1
|
Simeone D, Tissot O, Luneville L. Diffusive first-order phase transition: nucleation, growth and coarsening in solids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2025; 88:056501. [PMID: 40215998 DOI: 10.1088/1361-6633/adcbbf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
The phenomena of nucleation and growth, which fall into the category of first-order phase transitions, are of great importance. They are present everywhere in our daily lives. They enable us to understand and model a vast number of phenomena, from the formation of raindrops, to the gelling of polymers, the evolution of a virus population and the formation of galaxies. Surprisingly, this whole range of phenomena can be described by two seemingly antagonistic approaches: classical nucleation theory, which highlights the atomistic approach of the diffusion process, and the phase-field (PF) approach, which erases the discrete nature of the diffusion process. Although there is an huge quantity of articles and review papers dealing with the problem of first-order phase transition, the subject is so important and vast that it is very difficult to provide nowadays exhaustive syntheses on the subject. The revival over the past 20 years in the condensed matter world of PF approaches such as PF crystal, or the recent development of optimization methods such as gentle ascend dynamics, as well as the emergence of atom probe tomography, have enabled us to better understand the links between these antagonistic approaches, and above all to provide new experimental results to test the limits of both. This renewal has motivated the writing of this review, both to take stock of current knowledge on these two approaches. This review has two distinct objectives: summarizing generic previous models applies to discuss the nucleation, the growth and the coarsening processes. Despite some reviews already exist on these different subject, few of them present the different logical links between these models and their limitations, unifying them within the framework of the theory of macroscopic fluctuations, which has been developed over the last 20 years. In particular, we present the extension of the Cahn-Hilliard formalism to model the nucleation and growth process and we discuss the relevance of the notion of pseudo-spinodal and discuss. Such an extension allows interpreting experiments performed fat from the solubility limit and the spinodal line. Finally, this work proposes some clues to make this unified approach more predictive.
Collapse
Affiliation(s)
- D Simeone
- Université Paris-Saclay, CEA,Service de Recherches en Matériaux et procédés Avancés, 91191 Gif-sur-Yvette, France
| | - O Tissot
- Université Paris-Saclay, CEA,Service de Recherches en Matériaux et procédés Avancés, 91191 Gif-sur-Yvette, France
| | - L Luneville
- Université Paris-Saclay, CEA,Service de Recherches en Matériaux et procédés Avancés, 91191 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Zang S, Paul S, Leung CW, Chen MS, Hueckel T, Hocky GM, Sacanna S. Direct observation and control of non-classical crystallization pathways in binary colloidal systems. Nat Commun 2025; 16:3645. [PMID: 40240410 PMCID: PMC12003862 DOI: 10.1038/s41467-025-58959-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Crystallization stands as a prime example of self-assembly. Elementary building blocks converge, seemingly adhering to an intricate blueprint, orchestrating order from chaos. While classical theories describe crystallization as a monomer-by-monomer addition, non-classical pathways introduce complexity. Using microscopic charged particles as monomers, we uncover the mechanisms governing the formation of ionic colloidal crystals. Our findings reveal a two-step process, wherein metastable amorphous blobs condense from the gas phase, before evolving into small binary crystals. These small crystals then grow into large faceted structures via three simultaneous processes: addition of free monomers from bulk, capture and absorption of surrounding blobs, and oriented attachment of other crystals. These complex crystallization pathways occur both in bulk and on surfaces across a range of particle sizes and interaction strengths, resulting in a diverse array of crystal types and morphologies. Harnessing our ability to tune the interaction potential through small changes in salt concentration, we developed a continuous dialysis approach that allows fine control over the interaction strength in both time and space. This method enables us to discover and characterize various crystal structures in a single experiment, including a previously unreported low-density hollow structure and the heteroepitaxial formation of composite crystal structures.
Collapse
Affiliation(s)
- Shihao Zang
- Department of Chemistry, New York University, New York, NY, USA
| | - Sanjib Paul
- Department of Chemistry, New York University, New York, NY, USA
| | - Cheuk W Leung
- Department of Chemistry, New York University, New York, NY, USA
| | - Michael S Chen
- Department of Chemistry, New York University, New York, NY, USA
- Simons Center for Computational Physical Chemistry, New York University, New York, NY, USA
| | - Theodore Hueckel
- Department of Chemistry, New York University, New York, NY, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Glen M Hocky
- Department of Chemistry, New York University, New York, NY, USA.
- Simons Center for Computational Physical Chemistry, New York University, New York, NY, USA.
| | - Stefano Sacanna
- Department of Chemistry, New York University, New York, NY, USA.
| |
Collapse
|
3
|
Ray D, Madani M, Dhont JKG, Platten F, Kang K. The Effects of Electric Fields on Protein Phase Behavior and Protein Crystallization Kinetics. J Phys Chem Lett 2024; 15:8108-8113. [PMID: 39087873 PMCID: PMC11318033 DOI: 10.1021/acs.jpclett.4c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
We experimentally studied the effects of an externally applied electric field on protein crystallization and liquid-liquid phase separation (LLPS) and its crystallization kinetics. For a surprisingly weak alternating current (AC) electric field, crystallization was found to occur in a wider region of the phase diagram, while nucleation induction times were reduced, and crystal growth rates were enhanced. LLPS on the contrary was suppressed, which diminishes the tendency for a two-step crystallization scenario. The effect of the electric field is ascribed to a change in the protein-protein interaction potential.
Collapse
Affiliation(s)
- D. Ray
- Institute
of Biological Information Processing IBI-4, Forschungszentrum Jülich, 52428, Jülich, Germany
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Trombay, Mumbai 400085, India
| | - M. Madani
- Faculty
of Mathematics and Natural Sciences, Heinrich
Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - J. K. G. Dhont
- Institute
of Biological Information Processing IBI-4, Forschungszentrum Jülich, 52428, Jülich, Germany
- Faculty
of Mathematics and Natural Sciences, Heinrich
Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - F. Platten
- Institute
of Biological Information Processing IBI-4, Forschungszentrum Jülich, 52428, Jülich, Germany
- Faculty
of Mathematics and Natural Sciences, Heinrich
Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - K. Kang
- Institute
of Biological Information Processing IBI-4, Forschungszentrum Jülich, 52428, Jülich, Germany
| |
Collapse
|
4
|
Korede V, Penha FM, de Munck V, Stam L, Dubbelman T, Nagalingam N, Gutta M, Cui P, Irimia D, van der Heijden AE, Kramer HJ, Eral HB. Design and Validation of a Droplet-based Microfluidic System To Study Non-Photochemical Laser-Induced Nucleation of Potassium Chloride Solutions. CRYSTAL GROWTH & DESIGN 2023; 23:6067-6080. [PMID: 37547880 PMCID: PMC10401630 DOI: 10.1021/acs.cgd.3c00591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Non-photochemical laser-induced nucleation (NPLIN) has emerged as a promising primary nucleation control technique offering spatiotemporal control over crystallization with potential for polymorph control. So far, NPLIN was mostly investigated in milliliter vials, through laborious manual counting of the crystallized vials by visual inspection. Microfluidics represents an alternative to acquiring automated and statistically reliable data. Thus we designed a droplet-based microfluidic platform capable of identifying the droplets with crystals emerging upon Nd:YAG laser irradiation using the deep learning method. In our experiments, we used supersaturated solutions of KCl in water, and the effect of laser intensity, wavelength (1064, 532, and 355 nm), solution supersaturation (S), solution filtration, and intentional doping with nanoparticles on the nucleation probability is quantified and compared to control cooling crystallization experiments. Ability of dielectric polarization and the nanoparticle heating mechanisms proposed for NPLIN to explain the acquired results is tested. Solutions with lower supersaturation (S = 1.05) exhibit significantly higher NPLIN probabilities than those in the control experiments for all laser wavelengths above a threshold intensity (50 MW/cm2). At higher supersaturation studied (S = 1.10), irradiation was already effective at lower laser intensities (10 MW/cm2). No significant wavelength effect was observed besides irradiation with 355 nm light at higher laser intensities (≥50 MW/cm2). Solution filtration and intentional doping experiments showed that nanoimpurities might play a significant role in explaining NPLIN phenomena.
Collapse
Affiliation(s)
- Vikram Korede
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Frederico Marques Penha
- Department
of Chemical Engineering, KTH Royal Institute
of Technology, Teknikringen 42, 114-28 Stockholm, Sweden
| | - Vincent de Munck
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Lotte Stam
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Thomas Dubbelman
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Nagaraj Nagalingam
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Maheswari Gutta
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - PingPing Cui
- School
of Chemical Engineering and Technology, State Key Laboratory of Chemical
Engineering, Tianjin University, 300072 Tianjin, People’s Republic of China
| | - Daniel Irimia
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | | | - Herman J.M. Kramer
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Hüseyin Burak Eral
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
5
|
Rogal J, Díaz Leines G. Controlling crystallization: what liquid structure and dynamics reveal about crystal nucleation mechanisms. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220249. [PMID: 37211029 DOI: 10.1098/rsta.2022.0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/06/2022] [Indexed: 05/23/2023]
Abstract
Over recent years, molecular simulations have provided invaluable insights into the microscopic processes governing the initial stages of crystal nucleation and growth. A key aspect that has been observed in many different systems is the formation of precursors in the supercooled liquid that precedes the emergence of crystalline nuclei. The structural and dynamical properties of these precursors determine to a large extent the nucleation probability as well as the formation of specific polymorphs. This novel microscopic view on nucleation mechanisms has further implications for our understanding of the nucleating ability and polymorph selectivity of nucleating agents, as these appear to be strongly linked to their ability in modifying structural and dynamical characteristics of the supercooled liquid, namely liquid heterogeneity. In this perspective, we highlight recent progress in exploring the connection between liquid heterogeneity and crystallization, including the effects of templates, and the potential impact for controlling crystallization processes. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
Affiliation(s)
- Jutta Rogal
- Department of Chemistry, New York University, New York, NY 10003, USA
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Grisell Díaz Leines
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
6
|
Xu Z, Ou Z. Direct Imaging of the Kinetic Crystallization Pathway: Simulation and Liquid-Phase Transmission Electron Microscopy Observations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2026. [PMID: 36903141 PMCID: PMC10004038 DOI: 10.3390/ma16052026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The crystallization of materials from a suspension determines the structure and function of the final product, and numerous pieces of evidence have pointed out that the classical crystallization pathway may not capture the whole picture of the crystallization pathways. However, visualizing the initial nucleation and further growth of a crystal at the nanoscale has been challenging due to the difficulties of imaging individual atoms or nanoparticles during the crystallization process in solution. Recent progress in nanoscale microscopy had tackled this problem by monitoring the dynamic structural evolution of crystallization in a liquid environment. In this review, we summarized several crystallization pathways captured by the liquid-phase transmission electron microscopy technique and compared the observations with computer simulation. Apart from the classical nucleation pathway, we highlight three nonclassical pathways that are both observed in experiments and computer simulations: formation of an amorphous cluster below the critical nucleus size, nucleation of the crystalline phase from an amorphous intermediate, and transition between multiple crystalline structures before achieving the final product. Among these pathways, we also highlight the similarities and differences between the experimental results of the crystallization of single nanocrystals from atoms and the assembly of a colloidal superlattice from a large number of colloidal nanoparticles. By comparing the experimental results with computer simulations, we point out the importance of theory and simulation in developing a mechanistic approach to facilitate the understanding of the crystallization pathway in experimental systems. We also discuss the challenges and future perspectives for investigating the crystallization pathways at the nanoscale with the development of in situ nanoscale imaging techniques and potential applications to the understanding of biomineralization and protein self-assembly.
Collapse
Affiliation(s)
- Zhangying Xu
- Qian Weichang College, Shanghai University, Shanghai 200444, China
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Lam J, Pietrucci F. Critical comparison of general-purpose collective variables for crystal nucleation. Phys Rev E 2023; 107:L012601. [PMID: 36797915 DOI: 10.1103/physreve.107.l012601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
The nucleation of crystals is a prominent phenomenon in science and technology that still lacks a full atomic-scale understanding. Much work has been devoted to identifying order parameters able to track the process, from the inception of early nuclei to their maturing to critical size until growth of an extended crystal. We critically assess and compare two powerful distance-based collective variables, an effective entropy derived from liquid state theory and the path variable based on permutation invariant vectors using the Kob-Andersen binary mixture and a combination of enhanced-sampling techniques. Our findings reveal a comparable ability to drive nucleation when a bias potential is applied, and comparable free-energy barriers and structural features. Yet, we also found an imperfect correlation with the committor probability on the barrier top which was bypassed by changing the order parameter definition.
Collapse
Affiliation(s)
- Julien Lam
- CEMES, Centre National de la Recherche Scientifique and Université de Toulouse, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France
- Université Lille, Centre National de la Recherche Scientifique, INRA, ENSCL, UMR 8207, UMET, Unité Matériaux et Transformations, F 59000 Lille, France
| | - Fabio Pietrucci
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7590, IMPMC, 75005 Paris, France
| |
Collapse
|
8
|
Anti-phase boundary accelerated exsolution of nanoparticles in non-stoichiometric perovskite thin films. Nat Commun 2022; 13:6682. [PMID: 36335098 PMCID: PMC9637132 DOI: 10.1038/s41467-022-34289-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Exsolution of excess transition metal cations from a non-stoichiometric perovskite oxide has sparked interest as a facile route for the formation of stable nanoparticles on the oxide surface. However, the atomic-scale mechanism of this nanoparticle formation remains largely unknown. The present in situ scanning transmission electron microscopy combined with density functional theory calculation revealed that the anti-phase boundaries (APBs) characterized by the a/2 < 011> type lattice displacement accommodate the excess B-site cation (Ni) through the edge-sharing of BO6 octahedra in a non-stoichiometric ABO3 perovskite oxide (La0.2Sr0.7Ni0.1Ti0.9O3-δ) and provide the fast diffusion pathways for nanoparticle formation by exsolution. Moreover, the APBs further promote the outward diffusion of the excess Ni toward the surface as the segregation energy of Ni is lower at the APB/surface intersection. The formation of nanoparticles occurs through the two-step crystallization mechanism, i.e., the nucleation of an amorphous phase followed by crystallization, and via reactive wetting on the oxide support, which facilitates the formation of a stable triple junction and coherent interface, leading to the distinct socketing of nanoparticles to the oxide support. The atomic-scale mechanism unveiled in this study can provide insights into the design of highly stable nanostructures. Exsolution of transition metal cations from non-stoichiometric perovskites offer a route for the formation of stable nanoparticles on the surface. Here authors present an anti-phase boundaries-accelerated exsolution and two-step crystallisation of nanoparticles in non-stoichiometric perovskite thin films.
Collapse
|
9
|
Nucleation and crystallization mechanism of heavy hydrocarbons in natural gas under flow field. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Molecular Mechanism of Organic Crystal Nucleation: A Perspective of Solution Chemistry and Polymorphism. CRYSTALS 2022. [DOI: 10.3390/cryst12070980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Crystal nucleation determining the formation and assembly pathway of first organic materials is the central science of various scientific disciplines such as chemical, geochemical, biological, and synthetic materials. However, our current understanding of the molecular mechanisms of nucleation remains limited. Over the past decades, the advancements of new experimental and computational techniques have renewed numerous interests in detailed molecular mechanisms of crystal nucleation, especially structure evolution and solution chemistry. These efforts bifurcate into two categories: (modified) classical nucleation theory (CNT) and non-classical nucleation mechanisms. In this review, we briefly introduce the two nucleation mechanisms and summarize current molecular understandings of crystal nucleation that are specifically applied in polymorphic crystallization systems of small organic molecules. Many important aspects of crystal nucleation including molecular association, solvation, aromatic interactions, and hierarchy in intermolecular interactions were examined and discussed for a series of organic molecular systems. The new understandings relating to molecular self-assembly in nucleating systems have suggested more complex multiple nucleation pathways that are associated with the formation and evolution of molecular aggregates in solution.
Collapse
|
11
|
“Green” biocomposite Poly (vinyl alcohol)/starch cryogels as new advanced tools for the cleaning of artifacts. J Colloid Interface Sci 2022; 613:697-708. [DOI: 10.1016/j.jcis.2021.12.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022]
|
12
|
Mazarakos K, Zhou HX. Multiphase Organization Is a Second Phase Transition Within Multi-Component Biomolecular Condensates. J Chem Phys 2022; 156:191104. [DOI: 10.1063/5.0088004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a mean-field theoretical model, along with molecular dynamics simulations, to show that the multiphase organization of multi-component condensates is a second phase transition. Whereas the first phase transition that leads to the separation of condensates from the bulk phase is driven by overall attraction among the macromolecular components, the second phase transition can be driven by the disparity in strength between self and cross-species attraction. At a fixed level of disparity in interaction strengths, both of the phase transitions can be observed by decreasing temperature, leading first to the separation of condensates from the bulk phase and then to component demixing inside condensates. The existence of a critical temperature for demixing and predicted binodals are verified by molecular dynamics simulations of model mixtures.
Collapse
Affiliation(s)
| | - Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago, United States of America
| |
Collapse
|
13
|
Jia G, Chen Y, Sun A, Orlien V. Control of ice crystal nucleation and growth during the food freezing process. Compr Rev Food Sci Food Saf 2022; 21:2433-2454. [DOI: 10.1111/1541-4337.12950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Guoliang Jia
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Yimeng Chen
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - AiDong Sun
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Vibeke Orlien
- Department of Food Science Faculty of Science University of Copenhagen Frederiksberg C Denmark
| |
Collapse
|
14
|
Konishi T, Okamoto D, Tadokoro D, Kawahara Y, Fukao K, Miyamoto Y. Kinetics of Polymer Crystallization with Aggregating Small Crystallites. PHYSICAL REVIEW LETTERS 2022; 128:107801. [PMID: 35333074 DOI: 10.1103/physrevlett.128.107801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The isothermal crystallization near the glass transition temperature from the melt state of poly(trimethylene terephthalate) has been studied by wide-angle x-ray diffraction (WAXD), small-angle x-ray scattering (SAXS), and optical microscopy. The SAXS and WAXD results show the crystallization mechanism in which the crystalline nodules cover the entire sample with the formation of aggregation regions. The analysis of the SAXS results using Kolmogorov-Johnson-Mehl-Avrami theory indicates that the formation kinetics of the aggregation regions is of three-dimensional homogeneous nucleation type. The analysis of the SAXS profiles using Sekimoto's theory provides the growth velocity and the nucleation rate of the aggregation region. The temperature dependence of the growth velocity of the aggregation region is a natural extrapolation of that of spherulite to the high supercooling region. The temperature dependence of the nucleation rate of the aggregation region is also represented by the parameters of the spherulitic growth rate. The result of the growth velocities of the aggregation region and the spherulite suggests the existence of precursors at the front of the crystal growth.
Collapse
Affiliation(s)
- Takashi Konishi
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Daisuke Okamoto
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Daisuke Tadokoro
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshitaka Kawahara
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Koji Fukao
- Department of Physics, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu 525-8577, Japan
| | - Yoshihisa Miyamoto
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Non-classical nucleation in vapor-liquid-solid growth of monolayer WS 2 revealed by in-situ monitoring chemical vapor deposition. Sci Rep 2021; 11:22285. [PMID: 34782667 PMCID: PMC8593054 DOI: 10.1038/s41598-021-01666-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/01/2021] [Indexed: 11/12/2022] Open
Abstract
The very early nucleation stage of a transition metal dichalcogenide (TMD) was directly observed with in-situ monitoring of chemical vapor deposition and automated image analysis. Unique nucleation dynamics, such as very large critical nuclei and slow to rapid growth transitions, were observed during the vapor–liquid–solid (VLS) growth of monolayer tungsten disulfide (WS2). This can be explained by two-step nucleation, also known as non-classical nucleation, in which metastable clusters are formed through the aggregation of droplets. Subsequently, nucleation of solid WS2 takes place inside the metastable cluster. Furthermore, the detailed nucleation dynamics was systematically investigated from a thermodynamic point of view, revealing that the incubation time of metastable cluster formation follows the traditional time–temperature transformation diagram. Quantitative phase field simulation, combined with Bayesian inference, was conducted to extract quantitative information on the growth dynamics and crystal anisotropy from in-situ images. A clear transition in growth dynamics and crystal anisotropy between the slow and rapid growth phases was quantitatively verified. This observation supports the existence of two-step nucleation in the VLS growth of WS2. Such detailed understanding of TMD nucleation dynamics can be useful for achieving perfect structure control of TMDs.
Collapse
|
16
|
Barlow DA, Pantha B. Kinetic model for Ostwald's rule of stages with applications to Boc‐diphenylalanine self‐assembly. INT J CHEM KINET 2021. [DOI: 10.1002/kin.21539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Douglas A. Barlow
- Department of Physics Jacksonville University Jacksonville Florida USA
| | - Buddhi Pantha
- Department of Science and Mathematics Abraham Baldwin Agricultural College Tifton Georgia USA
| |
Collapse
|
17
|
Yao Y, Tang Q, Rosenfeldt S, Krüsmann M, Karg M, Zhang K. Tuning Sugar-Based Chiral and Flower-Like Microparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102938. [PMID: 34411444 DOI: 10.1002/smll.202102938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Unique supermolecular structures as chiral and flower-like microparticles and the precise tuning of the morphologies hold immense promise for a variety of applications. Examples of such structures deriving from monosaccharides are still rare, and a general understanding is also lacking. Herein, it is shown that chiral, flower-like, or solid microparticles can be tuned by only using monosaccharide esters without external stimuli. Chiral "left-handed" (counterclockwise) and "right-handed" (clockwise) morphologies can be induced by d- and l-glucose stearoyl esters. In comparison, other monosaccharides, i.e., galactose, mannose, and xylose, cannot formed chiral particles and generated diverse other morphologies of the supermolecular microparticles based on their distinct molecular configurations. Due to the numbers of side chains and the bond orientations, microparticles with solid and porous flower-like morphologies can be obtained. While glucose and xylose esters only lead to solid microparticles, mannose and galactose generate porous flower-like particles. These findings suggest a general method to design and control the superstructures by using monosaccharide backbones with diverse molecular configurations.
Collapse
Affiliation(s)
- Yawen Yao
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, Georg-August-University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Qiyun Tang
- School of Physics, Southeast University, Nanjng, 211189, China
| | - Sabine Rosenfeldt
- Department of Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Marcel Krüsmann
- Institute of Physical Chemistry I: Colloids and Nanooptics, Heinrich Heine University, Universitätsstr.1, 40225, Düsseldorf, Germany
| | - Matthias Karg
- Institute of Physical Chemistry I: Colloids and Nanooptics, Heinrich Heine University, Universitätsstr.1, 40225, Düsseldorf, Germany
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, Georg-August-University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| |
Collapse
|
18
|
Menon S, Díaz Leines G, Drautz R, Rogal J. Role of pre-ordered liquid in the selection mechanism of crystal polymorphs during nucleation. J Chem Phys 2020; 153:104508. [DOI: 10.1063/5.0017575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sarath Menon
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Grisell Díaz Leines
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Ralf Drautz
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Jutta Rogal
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
19
|
Matsarskaia O, Roosen‐Runge F, Schreiber F. Multivalent ions and biomolecules: Attempting a comprehensive perspective. Chemphyschem 2020; 21:1742-1767. [PMID: 32406605 PMCID: PMC7496725 DOI: 10.1002/cphc.202000162] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Ions are ubiquitous in nature. They play a key role for many biological processes on the molecular scale, from molecular interactions, to mechanical properties, to folding, to self-organisation and assembly, to reaction equilibria, to signalling, to energy and material transport, to recognition etc. Going beyond monovalent ions to multivalent ions, the effects of the ions are frequently not only stronger (due to the obviously higher charge), but qualitatively different. A typical example is the process of binding of multivalent ions, such as Ca2+ , to a macromolecule and the consequences of this ion binding such as compaction, collapse, potential charge inversion and precipitation of the macromolecule. Here we review these effects and phenomena induced by multivalent ions for biological (macro)molecules, from the "atomistic/molecular" local picture of (potentially specific) interactions to the more global picture of phase behaviour including, e. g., crystallisation, phase separation, oligomerisation etc. Rather than attempting an encyclopedic list of systems, we rather aim for an embracing discussion using typical case studies. We try to cover predominantly three main classes: proteins, nucleic acids, and amphiphilic molecules including interface effects. We do not cover in detail, but make some comparisons to, ion channels, colloidal systems, and synthetic polymers. While there are obvious differences in the behaviour of, and the relevance of multivalent ions for, the three main classes of systems, we also point out analogies. Our attempt of a comprehensive discussion is guided by the idea that there are not only important differences and specific phenomena with regard to the effects of multivalent ions on the main systems, but also important similarities. We hope to bridge physico-chemical mechanisms, concepts of soft matter, and biological observations and connect the different communities further.
Collapse
Affiliation(s)
| | - Felix Roosen‐Runge
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and SocietyMalmö UniversitySweden
- Division of Physical ChemistryLund UniversitySweden
| | | |
Collapse
|
20
|
Li M, Chen Y, Tanaka H, Tan P. Revealing roles of competing local structural orderings in crystallization of polymorphic systems. SCIENCE ADVANCES 2020; 6:eaaw8938. [PMID: 32656336 PMCID: PMC7329355 DOI: 10.1126/sciadv.aaw8938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/15/2020] [Indexed: 05/27/2023]
Abstract
Most systems have more than two stable crystalline states in the phase diagram, which is known as polymorphism. Crystallization in such a system is often under strong influence of competing orderings linked to those crystals. However, how such competition affects crystal nucleation and ordering toward the final crystalline state is largely unknown. This is primarily because the competition takes place locally and thus is masked by large positional fluctuations. We develop a unique method to correctly identify local symmetries by removing their distortions due to positional fluctuations. This allows us to experimentally access the spatiotemporal fluctuations of local symmetries at a single-particle level in crystallization of a charged colloidal system near the body-centered cubic-face-centered cubic border. Thus, we successfully reveal the crucial roles of competing ordering in the initial selection of polymorphs and the final grain boundary motion toward the most stable state from a microscopic perspective.
Collapse
Affiliation(s)
- Minhuan Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yanshuang Chen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Peng Tan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
21
|
Ou Z, Wang Z, Luo B, Luijten E, Chen Q. Kinetic pathways of crystallization at the nanoscale. NATURE MATERIALS 2020; 19:450-455. [DOI: https:/doi.org/10.1038/s41563-019-0514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/17/2019] [Indexed: 06/26/2023]
|
22
|
Ou Z, Wang Z, Luo B, Luijten E, Chen Q. Kinetic pathways of crystallization at the nanoscale. NATURE MATERIALS 2020; 19:450-455. [PMID: 31659295 DOI: 10.1038/s41563-019-0514-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/17/2019] [Indexed: 05/13/2023]
Abstract
Nucleation and growth are universally important in systems from the atomic to the micrometre scale as they dictate structural and functional attributes of crystals. However, at the nanoscale, the pathways towards crystallization have been largely unexplored owing to the challenge of resolving the motion of individual building blocks in a liquid medium. Here we address this gap by directly imaging the full transition of dispersed gold nanoprisms to a superlattice at the single-particle level. We utilize liquid-phase transmission electron microscopy at low dose rates to control nanoparticle interactions without affecting their motions. Combining particle tracking with Monte Carlo simulations, we reveal that positional ordering of the superlattice emerges from orientational disorder. This method allows us to measure parameters such as line tension and phase coordinates, charting the nonclassical nucleation pathway involving a dense, amorphous intermediate. We demonstrate the versatility of our approach via crystallization of different nanoparticles, pointing the way to more general applications.
Collapse
Affiliation(s)
- Zihao Ou
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
| | - Ziwei Wang
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL, USA
| | - Binbin Luo
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
| | - Erik Luijten
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA.
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA.
- Department of Chemistry, University of Illinois, Urbana, IL, USA.
- Materials Research Laboratory, University of Illinois, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
23
|
Zhao W, Huang H, Bi Q, Xu Y, Lü Y. One-dimensional water nanowires induced by electric fields. Phys Chem Chem Phys 2019; 21:19414-19422. [PMID: 31460524 DOI: 10.1039/c9cp02788b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-aggregation of water vapour molecules under external electric fields is systemically investigated by using molecular dynamics simulations. It is found that small water clusters aggregate into one-dimensional water nanowires along the electric field direction. The electric field strength plays a crucial role in tuning the nanowire structure. Under relatively weak electric fields such as E = 0.1 V Å-1, square and pentagonal prism-like structures are preferred; when intermediate strength electric fields are applied (E = 1.0 V Å-1), water nanowires featuring a disordered mixture of four-, five- and six-membered rings are formed; and an open ordered structure which is reminiscent of two-dimensional (2D) ice is observed when the field strength becomes very high (E > 3.0 V Å-1). Bond parameter analysis based on density-functional theory calculations shows that the electric field affects anisotropically the conformation of water molecules as well as the hydrogen-bond properties. Along the electric field, the H-O bond is stretched and the hydrogen bond shrinks with field strength in contrast to the changes perpendicular to the electric field. As a result, the hydrogen bonding is enhanced along the electric field. Under very high electric fields, the anisotropic hydrogen-bond network opens up via breaking of the bonds perpendicular to the electric field and ultimately relaxes into a loose quasi-2D ordered network.
Collapse
Affiliation(s)
- Wan Zhao
- School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Haishen Huang
- School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Qingling Bi
- School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Yujia Xu
- School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Yongjun Lü
- School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
24
|
Liu SJ, Li JT, Gu F, Wang HJ. Crystallization, vitrification, and gelation of patchy colloidal particles. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1810231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Shu-jing Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
- College of Science, Agricultural University of Hebei, Baoding 071001, China
| | - Jiang-tao Li
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Fang Gu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Hai-jun Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
- Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| |
Collapse
|
25
|
James D, Beairsto S, Hartt C, Zavalov O, Saika-Voivod I, Bowles RK, Poole PH. Phase transitions in fluctuations and their role in two-step nucleation. J Chem Phys 2019; 150:074501. [DOI: 10.1063/1.5057429] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniella James
- Department of Physics, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Seamus Beairsto
- Department of Physics, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Carmen Hartt
- Department of Physics, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Oleksandr Zavalov
- Department of Physics, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X7, Canada
| | - Richard K. Bowles
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan 57N 5C9, Canada
| | - Peter H. Poole
- Department of Physics, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| |
Collapse
|
26
|
Kumar A, Molinero V. Two-Step to One-Step Nucleation of a Zeolite through a Metastable Gyroid Mesophase. J Phys Chem Lett 2018; 9:5692-5697. [PMID: 30196700 DOI: 10.1021/acs.jpclett.8b02413] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The importance of nonclassical nucleation pathways in the formation of complex crystals has become apparent in recent years. Nonclassical pathways were unraveled for, among others, the crystallization of proteins, colloids, and clathrates. In those cases, the formation of a metastable fluid with density close to the crystal decreases the crystallization barrier. Recent simulations indicate that mesophases can facilitate the nucleation of zeolites. Here, we use molecular simulations to investigate the role of a gyroid mesophase on the crystallization of a model zeolite from liquid. The nucleation pathway is always nonclassical. At warmer temperatures, the mechanism proceeds in two well-defined steps: nucleation of a metastable gyroid followed by its crystallization into a zeolite. At colder temperatures, the second barrier becomes negligible, and the crystallization occurs in one step. This second scenario is also nonclassical, as the critical nucleus for the crystallization has the structure of the gyroid and seamlessly transforms into a zeolite as it grows past its critical size. To our knowledge, this is the first report of a nonclassical mechanism of crystallization mediated by a mesophase.
Collapse
Affiliation(s)
- Abhinaw Kumar
- Department of Chemistry , The University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Valeria Molinero
- Department of Chemistry , The University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
27
|
Ji X, Sun Z, Ouyang W, Xu S. Crystal nucleation and metastable bcc phase in charged colloids: A molecular dynamics study. J Chem Phys 2018; 148:174904. [DOI: 10.1063/1.5016235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xinqiang Ji
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Sun
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenze Ouyang
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shenghua Xu
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Sharma AK, Thapar V, Escobedo FA. Solid-phase nucleation free-energy barriers in truncated cubes: interplay of localized orientational order and facet alignment. SOFT MATTER 2018; 14:1996-2005. [PMID: 29388998 DOI: 10.1039/c7sm02377d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The nucleation of ordered phases from the bulk isotropic phase of octahedron-like particles has been studied via Monte Carlo simulations and umbrella sampling. In particular, selected shapes that form ordered (plastic) phases with various symmetries (cubic and tetragonal) are chosen to unveil trends in the free-energy barrier heights (ΔG*'s) associated with disorder to order transitions. The shapes studied in this work have truncation parameter (s) values of 0.58, 0.75, 0.8 and 1. The case of octahedra (s = 1.0) is studied to provide a counter-example where the isotropic phase nucleates directly into a (Minkowski) crystal phase rather than a rotator phase. The simulated ΔG*'s for these systems are compared with those previously reported for hard spheres and truncated cubes with s = 0.5 (cuboctahedra, CO) and s = 2/3 (truncated octahedra, TO). The comparison shows that, for comparable degrees of supersaturation, all rotator phases nucleate with smaller ΔG*'s than that of the hard sphere crystal, whereas the octahedral crystal nucleates with a larger ΔG*. Our analysis of near-critical translationally ordered nuclei of octahedra shows a strong bias towards an orientational alignment which is incompatible with the tendency to form facet-to-facet contacts in the disordered phase, thus creating an additional entropic penalty for crystallization. For rotator phases of octahedra-like particles, we observe that the strength of the localized orientational order correlates inversely with ΔG*. We also observe that for s > 0.66 shapes and similar to octahedra, configurations with high facet alignment do not favor high orientational order, and thus ΔG*'s increase with truncation.
Collapse
Affiliation(s)
- Abhishek K Sharma
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
29
|
Wang Y, Fu R, Duan Z, Jiang X, Zhu C, Fan D. Inorganic salt transition states: a stable and highly stretchable elastomer-like phase (ELP) of phosphate salts at the air–solid interface. Chem Commun (Camb) 2018; 54:9973-9976. [DOI: 10.1039/c8cc04917c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ultra-high stable elastomer-like phase (ELP) of phosphate salts was formed at the air–solid interface of a specially designed substrate, possessing multilayered structures, elasticity and self-healing abilities.
Collapse
Affiliation(s)
- Ya Wang
- Shaanxi Key Laboratory of Degradable Biomedical Materials
- School of Chemical Engineering
- Northwest University
- Xi’an
- China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials
- School of Chemical Engineering
- Northwest University
- Xi’an
- China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials
- School of Chemical Engineering
- Northwest University
- Xi’an
- China
| | - Xijuan Jiang
- Shaanxi Key Laboratory of Degradable Biomedical Materials
- School of Chemical Engineering
- Northwest University
- Xi’an
- China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials
- School of Chemical Engineering
- Northwest University
- Xi’an
- China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials
- School of Chemical Engineering
- Northwest University
- Xi’an
- China
| |
Collapse
|
30
|
Zhang F. Nonclassical nucleation pathways in protein crystallization. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:443002. [PMID: 28984274 DOI: 10.1088/1361-648x/aa8253] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.
Collapse
Affiliation(s)
- Fajun Zhang
- Universität Tübingen, Institut für Angewandte Physik, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
31
|
Yu Q, Li X, Qiao X, Qi M. The Nucleation and Growth of Succinic Acid in the Presence of Surfactants. J SURFACTANTS DETERG 2017. [DOI: 10.1007/s11743-017-1999-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Luo J, Jiang Y, Yu R, Wu Y. The competition of densification and structure ordering during crystallization of HCP-Mg in the framework of layering. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Podmaniczky F, Tóth GI, Tegze G, Gránásy L. Hydrodynamic theory of freezing: Nucleation and polycrystalline growth. Phys Rev E 2017; 95:052801. [PMID: 28618608 DOI: 10.1103/physreve.95.052801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 05/12/2023]
Abstract
Structural aspects of crystal nucleation in undercooled liquids are explored using a nonlinear hydrodynamic theory of crystallization proposed recently [G. I. Tóth et al., J. Phys.: Condens. Matter 26, 055001 (2014)JCOMEL0953-898410.1088/0953-8984/26/5/055001], which is based on combining fluctuating hydrodynamics with the phase-field crystal theory. We show that in this hydrodynamic approach not only homogeneous and heterogeneous nucleation processes are accessible, but also growth front nucleation, which leads to the formation of new (differently oriented) grains at the solid-liquid front in highly undercooled systems. Formation of dislocations at the solid-liquid interface and interference of density waves ahead of the crystallization front are responsible for the appearance of the new orientations at the growth front that lead to spherulite-like nanostructures.
Collapse
Affiliation(s)
- Frigyes Podmaniczky
- Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
| | - Gyula I Tóth
- Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
- Department of Physics, University of Bergen, Allégaten 55, 7005 Bergen, Norway
| | - György Tegze
- Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
| | - László Gránásy
- Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
- BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
| |
Collapse
|
34
|
Nozawa J, Uda S, Guo S, Hu S, Toyotama A, Yamanaka J, Okada J, Koizumi H. Two-Dimensional Nucleation on the Terrace of Colloidal Crystals with Added Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3262-3269. [PMID: 28300415 DOI: 10.1021/acs.langmuir.6b04532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Understanding nucleation dynamics is important both fundamentally and technologically in materials science and other scientific fields. Two-dimensional (2D) nucleation is the predominant growth mechanism in colloidal crystallization, in which the particle interaction is attractive, and has recently been regarded as a promising method to fabricate varieties of complex nanostructures possessing innovative functionality. Here, polymers are added to a colloidal suspension to generate a depletion attractive force, and the detailed 2D nucleation process on the terrace of the colloidal crystals is investigated. In the system, we first measured the nucleation rate at various area fractions of particles on the terrace, ϕarea. In situ observations at single-particle resolution revealed that nucleation behavior follows the framework of classical nucleation theory (CNT), such as single-step nucleation pathway and existence of critical size. Characteristic nucleation behavior is observed in that the nucleation and growth stage are clearly differentiated. When many nuclei form in a small area of the terrace, a high density of kink sites of once formed islands makes growth more likely to occur than further nucleation because nucleation has a higher energy barrier than growth. The steady-state homogeneous 2D nucleation rate, J, and the critical size of nuclei, r*, are measured by in situ observations based on the CNT, which enable us to obtain the step free energy, γ, which is an important parameter for characterizing the nucleation process. The γ value is found to change according to the strength of attraction, which is tuned by the concentration of the polymer as a depletant.
Collapse
Affiliation(s)
- Jun Nozawa
- Institute for Materials Research, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Satoshi Uda
- Institute for Materials Research, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Suxia Guo
- Institute for Materials Research, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Sumeng Hu
- Institute for Materials Research, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Akiko Toyotama
- Graduate School of Pharmaceutical Sciences, Nagoya City University , 3-1 Tanabe, Mizuho, Nagoya, Aichi 467-8603, Japan
| | - Junpei Yamanaka
- Graduate School of Pharmaceutical Sciences, Nagoya City University , 3-1 Tanabe, Mizuho, Nagoya, Aichi 467-8603, Japan
| | - Junpei Okada
- Institute for Materials Research, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Haruhiko Koizumi
- Institute for Materials Research, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
35
|
Nicolis C, Nicolis G. Stochastic resonance across bifurcation cascades. Phys Rev E 2017; 95:032219. [PMID: 28415354 DOI: 10.1103/physreve.95.032219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 06/07/2023]
Abstract
The classical setting of stochastic resonance is extended to account for parameter variations leading to transitions between a unique stable state, bistability, and multistability regimes, across singularities of various kinds. Analytic expressions for the amplitude and the phase of the response in terms of key parameters are obtained. The conditions for optimal responses are derived in terms of the bifurcation parameter, the driving frequency, and the noise strength.
Collapse
Affiliation(s)
- C Nicolis
- Institut Royal Météorologique de Belgique 3 av. Circulaire, 1180 Brussels, Belgium
| | - G Nicolis
- Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Campus Plaine, CP 231 bd du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
36
|
Braun MK, Wolf M, Matsarskaia O, Da Vela S, Roosen-Runge F, Sztucki M, Roth R, Zhang F, Schreiber F. Strong Isotope Effects on Effective Interactions and Phase Behavior in Protein Solutions in the Presence of Multivalent Ions. J Phys Chem B 2017; 121:1731-1739. [DOI: 10.1021/acs.jpcb.6b12814] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michal K. Braun
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Marcell Wolf
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Olga Matsarskaia
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Stefano Da Vela
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | | | - Michael Sztucki
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Roland Roth
- Institut
für Theoretische Physik, Universität Tübingen, Auf
der Morgenstelle 14, 72076 Tübingen, Germany
| | - Fajun Zhang
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Frank Schreiber
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
37
|
Modak VP, Amaya AJ, Wyslouzil BE. Freezing of supercooledn-decane nanodroplets: from surface driven to frustrated crystallization. Phys Chem Chem Phys 2017; 19:30181-30194. [DOI: 10.1039/c7cp05431a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Decane condenses to form nanodroplets that freeze from the outside in, until it's so cold that fractal like frustrated crystals form instead.
Collapse
Affiliation(s)
- Viraj P. Modak
- William G. Lowrie Department of Chemical and Biomolecular Engineering
- The Ohio State University
- Columbus
- Ohio 43210
- USA
| | - Andrew J. Amaya
- William G. Lowrie Department of Chemical and Biomolecular Engineering
- The Ohio State University
- Columbus
- Ohio 43210
- USA
| | - Barbara E. Wyslouzil
- William G. Lowrie Department of Chemical and Biomolecular Engineering
- The Ohio State University
- Columbus
- Ohio 43210
- USA
| |
Collapse
|
38
|
Abstract
We analyze the processes governing the lifetimes of transient metastable polymorphs, within the context of classical nucleation theory.
Collapse
Affiliation(s)
- Wenhao Sun
- Department of Materials Science and Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Materials Sciences Division
| | - Gerbrand Ceder
- Department of Materials Science and Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Materials Sciences Division
| |
Collapse
|
39
|
Berryman JT, Anwar M, Dorosz S, Schilling T. The early crystal nucleation process in hard spheres shows synchronised ordering and densification. J Chem Phys 2016; 145:211901. [DOI: 10.1063/1.4953550] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Joshua T. Berryman
- Theory of Soft Condensed Matter, Université du Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Muhammad Anwar
- Theory of Soft Condensed Matter, Université du Luxembourg, L-1511 Luxembourg, Luxembourg
- Department of Mechanical Engineering, Institute of Space Technology, Islamabad, Pakistan
| | - Sven Dorosz
- Theory of Soft Condensed Matter, Université du Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Tanja Schilling
- Theory of Soft Condensed Matter, Université du Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
40
|
Russo J, Tanaka H. Crystal nucleation as the ordering of multiple order parameters. J Chem Phys 2016; 145:211801. [DOI: 10.1063/1.4962166] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- John Russo
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
| | - Hajime Tanaka
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
41
|
Besselink R, Stawski TM, Van Driessche AES, Benning LG. Not just fractal surfaces, but surface fractal aggregates: Derivation of the expression for the structure factor and its applications. J Chem Phys 2016; 145:211908. [DOI: 10.1063/1.4960953] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- R. Besselink
- German Research Centre for Geosciences, GFZ, 14473 Potsdam, Germany
| | - T. M. Stawski
- German Research Centre for Geosciences, GFZ, 14473 Potsdam, Germany
- Cohen Geochemistry, School of Earth and Environment, University of Leeds, LS2 9JT Leeds, United Kingdom
| | | | - L. G. Benning
- German Research Centre for Geosciences, GFZ, 14473 Potsdam, Germany
- Cohen Geochemistry, School of Earth and Environment, University of Leeds, LS2 9JT Leeds, United Kingdom
| |
Collapse
|
42
|
Li X, Dao M, Lykotrafitis G, Karniadakis GE. Biomechanics and biorheology of red blood cells in sickle cell anemia. J Biomech 2016; 50:34-41. [PMID: 27876368 DOI: 10.1016/j.jbiomech.2016.11.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 01/12/2023]
Abstract
Sickle cell anemia (SCA) is an inherited blood disorder that causes painful crises due to vaso-occlusion of small blood vessels. The primary cause of the clinical phenotype of SCA is the intracellular polymerization of sickle hemoglobin resulting in sickling of red blood cells (RBCs) in deoxygenated conditions. In this review, we discuss the biomechanical and biorheological characteristics of sickle RBCs and sickle blood as well as their implications toward a better understanding of the pathophysiology and pathogenesis of SCA. Additionally, we highlight the adhesive heterogeneity of RBCs in SCA and their specific contribution to vaso-occlusive crisis.
Collapse
Affiliation(s)
- Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - George Lykotrafitis
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
43
|
Ouyang W, Fu C, Sun Z, Xu S. Polymorph selection and nucleation pathway in the crystallization of Hertzian spheres. Phys Rev E 2016; 94:042805. [PMID: 27841599 DOI: 10.1103/physreve.94.042805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 06/06/2023]
Abstract
The crystallization process of Hertzian spheres is studied by means of molecular dynamics simulations in an NPT ensemble where the total number of particles N, the pressure P, and the temperature T are kept constant. It has been observed that the bond orientational ordering rather than the translational ordering (density) plays a primary role. The crystal polymorphs are determined by the state points. Under the conditions of small supercooling, the system is likely to be nucleated into crystals that have a preference for the metastable bcc structure, which can be regarded as a manifestation of the Alexander-McTague mechanism. In contrast, small nuclei are found to have a preference for fcc symmetry under conditions of a high degree of supercooling. Prestructured precursors that act as seeds and wet on the nuclei during nucleation always have a high degree of bcc-like ordering, despite different state points. The results above may provide a clue to the understanding of the crystallization process in core-softened particles.
Collapse
Affiliation(s)
- Wenze Ouyang
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Cuiliu Fu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhiwei Sun
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shenghua Xu
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Lutsko JF. Mechanism for the stabilization of protein clusters above the solubility curve: the role of non-ideal chemical reactions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:244020. [PMID: 27115119 DOI: 10.1088/0953-8984/28/24/244020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dense protein clusters are known to play an important role in nucleation of protein crystals from dilute solutions. While these have generally been thought to be formed from a metastable phase, the observation of similar, if not identical, clusters above the critical point for the dilute-solution/strong-solution phase transition has thrown this into doubt. Furthermore, the observed clusters are stable for relatively long times. Because protein aggregation plays a central role in some pathologies, understanding the nature of such clusters is an important problem. One mechanism for the stabilization of such structures was proposed by Pan, Vekilov and Lubchenko and was investigated using a dynamical density functional theory model which confirmed the viability of the model. Here, we revisit that model and incorporate additional physics in the form of state-dependent reaction rates. We show by a combination of numerical results and general arguments that the state-dependent rates disrupt the stability mechanism. Finally, we argue that the state-dependent reactions correct unphysical aspects of the model with ideal (state-independent) reactions and that this necessarily leads to the failure of the proposed mechanism.
Collapse
Affiliation(s)
- J F Lutsko
- Center for Nonlinear Phenomena and Complex Systems, Code Postal 231, Université Libre de Bruxelles, Blvd. du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
45
|
Espinosa JR, Vega C, Valeriani C, Sanz E. Seeding approach to crystal nucleation. J Chem Phys 2016; 144:034501. [PMID: 26801035 DOI: 10.1063/1.4939641] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a study of homogeneous crystal nucleation from metastable fluids via the seeding technique for four different systems: mW water, Tosi-Fumi NaCl, Lennard-Jones, and Hard Spheres. Combining simulations of spherical crystal seeds embedded in the metastable fluid with classical nucleation theory, we are able to successfully describe the nucleation rate for all systems in a wide range of metastability. The crystal-fluid interfacial free energy extrapolated to coexistence conditions is also in good agreement with direct calculations of such parameter. Our results show that seeding is a powerful technique to investigate crystal nucleation.
Collapse
Affiliation(s)
- Jorge R Espinosa
- Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Vega
- Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Chantal Valeriani
- Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Eduardo Sanz
- Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
46
|
Colloidal Crystallization in 2D for Short-Ranged Attractions: A Descriptive Overview. CRYSTALS 2016. [DOI: 10.3390/cryst6040046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
47
|
Stawski TM, van Driessche AES, Ossorio M, Diego Rodriguez-Blanco J, Besselink R, Benning LG. Formation of calcium sulfate through the aggregation of sub-3 nanometre primary species. Nat Commun 2016; 7:11177. [PMID: 27034256 PMCID: PMC4821993 DOI: 10.1038/ncomms11177] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 02/26/2016] [Indexed: 12/22/2022] Open
Abstract
The formation pathways of gypsum remain uncertain. Here, using truly in situ and fast time-resolved small-angle X-ray scattering, we quantify the four-stage solution-based nucleation and growth of gypsum (CaSO4·2H2O), an important mineral phase on Earth and Mars. The reaction starts through the fast formation of well-defined, primary species of <3 nm in length (stage I), followed in stage II by their arrangement into domains. The variations in volume fractions and electron densities suggest that these fast forming primary species contain Ca–SO4-cores that self-assemble in stage III into large aggregates. Within the aggregates these well-defined primary species start to grow (stage IV), and fully crystalize into gypsum through a structural rearrangement. Our results allow for a quantitative understanding of how natural calcium sulfate deposits may form on Earth and how a terrestrially unstable phase-like bassanite can persist at low-water activities currently dominating the surface of Mars. The quantitative understanding of how gypsum nucleates and grows from aqueous solutions is limited. Here, the authors demonstrate how, by using truly in situ and fast time-resolved small-angle X-ray scattering, the four-stage solution-based nucleation and growth of this mineral can be quantified.
Collapse
Affiliation(s)
- Tomasz M Stawski
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK.,German Research Centre for Geosciences, GFZ, 14473 Potsdam, Germany
| | - Alexander E S van Driessche
- LEC, IACT, CSIC-UGR, E-18100 Armilla, Spain.,Structural Biology Brussels, VUB, 1050 Brussels, Belgium.,CNRS, ISTerre, F-38041 Grenoble, France
| | | | | | - Rogier Besselink
- German Research Centre for Geosciences, GFZ, 14473 Potsdam, Germany
| | - Liane G Benning
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK.,German Research Centre for Geosciences, GFZ, 14473 Potsdam, Germany
| |
Collapse
|
48
|
Li YW, Sun ZY. The relationship between local density and bond-orientational order during crystallization of the Gaussian core model. SOFT MATTER 2016; 12:2009-2016. [PMID: 26777751 DOI: 10.1039/c5sm02712h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Whether nucleation is triggered by density or by bond-orientational order is one of the most hotly debated issues in recent investigations of the crystallization process. Here, we present a numerical study of the relationship between them for soft particles within the isothermal-isobaric ensemble. We compress the system and thus obtain the fluid-solid transition. By investigating locally dense-packed particles and particles with a relatively high bond-orientational order in the compressing process, we find a sharp increase of the spatial correlations for both densely packed particles and highly bond-orientational ordered particles at the phase transition point, which provide new characterization methods for the liquid-crystal transition. We also find that it is the bond-orientational order rather than density that triggers the nucleation process. The relationship between the local density and the bond-orientational order parameter is strongly affected by the characterization methods used. The local bond order parameter (q6) shows clear correlation with the local density (ρ) in the fluid stage, while the coarse-grained form (q[combining macron]6) does not correlate with ρ at all, owing to the comparable spatial scales of q6 and ρ. Nevertheless, q[combining macron]6 shows an obvious advantage in distinguishing between solid and liquid particles in our work. These results may elevate our understanding of the mechanism of the crystallization process.
Collapse
Affiliation(s)
- Yan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | | |
Collapse
|
49
|
Palberg T, Wette P, Herlach DM. Equilibrium fluid-crystal interfacial free energy of bcc-crystallizing aqueous suspensions of polydisperse charged spheres. Phys Rev E 2016; 93:022601. [PMID: 26986371 DOI: 10.1103/physreve.93.022601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Indexed: 06/05/2023]
Abstract
The interfacial free energy is a central quantity in crystallization from the metastable melt. In suspensions of charged colloidal spheres, nucleation and growth kinetics can be accurately measured from optical experiments. In previous work, from these data effective nonequilibrium values for the interfacial free energy between the emerging bcc nuclei and the adjacent melt in dependence on the chemical potential difference between melt phase and crystal phase were derived using classical nucleation theory (CNT). A strictly linear increase of the interfacial free energy was observed as a function of increased metastability. Here, we further analyze these data for five aqueous suspensions of charged spheres and one binary mixture. We utilize a simple extrapolation scheme and interpret our findings in view of Turnbull's empirical rule. This enables us to present the first systematic experimental estimates for a reduced interfacial free energy, σ(0,bcc), between the bcc-crystal phase and the coexisting equilibrium fluid. Values obtained for σ(0,bcc) are on the order of a few k(B)T. Their values are not correlated to any of the electrostatic interaction parameters but rather show a systematic decrease with increasing size polydispersity and a lower value for the mixture as compared to the pure components. At the same time, σ(0) also shows an approximately linear correlation to the entropy of freezing. The equilibrium interfacial free energy of strictly monodisperse charged spheres may therefore be still greater.
Collapse
Affiliation(s)
- Thomas Palberg
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany
| | - Patrick Wette
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51147 Köln, Germany
- Space Administration, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 53227 Bonn, Germany
| | - Dieter M Herlach
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51147 Köln, Germany
| |
Collapse
|
50
|
Lutsko JF, Nicolis G. Mechanism for the stabilization of protein clusters above the solubility curve. SOFT MATTER 2016; 12:93-98. [PMID: 26439913 DOI: 10.1039/c5sm02234g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pan, Vekilov and Lubchenko [J. Phys. Chem. B, 2010, 114, 7620] have proposed that dense stable protein clusters appearing in weak protein solutions above the solubility curve are composed of protein oligomers. The hypothesis is that a weak solution of oligomer species is unstable with respect to condensation causing the formation of dense, oligomer-rich droplets which are stabilized against growth by the monomer-oligomer reaction. Here, we show that such a combination of processes can be understood using a simple capillary model yielding analytic expressions for the cluster properties which can be used to interpret experimental data. We also construct a microscopic Dynamic Density Functional Theory model and show that it is consistent with the predictions of the capillary model. The viability of the mechanism is thus confirmed and it is shown how the radius of the stable clusters is related to physically interesting quantities such as the monomer-oligomer rate constants.
Collapse
Affiliation(s)
- James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code Postal 231, Blvd. du Triomphe, 1050 Brussels, Belgium.
| | - Grégoire Nicolis
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code Postal 231, Blvd. du Triomphe, 1050 Brussels, Belgium.
| |
Collapse
|