1
|
Ozaki N, Nellis WJ, Mashimo T, Ramzan M, Ahuja R, Kaewmaraya T, Kimura T, Knudson M, Miyanishi K, Sakawa Y, Sano T, Kodama R. Dynamic compression of dense oxide (Gd3Ga5O12) from 0.4 to 2.6 TPa: Universal Hugoniot of fluid metals. Sci Rep 2016; 6:26000. [PMID: 27193942 PMCID: PMC4872160 DOI: 10.1038/srep26000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/25/2016] [Indexed: 11/21/2022] Open
Abstract
Materials at high pressures and temperatures are of great current interest for warm dense matter physics, planetary sciences, and inertial fusion energy research. Shock-compression equation-of-state data and optical reflectivities of the fluid dense oxide, Gd3Ga5O12 (GGG), were measured at extremely high pressures up to 2.6 TPa (26 Mbar) generated by high-power laser irradiation and magnetically-driven hypervelocity impacts. Above 0.75 TPa, the GGG Hugoniot data approach/reach a universal linear line of fluid metals, and the optical reflectivity most likely reaches a constant value indicating that GGG undergoes a crossover from fluid semiconductor to poor metal with minimum metallic conductivity (MMC). These results suggest that most fluid compounds, e.g., strong planetary oxides, reach a common state on the universal Hugoniot of fluid metals (UHFM) with MMC at sufficiently extreme pressures and temperatures. The systematic behaviors of warm dense fluid would be useful benchmarks for developing theoretical equation-of-state and transport models in the warm dense matter regime in determining computational predictions.
Collapse
Affiliation(s)
- N. Ozaki
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Photon Pioneers Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - W. J. Nellis
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - T. Mashimo
- Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto 860-8555, Japan
| | - M. Ramzan
- Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, SE-751 20, Uppsala, Sweden
| | - R. Ahuja
- Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, SE-751 20, Uppsala, Sweden
- Applied Materials Physics, Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - T. Kaewmaraya
- Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, SE-751 20, Uppsala, Sweden
| | - T. Kimura
- Geodynamics Research Center, Ehime University, Ehime 790-8577, Japan
| | - M. Knudson
- Sandia National Laboratories, Albuquerque, New Mexico 87185-1181, USA
- Institute for Shock Physics, Washington State University, Pullman, WA 99164-2816, USA
| | - K. Miyanishi
- Photon Pioneers Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Y. Sakawa
- Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - T. Sano
- Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - R. Kodama
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Photon Pioneers Center, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Academic Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Lin C, Liu J, Lin JF, Li X, Li Y, Zhang Q, Xiong L, Li R. Garnet-to-perovskite transition in Gd3Sc2Ga3O12 at high pressure and high temperature. Inorg Chem 2013; 52:431-4. [PMID: 23240758 DOI: 10.1021/ic302245x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural phase transition of gadolinium-scandium-gallium garnet (Gd(3)Sc(2)Ga(3)O(12), GSGG) has been studied at high pressure and high temperature using the synchrotron X-ray diffraction technique in a laser-heated diamond anvil cell. The GSGG garnet transformed to an orthorhombic perovskite structure at approximately 24 GPa after laser heating to 1500-2000 K. The garnet-to-perovskite phase transition is associated with an ∼8% volume reduction and an increase in the coordination number of the Ga(3+) or Sc(3+) ion. The orthorhombic perovskite GSGG has bulk modulus B(0) = 194(15) GPa with B(0)' = 5.3(8), exhibiting slightly less compression than the cubic garnet structure of GSGG with B(0) = 157(15) GPa and B(0)' = 6.5(10). Upon compression at room temperature, the cubic GSGG garnet became amorphous at ∼65 GPa. Coupled with the amorphous-to-perovskite phase transition in Y(3)Fe(5)O(12) and Gd(3)Ga(5)O(12) at high-pressure-temperature conditions, we conclude that amorphization should represent a new thermodynamic state resulting from hindrance of the garnet-to-perovskite phase transition, whereas the garnet-to-amorphous transition in rare-earth garnets should be kinetically hindered at room temperature.
Collapse
Affiliation(s)
- Chuanlong Lin
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Delocalization of Electrons in Strong Insulators at High Dynamic Pressures. MATERIALS 2011; 4:1168-1181. [PMID: 28879973 PMCID: PMC5448641 DOI: 10.3390/ma4061168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 06/13/2011] [Indexed: 11/16/2022]
Abstract
Systematics of material responses to shock flows at high dynamic pressures are discussed. Dissipation in shock flows drives structural and electronic transitions or crossovers, such as used to synthesize metallic liquid hydrogen and most probably Al2O3 metallic glass. The term “metal” here means electrical conduction in a degenerate system, which occurs by band overlap in degenerate condensed matter, rather than by thermal ionization in a non-degenerate plasma. Since H2 and probably disordered Al2O3 become poor metals with minimum metallic conductivity (MMC) virtually all insulators with intermediate strengths do so as well under dynamic compression. That is, the magnitude of strength determines the split between thermal energy and disorder, which determines material response. These crossovers occur via a transition from insulators with electrons localized in chemical bonds to poor metals with electron energy bands. For example, radial extents of outermost electrons of Al and O atoms are 7 a0 and 4 a0, respectively, much greater than 1.7 a0 needed for onset of hybridization at 300 GPa. All such insulators are Mott insulators, provided the term “correlated electrons” includes chemical bonds.
Collapse
|
5
|
Goel P, Mittal R, Choudhury N, Chaplot SL. Lattice dynamics and Born instability in yttrium aluminum garnet, Y3Al5O12. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:065401. [PMID: 21389366 DOI: 10.1088/0953-8984/22/6/065401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We report lattice dynamics calculations of various microscopic and macroscopic vibrational and thermodynamic properties of yttrium aluminum garnet (YAG), Y3Al5O12, as a function of pressure up to 100 GPa and temperature up to 1500 K. YAG is an important solid-state laser material with several technological applications. Garnet has a complex structure with several interconnected dodecahedra, octahedra and tetrahedra. Unlike other aluminosilicate garnets, there are no distinct features to distinguish between intramolecular and intermolecular vibrations of the crystal. At ambient pressure, low energy phonons involving mainly the vibrations of yttrium atoms play a primary role in the manifestations of elastic and thermodynamic behavior. The aluminum atoms in tetrahedral and octahedral coordination are found to be dynamically distinct. Garnet's stability can be discerned from the response of its phonon frequencies to increasing pressure. The dynamics of both octahedral and tetrahedral aluminum atoms undergo radical changes under compression which have an important bearing on their high pressure and temperature properties. At 100 GPa, YAG develops a large phonon bandgap (90-110 meV) and its microscopic and macroscopic physical properties are found to be profoundly different from that at the ambient pressure phase. There are significant changes in the high pressure thermal expansion and specific heat. The mode Grüneisen parameters show significant changes in the low energy range with pressure. Our studies show that the YAG structure becomes mechanically unstable around P = 108 GPa due to the violation of the Born stability criteria. Although this does not rule out thermodynamic crossover to a lower free energy phase at lower pressure, this places an upper bound of P = 110 GPa for the mechanical stability of YAG.
Collapse
Affiliation(s)
- Prabhatasree Goel
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | | | | | | |
Collapse
|
6
|
Abstract
We predict by first principles a phase transition in alumina at approximately 3.7 Mbar and room temperature from the CaIrO(3)-type polymorph to another with the U(2)S(3)-type structure. Because alumina is used as window material in shock-wave experiments, this transformation should be important for the analysis of shock data in this pressure range. Comparison of our results on all high-pressure phases of alumina with shock data suggests the presence of two phase transitions in shock experiments: the corundum to Rh(2)O(3)(II)-type structure and the Rh(2)O(3)(II)-type to CaIrO(3)-type structure. The transformation to the U(2)S(3)-type polymorph is in the pressure range reached in the mantle of recently discovered terrestrial exoplanets and suggests that the multi-megabar crystal chemistry of planet-forming minerals might be related to that of the rare-earth sulfides.
Collapse
|