1
|
Moya R, Norris AC, Kondo T, Schlau-Cohen GS. Observation of robust energy transfer in the photosynthetic protein allophycocyanin using single-molecule pump-probe spectroscopy. Nat Chem 2022; 14:153-159. [PMID: 34992285 PMCID: PMC9977402 DOI: 10.1038/s41557-021-00841-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/20/2021] [Indexed: 01/26/2023]
Abstract
Photosynthetic organisms convert sunlight to electricity with near unity quantum efficiency. Absorbed photoenergy transfers through a network of chromophores positioned within protein scaffolds, which fluctuate due to thermal motion. The resultant variation in the individual energy transfer steps has not yet been measured, and so how the efficiency is robust to this variation has not been determined. Here, we describe single-molecule pump-probe spectroscopy with facile spectral tuning and its application to the ultrafast dynamics of single allophycocyanin, a light-harvesting protein from cyanobacteria. We disentangled the energy transfer and energetic relaxation from nuclear motion using the spectral dependence of the dynamics. We observed an asymmetric distribution of timescales for energy transfer and a slower and more heterogeneous distribution of timescales for energetic relaxation, which was due to the impact of the protein environment. Collectively, these results suggest that energy transfer is robust to protein fluctuations, a prerequisite for efficient light harvesting.
Collapse
Affiliation(s)
- Raymundo Moya
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Audrey C. Norris
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Toru Kondo
- Department of Life Science and Technology, Tokyo Institute of Technology,PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA,To whom correspondence should be addressed;
| |
Collapse
|
2
|
Mitsui M, Takakura Y, Hirata K, Niihori Y, Fujiwara Y, Kobayashi K. Excited-State Symmetry Breaking in a Multiple Multipolar Chromophore Probed by Single-Molecule Fluorescence Imaging and Spectroscopy. J Phys Chem B 2021; 125:9950-9959. [PMID: 34455782 DOI: 10.1021/acs.jpcb.1c04915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excited-state symmetry breaking (ESB) has attracted much attention because it is often observed in symmetric multipolar chromophores designed as two-photon absorption/emission materials. Herein, we report an ensemble and single-molecule fluorescence imaging and spectroscopy investigation of ESB in hexakis[4-(p-dioctylaminostyryl)phenylethynyl]benzene(DB6), a two-photon absorber possessing a C6-symmetric π-D6 structure (π = hexaethynylbenzene, D = (p-dioctylaminostyryl)phenyl group) consisting of three equivalent D-π-D moieties. Ensemble and single-molecule measurements and theoretical calculations revealed that DB6 undergoes a photoabsorption process with two orthogonal transition dipole moments, whereas it fluoresces with a single transition dipole moment after one- or two-step ESB upon photoexcitation, depending on the environmental polarity. In nonpolar solvents and polymer films, one of the three D-π-D sites becomes planar, and the excited state is localized on this moiety: a [Dδ+-πδ--Dδ+]* quadrupolar state is formed. In polar solvents, the symmetry is further broken within the planarized D-π-D moiety, and the excited state is localized on one of the two D-π sites; i.e., a D-[πδ--Dδ+]* dipolar state is generated. Hence, DB6 can behave like a multichromophore with multiple emission sites in the molecule, which was demonstrated by stepwise photobleaching under photon antibunching conditions.
Collapse
Affiliation(s)
- Masaaki Mitsui
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yasushi Takakura
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Kazuya Hirata
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yoshiki Niihori
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yutaka Fujiwara
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Kenji Kobayashi
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
3
|
Dodin A, Willard AP. State space distribution and dynamical flow for closed and open quantum systems. J Chem Phys 2019. [DOI: 10.1063/1.5100736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Amro Dodin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Adam P. Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
4
|
Beane G, Devkota T, Brown BS, Hartland GV. Ultrafast measurements of the dynamics of single nanostructures: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:016401. [PMID: 30485256 DOI: 10.1088/1361-6633/aaea4b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ability to study single particles has revolutionized nanoscience. The advantage of single particle spectroscopy measurements compared to conventional ensemble studies is that they remove averaging effects from the different sizes and shapes that are present in the samples. In time-resolved experiments this is important for unraveling homogeneous and inhomogeneous broadening effects in lifetime measurements. In this report, recent progress in the development of ultrafast time-resolved spectroscopic techniques for interrogating single nanostructures will be discussed. The techniques include far-field experiments that utilize high numerical aperture (NA) microscope objectives, near-field scanning optical microscopy (NSOM) measurements, ultrafast electron microscopy (UEM), and time-resolved x-ray diffraction experiments. Examples will be given of the application of these techniques to studying energy relaxation processes in nanoparticles, and the motion of plasmons, excitons and/or charge carriers in different types of nanostructures.
Collapse
Affiliation(s)
- Gary Beane
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | | | | | | |
Collapse
|
5
|
Abstract
Organic (opto)electronic materials have received considerable attention due to their applications in thin-film-transistors, light-emitting diodes, solar cells, sensors, photorefractive devices, and many others. The technological promises include low cost of these materials and the possibility of their room-temperature deposition from solution on large-area and/or flexible substrates. The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials. The focus of the review is on photoinduced processes and on electronic properties important for optoelectronic applications relying on charge carrier photogeneration. Additionally, it highlights the capabilities of various experimental techniques for characterization of these materials, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field. The properties of materials based both on small molecules and on conjugated polymers are considered, and their applications in organic solar cells, photodetectors, and photorefractive devices are discussed.
Collapse
Affiliation(s)
- Oksana Ostroverkhova
- Department of Physics, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
6
|
Shen H, Zhang Y, Yan TM, Wang Z, Jiang Y. Moderately strong pump-induced ultrafast dynamics in solution. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Tao MJ, Ai Q, Deng FG, Cheng YC. Proposal for probing energy transfer pathway by single-molecule pump-dump experiment. Sci Rep 2016; 6:27535. [PMID: 27277702 PMCID: PMC4899753 DOI: 10.1038/srep27535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/16/2016] [Indexed: 12/25/2022] Open
Abstract
The structure of Fenna-Matthews-Olson (FMO) light-harvesting complex had long been recognized as containing seven bacteriochlorophyll (BChl) molecules. Recently, an additional BChl molecule was discovered in the crystal structure of the FMO complex, which may serve as a link between baseplate and the remaining seven molecules. Here, we investigate excitation energy transfer (EET) process by simulating single-molecule pump-dump experiment in the eight-molecules complex. We adopt the coherent modified Redfield theory and non-Markovian quantum jump method to simulate EET dynamics. This scheme provides a practical approach of detecting the realistic EET pathway in BChl complexes with currently available experimental technology. And it may assist optimizing design of artificial light-harvesting devices.
Collapse
Affiliation(s)
- Ming-Jie Tao
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Qing Ai
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Fu-Guo Deng
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Yuan-Chung Cheng
- Department of Chemistry, Center for Quantum Science and Engineering, National Taiwan University, Taipei City 106, Taiwan
| |
Collapse
|
8
|
Abstract
Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub-100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump-probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.
Collapse
|
9
|
Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. Chem Rev 2015; 116:962-1052. [PMID: 26270260 DOI: 10.1021/acs.chemrev.5b00188] [Citation(s) in RCA: 1023] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Chantu R Saha-Möller
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Benjamin Fimmel
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Soichiro Ogi
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Pawaret Leowanawat
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - David Schmidt
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
10
|
Long S, Zhou M, Tang K, Zeng XL, Niu Y, Guo Q, Zhao KH, Xia A. Single-molecule spectroscopy and femtosecond transient absorption studies on the excitation energy transfer process in ApcE(1–240) dimers. Phys Chem Chem Phys 2015; 17:13387-96. [DOI: 10.1039/c5cp01687h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The red-shifted absorption of ApcE dimers results from extending chromophore conformation, which does not depend on strong exction coupling.
Collapse
Affiliation(s)
- Saran Long
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Meng Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Kun Tang
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Xiao-Li Zeng
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Yingli Niu
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Qianjin Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Andong Xia
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| |
Collapse
|
11
|
Brinks D, Hildner R, van Dijk EMHP, Stefani FD, Nieder JB, Hernando J, van Hulst NF. Ultrafast dynamics of single molecules. Chem Soc Rev 2014; 43:2476-91. [DOI: 10.1039/c3cs60269a] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Room-temperature studies of single molecules at femtosecond timescales provide detailed observation and control of ultrafast electronic and vibrational dynamics of organic dyes and photosynthetic complexes, probing quantum dynamics at ambient conditions and elucidating its role in chemistry and biology.
Collapse
Affiliation(s)
- Daan Brinks
- ICFO - Institut de Ciencies Fotoniques
- Mediterranean Technology Park
- 08860 Castelldefels, Spain
- Department of Chemistry and Chemical Biology
- Harvard University
| | - Richard Hildner
- ICFO - Institut de Ciencies Fotoniques
- Mediterranean Technology Park
- 08860 Castelldefels, Spain
- Experimentalphysik IV
- Universität Bayreuth
| | | | - Fernando D. Stefani
- ICFO - Institut de Ciencies Fotoniques
- Mediterranean Technology Park
- 08860 Castelldefels, Spain
- CIBION - Center for Bionanoscience Research
- CONICET
| | - Jana B. Nieder
- ICFO - Institut de Ciencies Fotoniques
- Mediterranean Technology Park
- 08860 Castelldefels, Spain
| | - Jordi Hernando
- Dept. de Química
- Universitat Autònoma de Barcelona
- 08193 Cerdanyola del Vallès, Spain
| | - Niek F. van Hulst
- ICFO - Institut de Ciencies Fotoniques
- Mediterranean Technology Park
- 08860 Castelldefels, Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats
- , Spain
| |
Collapse
|
12
|
Selig U, Nuernberger P, Dehm V, Settels V, Gsänger M, Engels B, Würthner F, Brixner T. Similarities and Differences in the Optical Response of Perylene-Based Hetero-Bichromophores and Their Monomeric Units. Chemphyschem 2013; 14:1413-22. [DOI: 10.1002/cphc.201300062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/20/2013] [Indexed: 11/12/2022]
|
13
|
Qi G, Jiang L, Zhao Y, Yang Y, Li X. Efficient collection of excitation energy from a linear-shaped weakly interacted perylenetetracarboxylic diimides array. Phys Chem Chem Phys 2013; 15:17342-53. [DOI: 10.1039/c3cp52941j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Issac A, Hildner R, Ernst D, Hippius C, Würthner F, Köhler J. Single molecule studies of calix[4]arene-linked perylene bisimide dimers: relationship between blinking, lifetime and/or spectral fluctuations. Phys Chem Chem Phys 2012; 14:10789-98. [DOI: 10.1039/c2cp41250k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Brinks D, Hildner R, Stefani FD, van Hulst NF. Coherent control of single molecules at room temperature. Faraday Discuss 2011; 153:51-60; discussion 73-91. [DOI: 10.1039/c1fd00087j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Hildner R, Brinks D, Stefani FD, van Hulst NF. Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy. Phys Chem Chem Phys 2011; 13:1888-94. [DOI: 10.1039/c0cp02231d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Biggs JD, Cina JA. Using wave-packet interferometry to monitor the external vibrational control of electronic excitation transfer. J Chem Phys 2010; 131:224101. [PMID: 20001018 DOI: 10.1063/1.3257596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the control of electronic energy transfer in molecular dimers through the preparation of specific vibrational coherences prior to electronic excitation, and its observation by nonlinear wave-packet interferometry (nl-WPI). Laser-driven coherent nuclear motion can affect the instantaneous resonance between site-excited electronic states and thereby influence short-time electronic excitation transfer (EET). We first illustrate this control mechanism with calculations on a dimer whose constituent monomers undergo harmonic vibrations. We then consider the use of nl-WPI experiments to monitor the nuclear dynamics accompanying EET in general dimer complexes following impulsive vibrational excitation by a subresonant control pulse (or control pulse sequence). In measurements of this kind, two pairs of polarized phase-related femtosecond pulses following the control pulse generate superpositions of coherent nuclear wave packets in optically accessible electronic states. Interference contributions to the time- and frequency-integrated fluorescence signals due to overlaps among the superposed wave packets provide amplitude-level information on the nuclear and electronic dynamics. We derive the basic expression for a control-pulse-dependent nl-WPI signal. The electronic transition moments of the constituent monomers are assumed to have a fixed relative orientation, while the overall orientation of the complex is distributed isotropically. We include the limiting case of coincident arrival by pulses within each phase-related pair in which control-influenced nl-WPI reduces to a fluorescence-detected pump-probe difference experiment. Numerical calculations of pump-probe signals based on these theoretical expressions are presented in the following paper [J. D. Biggs and J. A. Cina, J. Chem. Phys. 131, 224302 (2009)].
Collapse
Affiliation(s)
- Jason D Biggs
- Department of Chemistry and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
18
|
Guo L, Wang Y, Lu HP. Combined Single-Molecule Photon-Stamping Spectroscopy and Femtosecond Transient Absorption Spectroscopy Studies of Interfacial Electron Transfer Dynamics. J Am Chem Soc 2010; 132:1999-2004. [DOI: 10.1021/ja909168e] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lijun Guo
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403
| | - Yuanmin Wang
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403
| | - H. Peter Lu
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403
| |
Collapse
|
19
|
Ernst D, Hildner R, Hippius C, Würthner F, Köhler J. Photoblinking dynamics in single calix[4]arene-linked perylene bisimide dimers. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.09.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Eisele DM, Knoester J, Kirstein S, Rabe JP, Vanden Bout DA. Uniform exciton fluorescence from individual molecular nanotubes immobilized on solid substrates. NATURE NANOTECHNOLOGY 2009; 4:658-663. [PMID: 19809457 DOI: 10.1038/nnano.2009.227] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 07/15/2009] [Indexed: 05/28/2023]
Abstract
Self-assembled quasi one-dimensional nanostructures of pi-conjugated molecules may find a use in devices owing to their intriguing optoelectronic properties, which include sharp exciton transitions, strong circular dichroism, high exciton mobilities and photoconductivity. However, many applications require immobilization of these nanostructures on a solid substrate, which is a challenge to achieve without destroying their delicate supramolecular structure. Here, we use a drop-flow technique to immobilize double-walled tubular J-aggregates of amphiphilic cyanine dyes without affecting their morphological or optical properties. High-resolution images of the topography and exciton fluorescence of individual J-aggregates are obtained simultaneously with polarization-resolved near-field scanning optical microscopy. These images show remarkably uniform supramolecular structure, both along individual nanotubes and between nanotubes in an ensemble, demonstrating their potential for light harvesting and energy transport.
Collapse
Affiliation(s)
- Dörthe M Eisele
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstrasse 15 D-12489 Berlin, Germany
| | | | | | | | | |
Collapse
|
21
|
Wang Y, Wang X, Ghosh SK, Lu HP. Probing Single-Molecule Interfacial Electron Transfer Dynamics of Porphyrin on TiO2 Nanoparticles. J Am Chem Soc 2009; 131:1479-87. [DOI: 10.1021/ja806988d] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuanmin Wang
- Bowling Green State University, Center for Photochemical Sciences, Department of Chemistry, Bowling Green, Ohio 43403
| | - Xuefei Wang
- Bowling Green State University, Center for Photochemical Sciences, Department of Chemistry, Bowling Green, Ohio 43403
| | - Sujit Kumar Ghosh
- Bowling Green State University, Center for Photochemical Sciences, Department of Chemistry, Bowling Green, Ohio 43403
| | - H. Peter Lu
- Bowling Green State University, Center for Photochemical Sciences, Department of Chemistry, Bowling Green, Ohio 43403
| |
Collapse
|
22
|
Shikerman F, Barkai E. Probing dynamics of single molecules: Nonlinear spectroscopy approach. J Chem Phys 2008; 129:244702. [PMID: 19123521 DOI: 10.1063/1.3037221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A two level model of a single molecule undergoing spectral diffusion dynamics and interacting with a sequence of two short laser pulses is investigated. Analytical solution for the probability of n=0,1,2 photon emission events for the telegraph and Gaussian processes is obtained. We examine under what circumstances the photon statistics emerging from such pump-probe setup provides new information on the stochastic process parameters and what are the measurement limitations of this technique. The impulsive and selective limits, the semiclassical approximation, and the fast modulation limit exhibit general behaviors of this new type of spectroscopy. We show that in the fast modulation limit, where one has to use impulsive pulses in order to obtain meaningful results, the information on the photon statistics is contained in the molecule's dipole correlation function, equivalently to continuous wave experiments. In contrast, the photon statistics obtained within the selective limit depends on the both spectral shifts and rates and exhibits oscillations, which are not found in the corresponding line shape.
Collapse
Affiliation(s)
- F Shikerman
- Department of Physics, Bar Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
23
|
Wu C, McNeill J. Swelling-controlled polymer phase and fluorescence properties of polyfluorene nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:5855-61. [PMID: 18459748 PMCID: PMC2517098 DOI: 10.1021/la8000762] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Highly fluorescent nanoparticles of the conjugated polymer poly(9,9-dioctylfluorene) (PFO) with distinct phases were prepared, and their photophysical properties were studied by steady state and time-resolved fluorescence spectroscopy. An aqueous suspension of PFO nanoparticles prepared by a reprecipitation method was observed to exhibit spectroscopic characteristics consistent with the glassy phase of the polymer. We demonstrate that controlled addition of organic solvent leads to partial transformation of the disordered polymer chains into the planarized conformation (beta-phase), with the fractions of each component phase dependent on the amount of solvent added. Fluorescence spectroscopy of the PFO nanoparticles containing beta-phase indicates efficient energy transfer from the glassy-phase regions of the nanoparticles to the beta-phase regions. Salient features of the nanoparticles containing beta-phase include narrow, red-shifted fluorescence and increased fluorescence quantum yield as compared to the glassy-phase nanoparticles. Fluorescence lifetime measurements indicate that the increased quantum yield of the beta-phase PFO originates from a decrease in the nonradiative decay rate, with little change in the radiative rate. This decrease is likely due to exciton trapping by the beta-phase, which leads to a reduction in the energy transfer efficiency to quencher species present within the nanoparticle.
Collapse
|
24
|
Klugkist JA, Malyshev VA, Knoester J. Scaling and universality in the optics of disordered exciton chains. PHYSICAL REVIEW LETTERS 2008; 100:216403. [PMID: 18518623 DOI: 10.1103/physrevlett.100.216403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Indexed: 05/26/2023]
Abstract
The joint probability distribution of exciton energies and transition dipole moments determines a variety of optical observables in disordered exciton systems. We demonstrate numerically that this distribution obeys a one-parameter scaling, originating from the fact that both the energy and the dipole moment are determined by the number of coherently bound molecules. A universal underlying distribution is found, which is identical for uncorrelated Gaussian disorder in the molecular transition energies or in the intermolecular transfer interactions. The universality breaks down for disorder in the transfer interactions resulting from variations in the molecular positions. We suggest the possibility to probe the joint distribution by means of single-molecule spectroscopy.
Collapse
Affiliation(s)
- J A Klugkist
- Centre for Theoretical Physics and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
25
|
Dijkstra AG, la Cour Jansen T, Knoester J. Localization and coherent dynamics of excitons in the two-dimensional optical spectrum of molecular J-aggregates. J Chem Phys 2008; 128:164511. [DOI: 10.1063/1.2897753] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
26
|
Low-Temperature Spectral Dynamics of Single TDI Molecules in n-Alkane Matrixes. J Fluoresc 2008; 18:625-31. [DOI: 10.1007/s10895-008-0326-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
|
27
|
Hoogenboom JP, Hernando J, van Dijk EMHP, van Hulst NF, García-Parajó MF. Power-Law Blinking in the Fluorescence of Single Organic Molecules. Chemphyschem 2007; 8:823-33. [PMID: 17387683 DOI: 10.1002/cphc.200600783] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The blinking behavior of perylene diïmide molecules is investigated at the single-molecule level. We observe long-time scale blinking of individual multi-chromophoric complexes embedded in a poly(methylmethacrylate) matrix, as well as for the monomeric dye absorbed on a glass substrate at ambient conditions. In both these different systems, the blinking of single molecules is found to obey analogous power-law statistics for both the on and off periods. The observed range for single-molecular power-law blinking extends over the full experimental time window, covering four orders of magnitude in time and six orders of magnitude in probability density. From molecule to molecule, we observe a large spread in off-time power-law exponents. The distributions of off-exponents in both systems are markedly different whereas both on-exponent distributions appear similar. Our results are consistent with models that ascribe the power-law behavior to charge separation and (environment-dependent) recombination by electron tunneling to a dynamic distribution of charge acceptors. As a consequence of power-law statistics, single molecule properties like the total number of emitted photons display non-ergodicity.
Collapse
Affiliation(s)
- Jacob P Hoogenboom
- Applied Optics Group, Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
28
|
|