, a (metastable) layered state is formed with a single interface parallel to the surfaces. This phenomenon is explained in terms of a competition between domain growth in the bulk and surface-directed spinodal decomposition (SDSD) that is caused by the gradient. Thus, gradients in the initial state can stabilize thin-film morphologies which are not stable in full equilibrium. This offers interesting possibilities as a method for preparing novel materials.
Collapse
Affiliation(s)
- Prabhat K Jaiswal
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | | | | |
Collapse
|
24
|
Reith D, Bucior K, Yelash L, Virnau P, Binder K. Spinodal decomposition of polymer solutions: molecular dynamics simulations of the two-dimensional case. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:115102. [PMID: 22301356 DOI: 10.1088/0953-8984/24/11/115102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
As a generic model system for phase separation in polymer solutions, a coarse-grained model for hexadecane/carbon dioxide mixtures has been studied in two-dimensional geometry. Both the phase diagram in equilibrium (obtained from a finite size scaling analysis of Monte Carlo data) and the kinetics of state changes caused by pressure jumps (studied by large scale molecular dynamics simulations) are presented. The results are compared to previous work where the same model was studied in three-dimensional geometry and under confinement in slit geometry. For deep quenches the characteristic length scale ℓ(t) of the formed domains grows with time t according to a power law close to [Formula: see text]. Since in this problem both the polymer density ρ(p) and the solvent density ρ(s) matter, the time evolution of the density distribution P(L)(ρ(p),ρ(s),t) in L × L subboxes of the system is also analyzed. It is found that in the first stage of phase separation the system separates locally into low density carbon dioxide regions that contain no polymers and regions of high density polymer melt that are supersaturated with this solvent. The further coarsening proceeds via the growth of domains of rather irregular shapes. A brief comparison of our findings with results of other models is given.
Collapse
Affiliation(s)
- Daniel Reith
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
25
|
Ahmad S, Das SK, Puri S. Crossover in growth laws for phase-separating binary fluids: molecular dynamics simulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:031140. [PMID: 22587071 DOI: 10.1103/physreve.85.031140] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Indexed: 05/31/2023]
Abstract
Pattern and dynamics during phase separation in a symmetrical binary (A+B) Lennard-Jones fluid are studied via molecular dynamics simulations after quenching homogeneously mixed critical (50:50) systems to temperatures below the critical one. The morphology of the domains, rich in A or B particles, is observed to be bicontinuous. The early-time growth of the average domain size is found to be consistent with the Lifshitz-Slyozov law for diffusive domain coarsening. After a characteristic time, dependent on the temperature, we find a clear crossover to an extended viscous hydrodynamic regime where the domains grow linearly with time. Pattern formation in the present system is compared with that in solid binary mixtures, as a function of temperature. Important results for the finite-size and temperature effects on the small-wave-vector behavior of the scattering function are also presented.
Collapse
Affiliation(s)
- Shaista Ahmad
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post Office, Bangalore, India
| | | | | |
Collapse
|
26
|
Majumder S, Das SK. Diffusive domain coarsening: early time dynamics and finite-size effects. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:021110. [PMID: 21928952 DOI: 10.1103/physreve.84.021110] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/21/2011] [Indexed: 05/31/2023]
Abstract
We study the diffusive dynamics of phase separation in a symmetric binary (A + B) mixture with a 50:50 composition of A and B particles, following a quench below the demixing critical temperature, both in spatial dimensions d=2 and d=3. The particular focus of this work is to obtain information about the effects of system size and correction to the growth law via the appropriate application of the finite-size scaling method to the results obtained from the Kawasaki exchange Monte Carlo simulation of the Ising model. Observations of only weak size effects and a very small correction to scaling in the growth law are significant. The methods used in this work and information thus gathered will be useful in the study of the kinetics of phase separation in fluids and other problems of growing length scale. We also provide a detailed discussion of the standard methods of understanding simulation results which may lead to inappropriate conclusions.
Collapse
Affiliation(s)
- Suman Majumder
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | | |
Collapse
|
27
|
|
28
|
Singh A, Mukherjee A, Vermeulen HM, Barkema GT, Puri S. Control of structure formation in phase-separating systems. J Chem Phys 2011; 134:044910. [DOI: 10.1063/1.3530784] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Jaiswal PK, Puri S, Das SK. Kinetics of surface enrichment: A molecular dynamics study. J Chem Phys 2010; 133:154901. [DOI: 10.1063/1.3491833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Ahmad S, Das SK, Puri S. Kinetics of phase separation in fluids: a molecular dynamics study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:040107. [PMID: 21230227 DOI: 10.1103/physreve.82.040107] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Indexed: 05/30/2023]
Abstract
We present results from extensive three-dimensional molecular dynamics (MD) simulations of phase separation kinetics in fluids. A coarse-graining procedure is used to obtain state-of-the-art MD results. We observe an extended period of temporally linear growth in the viscous hydrodynamic regime. The morphological similarity of coarsening in fluids and solids is also quantified. The velocity field is characterized by the presence of monopolelike defects, which yield a generalized Porod tail in the corresponding structure factor.
Collapse
Affiliation(s)
- Shaista Ahmad
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | | | | |
Collapse
|
31
|
Majumder S, Das SK. Domain coarsening in two dimensions: conserved dynamics and finite-size scaling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:050102. [PMID: 20866170 DOI: 10.1103/physreve.81.050102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Indexed: 05/29/2023]
Abstract
We present results from a study of finite-size effect in the kinetics of domain growth with conserved order parameter for a critical quench. Our observation of a weak size effect is a significant and surprising result. For diffusive dynamics, appropriate scaling analysis of Monte Carlo results obtained for small systems using a two-dimensional Ising model also shows that the correction to the expected Lifshitz-Slyozov law for the domain growth is very small. The methods used in this work to understand the growth dynamics should find application in other nonequilibrium systems with increasing length scales.
Collapse
Affiliation(s)
- Suman Majumder
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560064, India
| | | |
Collapse
|
32
|
Hore MJA, Laradji M. Dissipative particle dynamics simulation of the interplay between spinodal decomposition and wetting in thin film binary fluids. J Chem Phys 2010; 132:024908. [DOI: 10.1063/1.3281689] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Bucior K, Yelash L, Binder K. Molecular-dynamics simulation of evaporation processes of fluid bridges confined in slitlike pores. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:031604. [PMID: 19391951 DOI: 10.1103/physreve.79.031604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Indexed: 05/27/2023]
Abstract
A simple fluid, described by pointlike particles interacting via the Lennard-Jones potential, is considered under confinement in a slit geometry between two walls at distance L_{z} apart for densities inside the vapor-liquid coexistence curve. Equilibrium then requires the coexistence of a liquid "bridge" between the two walls, and vapor in the remaining pore volume. We study this equilibrium for several choices of the wall-fluid interaction (corresponding to the full range from complete wetting to complete drying, for a macroscopically thick film), and consider also the kinetics of state changes in such a system. In particular, we study how this equilibrium is established by diffusion processes, when a liquid is inserted into an initially empty capillary (partial or complete evaporation into vacuum), or when the volume available for the vapor phase increases. We compare the diffusion constants describing the rates of these processes in such inhomogeneous systems to the diffusion constants in the corresponding bulk liquid and vapor phases.
Collapse
Affiliation(s)
- Katarzyna Bucior
- Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz, Staudinger Weg 7, Germany
| | | | | |
Collapse
|
34
|
Das SK, Horbach J, Binder K. Kinetics of phase separation in thin films: lattice versus continuum models for solid binary mixtures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:021602. [PMID: 19391756 DOI: 10.1103/physreve.79.021602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Indexed: 05/27/2023]
Abstract
A description of phase separation kinetics for solid binary (A,B) mixtures in thin film geometry based on the Kawasaki spin-exchange kinetic Ising model is presented in a discrete lattice molecular field formulation. It is shown that the model describes the interplay of wetting layer formation and lateral phase separation, which leads to a characteristic domain size l(t) in the directions parallel to the confining walls that grows according to the Lifshitz-Slyozov t;{13} law with time t after the quench. Near the critical point of the model, the description is shown to be equivalent to the standard treatments based on Ginzburg-Landau models. Unlike the latter, the present treatment is reliable also at temperatures far below criticality, where the correlation length in the bulk is only of the order of a lattice spacing, and steep concentration variations may occur near the walls, invalidating the gradient square approximation. A further merit is that the relation to the interaction parameters in the bulk and at the walls is always transparent, and the correct free energy at low temperatures is consistent with the time evolution by construction.
Collapse
Affiliation(s)
- Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | | | |
Collapse
|
35
|
Bucior K, Yelash L, Binder K. Phase separation of an asymmetric binary-fluid mixture confined in a nanoscopic slit pore: molecular-dynamics simulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:051602. [PMID: 18643074 DOI: 10.1103/physreve.77.051602] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Indexed: 05/26/2023]
Abstract
As a generic model system of an asymmetric binary-fluid mixture, hexadecane dissolved in carbon dioxide is considered, using a coarse-grained bead-spring model for the short polymer, and a simple spherical particle with Lennard-Jones interactions for the carbon dioxide molecules. In previous work, it has been shown that this model reproduces the real phase diagram reasonably well, and also the initial stages of spinodal decomposition in the bulk following a sudden expansion of the system could be studied. Using the parallelized simulation package ESPResSo on a multiprocessor supercomputer, phase separation of thin fluid films confined between parallel walls that are repulsive for both types of molecules are simulated in a rather large system ( 1356 x 1356 x 67.8 A{3} , corresponding to about 3.2-million atoms). Following the sudden system expansion, a complicated interplay between phase separation in the directions perpendicular and parallel to the walls is found: In the early stages the hexadecane molecules accumulate mostly in the center of the slit pore, but as the coarsening of the structure in the parallel direction proceeds, the inhomogeneity in the perpendicular direction gets much reduced. Studying then the structure factors and correlation functions at fixed distances from the wall, the densities are essentially not conserved at these distances, and hence the behavior differs strongly from spinodal decomposition in the bulk. Some of the characteristic lengths show a nonmonotonic variation with time, and simple coarsening described by power-law growth is only observed if the domain sizes are much larger than the film thickness.
Collapse
Affiliation(s)
- Katarzyna Bucior
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | | | | |
Collapse
|
36
|
Manias MV, De Virgiliis A, Albano EV, Müller M, Binder K. Dynamical behavior of three-dimensional confined Ising systems with short- and long-range competing surface fields. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:051603. [PMID: 17677074 DOI: 10.1103/physreve.75.051603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Indexed: 05/16/2023]
Abstract
The dynamical behavior of ferromagnetic Ising films confined in a DxLxL geometry (D<<L,1< or =i< or =D) is studied by means of Monte Carlo simulations when either short- or long-range competing magnetic fields H(i) of equal strength but opposite sign are applied at opposite walls, given by the LxL surfaces. It is well known that, for appropriate choices of the control parameters, these systems exhibit wetting phase transitions that occur in the limit of infinite film thickness at the critical curve Tw(hw) , where hw=H(i=1) is the magnitude of the surface field at the wall. Results of the dynamical approach to equilibrium, at criticality and for the complete wetting regime, obtained by starting the systems from different (far-from equilibrium) initial conditions, are presented and discussed. We determine quite accurately a wetting critical point [Tw=0.8982(57),hw=0.555] for the case of short-range fields, by measuring the detachment of the wetting layer from a wall, which for this type of field obeys a logarithmic dependence on time. For retarded van der Waals forces we obtained [Tw=0.8982,hw=0.449(1)] for the critical point. The scaling behavior of the average position of the interface is also studied for the complete wetting regime at T=0.8982 and in the presence of a bulk magnetic field H=1 . The numerical results are in full agreement with the theoretical expectations for the cases of short-range and long-range (both retarded and nonretarded van der Waals forces) fields, where logarithmic and power-law divergences are found, respectively.
Collapse
Affiliation(s)
- M V Manias
- IFLP, Departamento de Física, UNLP, La Plata, Argentina
| | | | | | | | | |
Collapse
|
37
|
Yan LT, Xie XM. Wetting-layer formation mechanisms of surface-directed phase separation under different quench depths with off-critical compositions in polymer binary mixture. J Chem Phys 2007; 126:064908. [PMID: 17313245 DOI: 10.1063/1.2430526] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Focusing on the off-critical condition, the quench depth dependence of surface-directed phase separation in the polymer binary mixture is numerically investigated by combination of the Cahn-Hilliard-Cook theory and the Flory-Huggins-de Gennes theory. Two distinct situations, i.e., for the wetting, the minority component is preferred by the surface and the majority component is preferred by the surface, are discussed in detail. The simulated results show that the formation mechanism of the wetting layer is affected by both the quench depth and the off-critical extent. Moreover, a diagram, illustrating the formation mechanisms of the wetting layer with various quench depths and compositions, is obtained on the basis of the simulated results. It is found that, when the minority component is preferred by the surface, the growth of the wetting layer can exhibit pure diffusion limited growth law, logarithmic growth law, and Lifshitz-Slyozov growth law. However, when the majority component is preferred by the surface, the wetting layer always grows logarithmically, regardless of the quench depth and the off-critical extent. It is interesting that the surface-induced nucleation can be observed in this case. The simulated results demonstrate that the surface-induced nucleation only occurs below a certain value of the quench depth, and a detailed range about it is calculated and indicated. Furthermore, the formation mechanisms of the wetting layer are theoretically analyzed in depth by the chemical potential gradient.
Collapse
Affiliation(s)
- Li-Tang Yan
- Advanced Materials Laboratory, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | | |
Collapse
|
38
|
Mitchell SJ, Landau DP. Phase separation in a compressible 2D Ising model. PHYSICAL REVIEW LETTERS 2006; 97:025701. [PMID: 16907460 DOI: 10.1103/physrevlett.97.025701] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Indexed: 05/11/2023]
Abstract
We perform a high precision Monte Carlo study of asymptotic domain growth in a compressible two-dimensional spin-exchange Ising model with continuous particle positions and zero total magnetization, and we investigate the effects of compressibility and lattice mismatch on the late-time domain growth law, R(t) = A + Bt(n). For mismatched systems, we measure significant deviations from the theoretically expected n = 1/3 late-time growth (n = 0.224 +/- 0.004), and for a compressible model with no mismatch, we measure only a slight deviation from n = 1/3. These results strongly suggest that the current understanding of the classes of domain growth is incomplete.
Collapse
Affiliation(s)
- S J Mitchell
- Department of Physics, The Center for Simulational Physics, University of Georgia, Athens, 30602-2451, USA.
| | | |
Collapse
|
39
|
Das SK, Puri S, Horbach J, Binder K. Spinodal decomposition in thin films: molecular-dynamics simulations of a binary Lennard-Jones fluid mixture. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:031604. [PMID: 16605534 DOI: 10.1103/physreve.73.031604] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 02/03/2006] [Indexed: 05/08/2023]
Abstract
We use molecular dynamics (MD) to simulate an unstable homogeneous mixture of binary fluids (AB), confined in a slit pore of width D. The pore walls are assumed to be flat and structureless and attract one component of the mixture (A) with the same strength. The pairwise interactions between the particles are modeled by the Lennard-Jones potential, with symmetric parameters that lead to a miscibility gap in the bulk. In the thin-film geometry, an interesting interplay occurs between surface enrichment and phase separation. We study the evolution of a mixture with equal amounts of A and B, which is rendered unstable by a temperature quench. We find that A-rich surface enrichment layers form quickly during the early stages of the evolution, causing a depletion of A in the inner regions of the film. These surface-directed concentration profiles propagate from the walls towards the center of the film, resulting in a transient layered structure. This layered state breaks up into a columnar state, which is characterized by the lateral coarsening of cylindrical domains. The qualitative features of this process resemble results from previous studies of diffusive Ginzburg-Landau-type models [S. K. Das, S. Puri, J. Horbach, and K. Binder, Phys. Rev. E 72, 061603 (2005)], but quantitative aspects differ markedly. The relation to spinodal decomposition in a strictly two-dimensional geometry is also discussed.
Collapse
Affiliation(s)
- Subir K Das
- Institut für Physik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | | | | | | |
Collapse
|