1
|
Cheng CH, Lai PY. Coexistence of distinct nonuniform nonequilibrium steady states in Ehrenfest multiurn model on a ring. Phys Rev E 2024; 109:034126. [PMID: 38632782 DOI: 10.1103/physreve.109.034126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/23/2024] [Indexed: 04/19/2024]
Abstract
The recently proposed Ehrenfest M-urn model with interactions on a ring is considered as a paradigm model which can exhibit a variety of distinct nonequilibrium steady states. Unlike the previous three-urn model on a ring which consists of a uniform steady state and a nonuniform nonequilibrium steady state, it is found that for even M≥4, an additional nonequilibrium steady state can coexist with the original ones. Detailed analysis reveals that this additional nonequilibrium steady state emerged via a pitchfork bifurcation which cannot occur if M is odd. Properties of this nonequilibrium steady state, such as stability, and steady-state flux are derived analytically for the four-urn case. The full phase diagram with the phase boundaries is also derived explicitly. The associated thermodynamic stability is also analyzed, confirming its stability. These theoretical results are also explicitly verified by direct Monte Carlo simulations for the three-urn and four-urn ring models.
Collapse
Affiliation(s)
- Chi-Ho Cheng
- Department of Physics, National Changhua University of Education, Changhua 500, Taiwan, Republic of China
| | - Pik-Yin Lai
- Department of Physics and Center for Complex Systems, National Central University, Chung-Li District, Taoyuan City 320, Taiwan, Republic of China
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan, Republic of China
| |
Collapse
|
2
|
Ingrosso A, Panizon E. Machine learning at the mesoscale: A computation-dissipation bottleneck. Phys Rev E 2024; 109:014132. [PMID: 38366483 DOI: 10.1103/physreve.109.014132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/05/2023] [Indexed: 02/18/2024]
Abstract
The cost of information processing in physical systems calls for a trade-off between performance and energetic expenditure. Here we formulate and study a computation-dissipation bottleneck in mesoscopic systems used as input-output devices. Using both real data sets and synthetic tasks, we show how nonequilibrium leads to enhanced performance. Our framework sheds light on a crucial compromise between information compression, input-output computation and dynamic irreversibility induced by nonreciprocal interactions.
Collapse
Affiliation(s)
- Alessandro Ingrosso
- Quantitative Life Sciences, Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| | - Emanuele Panizon
- Quantitative Life Sciences, Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| |
Collapse
|
3
|
Papo D, Bucolo M, Dimitriadis SI, Onton JA, Philippu A, Shannahoff-Khalsa D. Editorial: Advances in brain dynamics in the healthy and psychiatric disorders. Front Psychiatry 2023; 14:1284670. [PMID: 37779613 PMCID: PMC10539585 DOI: 10.3389/fpsyt.2023.1284670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Affiliation(s)
- David Papo
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Maide Bucolo
- Department of Electrical, Electronic and Informatics, University of Catania, Catania, Italy
| | - Stavros I. Dimitriadis
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
| | - Julie A. Onton
- Institute of Neural Computation, University of California, San Diego, La Jolla, CA, United States
| | - Athineos Philippu
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| | - David Shannahoff-Khalsa
- BioCircuits Institute, University of California San Diego, La Jolla, CA, United States
- Center for Integrative Medicine, University of California San Diego, La Jolla, CA, United States
- The Khalsa Foundation for Medical Science, Del Mar, CA, United States
| |
Collapse
|
4
|
Zeng Q, Li R, Wang J. Improvement of Error Correction in Nonequilibrium Information Dynamics. ENTROPY (BASEL, SWITZERLAND) 2023; 25:881. [PMID: 37372225 DOI: 10.3390/e25060881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Errors are inevitable in information processing and transfer. While error correction is widely studied in engineering, the underlying physics is not fully understood. Due to the complexity and energy exchange involved, information transmission should be considered as a nonequilibrium process. In this study, we investigate the effects of nonequilibrium dynamics on error correction using a memoryless channel model. Our findings suggest that error correction improves as nonequilibrium increases, and the thermodynamic cost can be utilized to improve the correction quality. Our results inspire new approaches to error correction that incorporate nonequilibrium dynamics and thermodynamics, and highlight the importance of the nonequilibrium effects in error correction design, particularly in biological systems.
Collapse
Affiliation(s)
- Qian Zeng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China
| | - Ran Li
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
Chen JF, Quan HT. Hierarchical structure of fluctuation theorems for a driven system in contact with multiple heat reservoirs. Phys Rev E 2023; 107:024135. [PMID: 36932622 DOI: 10.1103/physreve.107.024135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
For driven open systems in contact with multiple heat reservoirs, we find the marginal distributions of work or heat do not satisfy any fluctuation theorem, but only the joint distribution of work and heat satisfies a family of fluctuation theorems. A hierarchical structure of these fluctuation theorems is discovered from microreversibility of the dynamics by adopting a step-by-step coarse-graining procedure in both classical and quantum regimes. Thus, we put all fluctuation theorems concerning work and heat into a unified framework. We also propose a general method to calculate the joint statistics of work and heat in the situation of multiple heat reservoirs via the Feynman-Kac equation. For a classical Brownian particle in contact with multiple heat reservoirs, we verify the validity of the fluctuation theorems for the joint distribution of work and heat.
Collapse
Affiliation(s)
- Jin-Fu Chen
- School of Physics, Peking University, Beijing 100871, China
| | - H T Quan
- School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Ro S, Guo B, Shih A, Phan TV, Austin RH, Levine D, Chaikin PM, Martiniani S. Model-Free Measurement of Local Entropy Production and Extractable Work in Active Matter. PHYSICAL REVIEW LETTERS 2022; 129:220601. [PMID: 36493452 DOI: 10.1103/physrevlett.129.220601] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/09/2022] [Indexed: 06/17/2023]
Abstract
Time-reversal symmetry breaking and entropy production are universal features of nonequilibrium phenomena. Despite its importance in the physics of active and living systems, the entropy production of systems with many degrees of freedom has remained of little practical significance because the high dimensionality of their state space makes it difficult to measure. Here we introduce a local measure of entropy production and a numerical protocol to estimate it. We establish a connection between the entropy production and extractability of work in a given region of the system and show how this quantity depends crucially on the degrees of freedom being tracked. We validate our approach in theory, simulation, and experiments by considering systems of active Brownian particles undergoing motility-induced phase separation, as well as active Brownian particles and E.coli in a rectifying device in which the time-reversal asymmetry of the particle dynamics couples to spatial asymmetry to reveal its effects on a macroscopic scale.
Collapse
Affiliation(s)
- Sunghan Ro
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Buming Guo
- Center for Soft Matter Research, Department of Physics, New York University, New York 10003, USA
| | - Aaron Shih
- Center for Soft Matter Research, Department of Physics, New York University, New York 10003, USA
- Courant Institute of Mathematical Sciences, New York University, New York 10003, USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Trung V Phan
- Department of Physics, Princeton University, Princeton 08544, New Jersey, USA
| | - Robert H Austin
- Department of Physics, Princeton University, Princeton 08544, New Jersey, USA
| | - Dov Levine
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Paul M Chaikin
- Center for Soft Matter Research, Department of Physics, New York University, New York 10003, USA
| | - Stefano Martiniani
- Center for Soft Matter Research, Department of Physics, New York University, New York 10003, USA
- Courant Institute of Mathematical Sciences, New York University, New York 10003, USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Simons Center for Computational Physical Chemistry, Department of Chemistry, New York University, New York 10003, USA
| |
Collapse
|
7
|
Déli É, Peters JF, Kisvárday Z. How the Brain Becomes the Mind: Can Thermodynamics Explain the Emergence and Nature of Emotions? ENTROPY (BASEL, SWITZERLAND) 2022; 24:1498. [PMID: 37420518 PMCID: PMC9601684 DOI: 10.3390/e24101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 07/09/2023]
Abstract
The neural systems' electric activities are fundamental for the phenomenology of consciousness. Sensory perception triggers an information/energy exchange with the environment, but the brain's recurrent activations maintain a resting state with constant parameters. Therefore, perception forms a closed thermodynamic cycle. In physics, the Carnot engine is an ideal thermodynamic cycle that converts heat from a hot reservoir into work, or inversely, requires work to transfer heat from a low- to a high-temperature reservoir (the reversed Carnot cycle). We analyze the high entropy brain by the endothermic reversed Carnot cycle. Its irreversible activations provide temporal directionality for future orientation. A flexible transfer between neural states inspires openness and creativity. In contrast, the low entropy resting state parallels reversible activations, which impose past focus via repetitive thinking, remorse, and regret. The exothermic Carnot cycle degrades mental energy. Therefore, the brain's energy/information balance formulates motivation, sensed as position or negative emotions. Our work provides an analytical perspective of positive and negative emotions and spontaneous behavior from the free energy principle. Furthermore, electrical activities, thoughts, and beliefs lend themselves to a temporal organization, an orthogonal condition to physical systems. Here, we suggest that an experimental validation of the thermodynamic origin of emotions might inspire better treatment options for mental diseases.
Collapse
Affiliation(s)
- Éva Déli
- Department of Anatomy, Histology, and Embryology, University of Debrecen, 4032 Debrecen, Hungary
| | - James F. Peters
- Department of Electrical & Computer Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Mathematics, Adiyaman University, Adiyaman 02040, Turkey
| | - Zoltán Kisvárday
- Department of Anatomy, Histology, and Embryology, University of Debrecen, 4032 Debrecen, Hungary
- ELKH Neuroscience Research Group, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
8
|
Ghosal A, Bisker G. Inferring entropy production rate from partially observed Langevin dynamics under coarse-graining. Phys Chem Chem Phys 2022; 24:24021-24031. [PMID: 36065766 PMCID: PMC7613705 DOI: 10.1039/d2cp03064k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The entropy production rate (EPR) measures time-irreversibility in systems operating far from equilibrium. The challenge in estimating the EPR for a continuous variable system is the finite spatiotemporal resolution and the limited accessibility to all of the nonequilibrium degrees of freedom. Here, we estimate the irreversibility in partially observed systems following oscillatory dynamics governed by coupled overdamped Langevin equations. We coarse-grain an observed variable of a nonequilibrium driven system into a few discrete states and estimate a lower bound on the total EPR. As a model system, we use hair-cell bundle oscillations driven by molecular motors, such that the bundle tip position is observed, but the positions of the motors are hidden. In the observed variable space, the underlying driven process exhibits second-order semi-Markov statistics. The waiting time distributions (WTD), associated with transitions among the coarse-grained states, are non-exponential and convey the information on the broken time-reversal symmetry. By invoking the underlying time-irreversibility, we calculate a lower bound on the total EPR from the Kullback-Leibler divergence (KLD) between WTD. We show that the mean dwell-time asymmetry factor - the ratio between the mean dwell-times along the forward direction and the backward direction, can qualitatively measure the degree of broken time reversal symmetry and increases with finer spatial resolution. Finally, we apply our methodology to a continuous-time discrete Markov chain model, coarse-grained into a linear system exhibiting second-order semi-Markovian statistics, and demonstrate the estimation of a lower bound on the total EPR from irreversibility manifested only in the WTD.
Collapse
Affiliation(s)
- Aishani Ghosal
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Gili Bisker
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
- Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center for Light-Matter Interaction, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
9
|
Jerez MJY, Bonachita MA, Confesor MNP. Reversibility in nonequilibrium steady states as a measure of distance from equilibrium. Phys Rev E 2021; 104:044609. [PMID: 34781472 DOI: 10.1103/physreve.104.044609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/29/2021] [Indexed: 11/07/2022]
Abstract
From the detailed balance-like relation, we propose a measure, K^{*}, of a nonequilibrium steady-state (NESS) distance from equilibrium. We investigate in particular the NESS of a particle confined in a time-dependent harmonic potential of constant stiffness but with an ON-OFF state following a telegraph process. Experimental results coupled with simulations show that K^{*} increases at slow switching rates (far from equilibrium) and approaches to zero at equilibrium conditions. Thus, the steady-state distribution together with K^{*} fully characterizes a NESS.
Collapse
Affiliation(s)
- Michael Jade Y Jerez
- Department of Physics and Complex Systems Group-PRISM, MSU-Iligan Institute of Technology, Andres Bonifacio Ave., Tibanga, Iligan City 9200, Philippines
| | - Mike A Bonachita
- Department of Physics and Complex Systems Group-PRISM, MSU-Iligan Institute of Technology, Andres Bonifacio Ave., Tibanga, Iligan City 9200, Philippines
| | - Mark Nolan P Confesor
- Department of Physics and Complex Systems Group-PRISM, MSU-Iligan Institute of Technology, Andres Bonifacio Ave., Tibanga, Iligan City 9200, Philippines
| |
Collapse
|
10
|
Zanin M, Papo D. Algorithmic Approaches for Assessing Irreversibility in Time Series: Review and Comparison. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1474. [PMID: 34828172 PMCID: PMC8622570 DOI: 10.3390/e23111474] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
The assessment of time irreversibility, i.e., of the lack of invariance of the statistical properties of a system under the operation of time reversal, is a topic steadily gaining attention within the research community. Irreversible dynamics have been found in many real-world systems, with alterations being connected to, for instance, pathologies in the human brain, heart and gait, or to inefficiencies in financial markets. Assessing irreversibility in time series is not an easy task, due to its many aetiologies and to the different ways it manifests in data. It is thus not surprising that several numerical methods have been proposed in the last decades, based on different principles and with different applications in mind. In this contribution we review the most important algorithmic solutions that have been proposed to test the irreversibility of time series, their underlying hypotheses, computational and practical limitations, and their comparative performance. We further provide an open-source software library that includes all tests here considered. As a final point, we show that "one size does not fit all", as tests yield complementary, and sometimes conflicting views to the problem; and discuss some future research avenues.
Collapse
Affiliation(s)
- Massimiliano Zanin
- Instituto de Física Interdisciplinar y Sistemas Complejos (CSIC-UIB), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - David Papo
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, 44121 Ferrara, Italy;
- Fondazione Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| |
Collapse
|
11
|
Paul A, McLendon H, Rally V, Sakata JT, Woolley SC. Behavioral discrimination and time-series phenotyping of birdsong performance. PLoS Comput Biol 2021; 17:e1008820. [PMID: 33830995 PMCID: PMC8049717 DOI: 10.1371/journal.pcbi.1008820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
Variation in the acoustic structure of vocal signals is important to communicate social information. However, relatively little is known about the features that receivers extract to decipher relevant social information. Here, we took an expansive, bottom-up approach to delineate the feature space that could be important for processing social information in zebra finch song. Using operant techniques, we discovered that female zebra finches can consistently discriminate brief song phrases ("motifs") from different social contexts. We then applied machine learning algorithms to classify motifs based on thousands of time-series features and to uncover acoustic features for motif discrimination. In addition to highlighting classic acoustic features, the resulting algorithm revealed novel features for song discrimination, for example, measures of time irreversibility (i.e., the degree to which the statistical properties of the actual and time-reversed signal differ). Moreover, the algorithm accurately predicted female performance on individual motif exemplars. These data underscore and expand the promise of broad time-series phenotyping to acoustic analyses and social decision-making.
Collapse
Affiliation(s)
- Avishek Paul
- Dept. Electrical & Computer Engineering, McGill University, Montreal, Canada
- Dept. Biology, McGill University, Montreal, Canada
| | - Helen McLendon
- Keck Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, California, United States of America
| | | | - Jon T. Sakata
- Dept. Biology, McGill University, Montreal, Canada
- Centre for Research on Brain, Language, and Music, McGill University, Montreal, Canada
- * E-mail: (JTS); (SCW)
| | - Sarah C. Woolley
- Dept. Biology, McGill University, Montreal, Canada
- Centre for Research on Brain, Language, and Music, McGill University, Montreal, Canada
- * E-mail: (JTS); (SCW)
| |
Collapse
|
12
|
Kathpalia A, Nagaraj N. Time-Reversibility, Causality and Compression-Complexity. ENTROPY 2021; 23:e23030327. [PMID: 33802138 PMCID: PMC8000281 DOI: 10.3390/e23030327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/30/2022]
Abstract
Detection of the temporal reversibility of a given process is an interesting time series analysis scheme that enables the useful characterisation of processes and offers an insight into the underlying processes generating the time series. Reversibility detection measures have been widely employed in the study of ecological, epidemiological and physiological time series. Further, the time reversal of given data provides a promising tool for analysis of causality measures as well as studying the causal properties of processes. In this work, the recently proposed Compression-Complexity Causality (CCC) measure (by the authors) is shown to be free of the assumption that the "cause precedes the effect", making it a promising tool for causal analysis of reversible processes. CCC is a data-driven interventional measure of causality (second rung on the Ladder of Causation) that is based on Effort-to-Compress (ETC), a well-established robust method to characterize the complexity of time series for analysis and classification. For the detection of the temporal reversibility of processes, we propose a novel measure called the Compressive Potential based Asymmetry Measure. This asymmetry measure compares the probability of the occurrence of patterns at different scales between the forward-time and time-reversed process using ETC. We test the performance of the measure on a number of simulated processes and demonstrate its effectiveness in determining the asymmetry of real-world time series of sunspot numbers, digits of the transcedental number π and heart interbeat interval variability.
Collapse
Affiliation(s)
- Aditi Kathpalia
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Czech Academy of Sciences, Pod Vodárenskou věží 271/2, 182 07 Prague, Czech Republic
- Consciousness Studies Programme, National Institute of Advanced Studies (NIAS), Indian Institute of Science Campus, Bengaluru 560012, India;
- Correspondence:
| | - Nithin Nagaraj
- Consciousness Studies Programme, National Institute of Advanced Studies (NIAS), Indian Institute of Science Campus, Bengaluru 560012, India;
| |
Collapse
|
13
|
Martin D, O'Byrne J, Cates ME, Fodor É, Nardini C, Tailleur J, van Wijland F. Statistical mechanics of active Ornstein-Uhlenbeck particles. Phys Rev E 2021; 103:032607. [PMID: 33862678 DOI: 10.1103/physreve.103.032607] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
We study the statistical properties of active Ornstein-Uhlenbeck particles (AOUPs). In this simplest of models, the Gaussian white noise of overdamped Brownian colloids is replaced by a Gaussian colored noise. This suffices to grant this system the hallmark properties of active matter, while still allowing for analytical progress. We study in detail the steady-state distribution of AOUPs in the small persistence time limit and for spatially varying activity. At the collective level, we show AOUPs to experience motility-induced phase separation both in the presence of pairwise forces or due to quorum-sensing interactions. We characterize both the instability mechanism leading to phase separation and the resulting phase coexistence. We probe how, in the stationary state, AOUPs depart from their thermal equilibrium limit by investigating the emergence of ratchet currents and entropy production. In the small persistence time limit, we show how fluctuation-dissipation relations are recovered. Finally, we discuss how the emerging properties of AOUPs can be characterized from the dynamics of their collective modes.
Collapse
Affiliation(s)
- David Martin
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS,F-75205 Paris, France
| | - Jérémy O'Byrne
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS,F-75205 Paris, France
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Étienne Fodor
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg
| | - Cesare Nardini
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Service de Physique de l'État Condensé, CNRS UMR 3680, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Julien Tailleur
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS,F-75205 Paris, France
| | - Frédéric van Wijland
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS,F-75205 Paris, France
| |
Collapse
|
14
|
Zanin M, Güntekin B, Aktürk T, Hanoğlu L, Papo D. Time Irreversibility of Resting-State Activity in the Healthy Brain and Pathology. Front Physiol 2020; 10:1619. [PMID: 32038297 PMCID: PMC6987076 DOI: 10.3389/fphys.2019.01619] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Characterizing brain activity at rest is of paramount importance to our understanding both of general principles of brain functioning and of the way brain dynamics is affected in the presence of neurological or psychiatric pathologies. We measured the time-reversal symmetry of spontaneous electroencephalographic brain activity recorded from three groups of patients and their respective control group under two experimental conditions (eyes open and closed). We evaluated differences in time irreversibility in terms of possible underlying physical generating mechanisms. The results showed that resting brain activity is generically time-irreversible at sufficiently long time scales, and that brain pathology is generally associated with a reduction in time-asymmetry, albeit with pathology-specific patterns. The significance of these results and their possible dynamical etiology are discussed. Some implications of the differential modulation of time asymmetry by pathology and experimental condition are examined.
Collapse
Affiliation(s)
- Massimiliano Zanin
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Bahar Güntekin
- Department of Biophysics, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
| | - Tuba Aktürk
- REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Lütfü Hanoğlu
- REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - David Papo
- Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
| |
Collapse
|
15
|
Inferring broken detailed balance in the absence of observable currents. Nat Commun 2019; 10:3542. [PMID: 31387988 PMCID: PMC6684597 DOI: 10.1038/s41467-019-11051-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/12/2019] [Indexed: 11/22/2022] Open
Abstract
Identifying dissipation is essential for understanding the physical mechanisms underlying nonequilibrium processes. In living systems, for example, the dissipation is directly related to the hydrolysis of fuel molecules such as adenosine triphosphate (ATP). Nevertheless, detecting broken time-reversal symmetry, which is the hallmark of dissipative processes, remains a challenge in the absence of observable directed motion, flows, or fluxes. Furthermore, quantifying the entropy production in a complex system requires detailed information about its dynamics and internal degrees of freedom. Here we introduce a novel approach to detect time irreversibility and estimate the entropy production from time-series measurements, even in the absence of observable currents. We apply our technique to two different physical systems, namely, a partially hidden network and a molecular motor. Our method does not require complete information about the system dynamics and thus provides a new tool for studying nonequilibrium phenomena. Non-equilibrium systems with hidden states are relevant for biological systems such as molecular motors. Here the authors introduce a method for quantifying irreversibility in such a system by exploiting the fluctuations in the waiting times of time series data.
Collapse
|
16
|
Abstract
Active Ornstein-Uhlenbeck particles (AOUPs) are overdamped particles in an interaction potential subject to external Ornstein-Uhlenbeck noises. They can be transformed into a system of underdamped particles under additional velocity dependent forces and subject to white noise forces. There has been some discussion in the literature on whether AOUPs can be in equilibrium for particular interaction potentials and how far from equilibrium they are in the limit of small persistence time. By using a theorem on the time reversed form of the AOUP Langevin-Ito equations, I prove that they have an equilibrium probability density invariant under time reversal if and only if their smooth interaction potential has zero third derivatives. In the limit of small persistence Ornstein-Uhlenbeck time τ, a Chapman-Enskog expansion of the Fokker-Planck equation shows that the probability density has a local equilibrium solution in the particle momenta modulated by a reduced probability density that varies slowly with the position. The reduced probability density satisfies a continuity equation in which the probability current has an asymptotic expansion in powers of τ. Keeping up to O(τ) terms, this equation is a diffusion equation, which has an equilibrium stationary solution with zero current. However, O(τ^{2}) terms contain fifth- and sixth-order spatial derivatives and the continuity equation no longer has a zero current stationary solution. The expansion of the overall stationary solution now contains odd terms in the momenta, which clearly shows that it is not an equilibrium.
Collapse
Affiliation(s)
- L L Bonilla
- G. Millán Institute for Fluid Dynamics, Nanoscience & Industrial Mathematics, and Department of Materials Science & Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain and Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, New York 10012, USA
| |
Collapse
|
17
|
Van Vu T, Hasegawa Y. Uncertainty relations for time-delayed Langevin systems. Phys Rev E 2019; 100:012134. [PMID: 31499914 DOI: 10.1103/physreve.100.012134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Indexed: 06/10/2023]
Abstract
The thermodynamic uncertainty relation, which establishes a universal trade-off between nonequilibrium current fluctuations and dissipation, has been found for various Markovian systems. However, this relation has not been revealed for non-Markovian systems; therefore, we investigate the thermodynamic uncertainty relation for time-delayed Langevin systems. We prove that the fluctuation of arbitrary dynamical observables is constrained by the Kullback-Leibler divergence between the distributions of the forward path and its reversed counterpart. Specifically, for observables that are antisymmetric under time reversal, the fluctuation is bounded from below by a function of a quantity that can be identified as a generalization of the total entropy production in Markovian systems. We also provide a lower bound for arbitrary observables that are odd under position reversal. The term in this bound reflects the extent to which the position symmetry has been broken in the system and can be positive even in equilibrium. Our results hold for finite observation times and a large class of time-delayed systems because detailed underlying dynamics are not required for the derivation. We numerically verify the derived uncertainty relations using two single time-delay systems and one distributed time-delay system.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
18
|
Brogioli D, Croccolo F, Vailati A. Asymmetric time-cross-correlation of nonequilibrium concentration fluctuations in a ternary liquid mixture. Phys Rev E 2019; 99:053115. [PMID: 31212452 DOI: 10.1103/physreve.99.053115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 11/07/2022]
Abstract
Equilibrium phenomena are characterized by time symmetry. Thermodynamic fluctuations are also time-symmetric at equilibrium. Conversely, diffusion of a solute in a liquid in the presence of a gradient is a nonequilibrium phenomenon, which gives rise to long-range fluctuations with amplitude much larger than the equilibrium one for small enough wave number. In the case of diffusion in binary mixtures such fluctuations are time-symmetric, notwithstanding the fact that they are generated by a nonequilibrium condition. In this paper, we investigate diffusion of two solutes in a ternary liquid mixture by means of fluctuating hydrodynamics theory. We show that the time-cross-correlation function of the concentrations is not time-symmetric, hence showing that time symmetry is violated for such nonequilibrium fluctuations. We discuss the feasibility of experiments aimed at the detection of the asymmetry of the cross-correlation function of nonequilibrium concentration fluctuations in ternary mixtures, as envisaged in the Giant Fluctuations (NEUF-DIX) microgravity project of the European Space Agency.
Collapse
Affiliation(s)
- Doriano Brogioli
- Universität Bremen, Energiespeicher- und Energiewandlersysteme, Bibliothekstraße 1, 28359 Bremen, Germany
| | - Fabrizio Croccolo
- Laboratoire des Fluides Complexes et leurs Réservoirs (LFCR), IPRA, UMR5150 E2S-Univ Pau & Pays Adour, CNRS, TOTAL, 64600 Anglet, France
| | - Alberto Vailati
- Dipartimento di Fisica, Università degli Studi di Milano, I-20133, Milano, Italy
| |
Collapse
|
19
|
Reversing the direction of heat flow using quantum correlations. Nat Commun 2019; 10:2456. [PMID: 31165732 PMCID: PMC6549171 DOI: 10.1038/s41467-019-10333-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/18/2019] [Indexed: 11/08/2022] Open
Abstract
Heat spontaneously flows from hot to cold in standard thermodynamics. However, the latter theory presupposes the absence of initial correlations between interacting systems. We here experimentally demonstrate the reversal of heat flow for two quantum correlated spins-1/2, initially prepared in local thermal states at different effective temperatures, employing a Nuclear Magnetic Resonance setup. We observe a spontaneous energy flow from the cold to the hot system. This process is enabled by a trade off between correlations and entropy that we quantify with information-theoretical quantities. These results highlight the subtle interplay of quantum mechanics, thermodynamics and information theory. They further provide a mechanism to control heat on the microscale.
Collapse
|
20
|
Hasegawa Y, Van Vu T. Uncertainty relations in stochastic processes: An information inequality approach. Phys Rev E 2019; 99:062126. [PMID: 31330674 DOI: 10.1103/physreve.99.062126] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Indexed: 06/10/2023]
Abstract
The thermodynamic uncertainty relation is an inequality stating that it is impossible to attain higher precision than the bound defined by entropy production. In statistical inference theory, information inequalities assert that it is infeasible for any estimator to achieve an error smaller than the prescribed bound. Inspired by the similarity between the thermodynamic uncertainty relation and the information inequalities, we apply the latter to systems described by Langevin equations, and we derive the bound for the fluctuation of thermodynamic quantities. When applying the Cramér-Rao inequality, the obtained inequality reduces to the fluctuation-response inequality. We find that the thermodynamic uncertainty relation is a particular case of the Cramér-Rao inequality, in which the Fisher information is the total entropy production. Using the equality condition of the Cramér-Rao inequality, we find that the stochastic total entropy production is the only quantity that can attain equality in the thermodynamic uncertainty relation. Furthermore, we apply the Chapman-Robbins inequality and obtain a relation for the lower bound of the ratio between the variance and the sensitivity of systems in response to arbitrary perturbations.
Collapse
Affiliation(s)
- Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Tan Van Vu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
21
|
Abstract
Uncovering the origin of the “arrow of time” remains a fundamental scientific challenge. Within the framework of statistical physics, this problem was inextricably associated with the Second Law of Thermodynamics, which declares that entropy growth proceeds from the system’s entanglement with the environment. This poses a question of whether it is possible to develop protocols for circumventing the irreversibility of time and if so to practically implement these protocols. Here we show that, while in nature the complex conjugation needed for time reversal may appear exponentially improbable, one can design a quantum algorithm that includes complex conjugation and thus reverses a given quantum state. Using this algorithm on an IBM quantum computer enables us to experimentally demonstrate a backward time dynamics for an electron scattered on a two-level impurity.
Collapse
|
22
|
Martínez JH, Herrera-Diestra JL, Chavez M. Detection of time reversibility in time series by ordinal patterns analysis. CHAOS (WOODBURY, N.Y.) 2018; 28:123111. [PMID: 30599517 DOI: 10.1063/1.5055855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Time irreversibility is a common signature of nonlinear processes and a fundamental property of non-equilibrium systems driven by non-conservative forces. A time series is said to be reversible if its statistical properties are invariant regardless of the direction of time. Here, we propose the Time Reversibility from Ordinal Patterns method (TiROP) to assess time-reversibility from an observed finite time series. TiROP captures the information of scalar observations in time forward as well as its time-reversed counterpart by means of ordinal patterns. The method compares both underlying information contents by quantifying its (dis)-similarity via the Jensen-Shannon divergence. The statistic is contrasted with a population of divergences coming from a set of surrogates to unveil the temporal nature and its involved time scales. We tested TiROP in different synthetic and real, linear, and non-linear time series, juxtaposed with results from the classical Ramsey's time reversibility test. Our results depict a novel, fast-computation, and fully data-driven methodology to assess time-reversibility with no further assumptions over data. This approach adds new insights into the current non-linear analysis techniques and also could shed light on determining new physiological biomarkers of high reliability and computational efficiency.
Collapse
Affiliation(s)
- J H Martínez
- INSERM-UM1127, Sorbonne Université, Institut du Cerveau et de la Moelle Epinière, Paris 75013, France
| | - J L Herrera-Diestra
- ICTP South American Institute for Fundamental Research, IFT-UNESP, São Paulo 01140-070, Brazil
| | - M Chavez
- CNRS UMR7225, Hôpital Pitié Salpêtrière, Paris 75013, France
| |
Collapse
|
23
|
Telesca L, Czechowski Z. Relation between HVG-irreversibility and persistence in the modified Langevin equation. CHAOS (WOODBURY, N.Y.) 2018; 28:073107. [PMID: 30070521 DOI: 10.1063/1.5030680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
In this study, we investigate the relationship between persistence/antipersistence and time-irreversibility by using the Kullback-Leibler Divergence (KLD) in the directed Horizontal Visibility Graph applied to a new modified Langevin equation with persistence parameter d. A non-trivial relationship KLD(d) was found, characterized by a non-symmetric shape, which suggests that time-irreversibility increases with the degree of persistence or antipersistence. The analysis is applied to the population growth model, where the level of irreversibility may represent important features of the population dynamics, like its stability and ecosystem health.
Collapse
Affiliation(s)
- Luciano Telesca
- National Research Council, Institute of Methodologies for Environmental Analysis, C.da S. Loja, 85050 Tito (PZ), Italy
| | - Zbigniew Czechowski
- Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452 Warsaw, Poland
| |
Collapse
|
24
|
Wang M, Vilela ALM, Du R, Zhao L, Dong G, Tian L, Stanley HE. Topological properties of the limited penetrable horizontal visibility graph family. Phys Rev E 2018; 97:052117. [PMID: 29906941 DOI: 10.1103/physreve.97.052117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Indexed: 06/08/2023]
Abstract
The limited penetrable horizontal visibility graph algorithm was recently introduced to map time series in complex networks. In this work, we extend this algorithm to create a directed-limited penetrable horizontal visibility graph and an image-limited penetrable horizontal visibility graph. We define two algorithms and provide theoretical results on the topological properties of these graphs associated with different types of real-value series. We perform several numerical simulations to check the accuracy of our theoretical results. Finally, we present an application of the directed-limited penetrable horizontal visibility graph to measure real-value time series irreversibility and an application of the image-limited penetrable horizontal visibility graph that discriminates noise from chaos. We also propose a method to measure the systematic risk using the image-limited penetrable horizontal visibility graph, and the empirical results show the effectiveness of our proposed algorithms.
Collapse
Affiliation(s)
- Minggang Wang
- School of Mathematical Science, Nanjing Normal University, Nanjing 210042, Jiangsu, China
- Department of Mathematics, Nanjing Normal University Taizhou College, Taizhou 225300, Jiangsu, China
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - André L M Vilela
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
- Universidade de Pernambuco, 50100-010, Recife-PE, Brazil
| | - Ruijin Du
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
- Energy Development and Environmental Protection Strategy Research Center, Jiangsu University, Zhenjiang, 212013 Jiangsu, China
| | - Longfeng Zhao
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - Gaogao Dong
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
- Energy Development and Environmental Protection Strategy Research Center, Jiangsu University, Zhenjiang, 212013 Jiangsu, China
| | - Lixin Tian
- School of Mathematical Science, Nanjing Normal University, Nanjing 210042, Jiangsu, China
- Energy Development and Environmental Protection Strategy Research Center, Jiangsu University, Zhenjiang, 212013 Jiangsu, China
| | - H Eugene Stanley
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
25
|
Affiliation(s)
- Tie-jun Xiao
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Education University, Guiyang 550018, China
| | - Yun Zhou
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
26
|
|
27
|
Ma XG, Su Y, Lai PY, Tong P. Colloidal dynamics over a tilted periodic potential: Forward and reverse transition probabilities and entropy production in a nonequilibrium steady state. Phys Rev E 2017; 96:012601. [PMID: 29347161 DOI: 10.1103/physreve.96.012601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 06/07/2023]
Abstract
We report a systematic study of the forward and reverse transition probability density functions (TPDFs) and entropy production in a nonequilibrium steady state (NESS). The NESS is realized in a two-layer colloidal system, in which the bottom-layer colloidal crystal provides a two-dimensional periodic potential U_{0}(x,y) for the top-layer diffusing particles. By tilting the sample at an angle with respect to gravity, a tangential component of the gravitational force F is applied to the diffusing particles, which breaks the detailed balance (DB) condition and generates a steady particle flux along the [1,0] crystalline orientation. While both the measured forward and reverse TPDFs reveal interesting space-time dependence, their ratio is found to be independent of time and obeys a DB-like relation. The experimental results are in good agreement with the theoretical predictions. This study thus provides a better understanding on how entropy is generated and heat is dissipated to the reservoir during a NESS transition process. It also demonstrates the applications of the two-layer colloidal system in the study of NESS transition dynamics.
Collapse
Affiliation(s)
- Xiao-Guang Ma
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yun Su
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Pik-Yin Lai
- Department of Physics and Center for Complex Systems, National Central University, Chungli District, Taoyuan City, Taiwan 320, Republic of China
| | - Penger Tong
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
28
|
Chiang KH, Lee CL, Lai PY, Chen YF. Entropy production and irreversibility of dissipative trajectories in electric circuits. Phys Rev E 2017; 95:012158. [PMID: 28208469 DOI: 10.1103/physreve.95.012158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Indexed: 06/06/2023]
Abstract
We experimentally examine the equivalence between the entropy production evaluated from irreversibility of trajectories and the physical dissipation in dissipative processes via electric resistor-capacitor (RC) circuits. The examinations are performed for two nonequilibrium steady states that are driven by an injected current and temperature difference, respectively. Such an equivalence demonstrates a parameter-free method to evaluate the entropy production of a system. The effects of configurational and temporal resolutions are also studied.
Collapse
Affiliation(s)
- K-H Chiang
- Department of Physics, National Central University, Zhongli 32001, Taiwan
| | - C-L Lee
- Department of Physics, National Central University, Zhongli 32001, Taiwan
| | - P-Y Lai
- Department of Physics, National Central University, Zhongli 32001, Taiwan
| | - Y-F Chen
- Department of Physics, National Central University, Zhongli 32001, Taiwan
| |
Collapse
|
29
|
Martínez IA, Roldán É, Dinis L, Rica RA. Colloidal heat engines: a review. SOFT MATTER 2016; 13:22-36. [PMID: 27477856 DOI: 10.1039/c6sm00923a] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines. These small-scale motors exhibit unique features in terms of power and efficiency fluctuations that have no equivalent in the macroscopic world. We also consider a second pathway for work extraction from colloidal engines operating between active bacterial reservoirs at different temperatures, which could significantly boost the performance of passive heat engines at the mesoscale. Finally, we provide some guidance on how the work extracted from colloidal heat engines can be used to generate net particle or energy currents, proposing a new generation of experiments with colloidal systems.
Collapse
Affiliation(s)
- Ignacio A Martínez
- Laboratoire de Physique, École Normale Supérieure, CNRS UMR5672, 46 Allée d'Italie, 69364 Lyon, France
| | - Édgar Roldán
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer strasse 38, 01187 Dresden, Germany and GISC - Grupo Interdisciplinar de Sistemas Complejos, Madrid, Spain
| | - Luis Dinis
- GISC - Grupo Interdisciplinar de Sistemas Complejos, Madrid, Spain and Departamento de Fisica Atómica, Molecular y Nuclear, Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Raúl A Rica
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain.
| |
Collapse
|
30
|
Roldán É, Neri I, Dörpinghaus M, Meyr H, Jülicher F. Decision Making in the Arrow of Time. PHYSICAL REVIEW LETTERS 2015; 115:250602. [PMID: 26722911 DOI: 10.1103/physrevlett.115.250602] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 05/10/2023]
Abstract
We show that the steady-state entropy production rate of a stochastic process is inversely proportional to the minimal time needed to decide on the direction of the arrow of time. Here we apply Wald's sequential probability ratio test to optimally decide on the direction of time's arrow in stationary Markov processes. Furthermore, the steady-state entropy production rate can be estimated using mean first-passage times of suitable physical variables. We derive a first-passage time fluctuation theorem which implies that the decision time distributions for correct and wrong decisions are equal. Our results are illustrated by numerical simulations of two simple examples of nonequilibrium processes.
Collapse
Affiliation(s)
- Édgar Roldán
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Center for Advancing Electronics Dresden, 01062 cfaed, Germany
| | - Izaak Neri
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
- Center for Advancing Electronics Dresden, 01062 cfaed, Germany
| | - Meik Dörpinghaus
- Vodafone Chair Mobile Communications Systems, Technische Universität Dresden, 01062 Dresden, Germany
- Center for Advancing Electronics Dresden, 01062 cfaed, Germany
| | - Heinrich Meyr
- Vodafone Chair Mobile Communications Systems, Technische Universität Dresden, 01062 Dresden, Germany
- Institute for Integrated Signal Processing Systems, RWTH Aachen University, 52056 Aachen, Germany
- Center for Advancing Electronics Dresden, 01062 cfaed, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Center for Advancing Electronics Dresden, 01062 cfaed, Germany
| |
Collapse
|
31
|
Batalhão TB, Souza AM, Sarthour RS, Oliveira IS, Paternostro M, Lutz E, Serra RM. Irreversibility and the Arrow of Time in a Quenched Quantum System. PHYSICAL REVIEW LETTERS 2015; 115:190601. [PMID: 26588367 DOI: 10.1103/physrevlett.115.190601] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Indexed: 06/05/2023]
Abstract
Irreversibility is one of the most intriguing concepts in physics. While microscopic physical laws are perfectly reversible, macroscopic average behavior has a preferred direction of time. According to the second law of thermodynamics, this arrow of time is associated with a positive mean entropy production. Using a nuclear magnetic resonance setup, we measure the nonequilibrium entropy produced in an isolated spin-1/2 system following fast quenches of an external magnetic field. We experimentally demonstrate that it is equal to the entropic distance, expressed by the Kullback-Leibler divergence, between a microscopic process and its time reversal. Our result addresses the concept of irreversibility from a microscopic quantum standpoint.
Collapse
Affiliation(s)
- T B Batalhão
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, 09210-580 Santo André, São Paulo, Brazil
- Faculty of Physics, University of Vienna, Boltzmangasse 5, Vienna A-1090, Austria
| | - A M Souza
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - R S Sarthour
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - I S Oliveira
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Paternostro
- Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, United Kingdom
| | - E Lutz
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - R M Serra
- Department of Physics, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
32
|
Gaspard P. Cycles, randomness, and transport from chaotic dynamics to stochastic processes. CHAOS (WOODBURY, N.Y.) 2015; 25:097606. [PMID: 26428559 DOI: 10.1063/1.4916922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An overview of advances at the frontier between dynamical systems theory and nonequilibrium statistical mechanics is given. Sensitivity to initial conditions is a mechanism at the origin of dynamical randomness-alias temporal disorder-in deterministic dynamical systems. In spatially extended systems, sustaining transport processes, such as diffusion, relationships can be established between the characteristic quantities of dynamical chaos and the transport coefficients, bringing new insight into the second law of thermodynamics. With methods from dynamical systems theory, the microscopic time-reversal symmetry can be shown to be broken at the statistical level of description in nonequilibrium systems. In this way, the thermodynamic entropy production turns out to be related to temporal disorder and its time asymmetry away from equilibrium.
Collapse
Affiliation(s)
- Pierre Gaspard
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code Postal 231, Campus Plaine, B-1050 Brussels, Belgium
| |
Collapse
|
33
|
Harvesting entropy and quantifying the transition from noise to chaos in a photon-counting feedback loop. Proc Natl Acad Sci U S A 2015; 112:9258-63. [PMID: 26175023 DOI: 10.1073/pnas.1506600112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many physical processes, including the intensity fluctuations of a chaotic laser, the detection of single photons, and the Brownian motion of a microscopic particle in a fluid are unpredictable, at least on long timescales. This unpredictability can be due to a variety of physical mechanisms, but it is quantified by an entropy rate. This rate, which describes how quickly a system produces new and random information, is fundamentally important in statistical mechanics and practically important for random number generation. We experimentally study entropy generation and the emergence of deterministic chaotic dynamics from discrete noise in a system that applies feedback to a weak optical signal at the single-photon level. We show that the dynamics transition from shot noise to chaos as the photon rate increases and that the entropy rate can reflect either the deterministic or noisy aspects of the system depending on the sampling rate and resolution.
Collapse
|
34
|
Hoßfeld T, Burger V, Hinrichsen H, Hirth M, Tran-Gia P. On the computation of entropy production in stationary social networks. SOCIAL NETWORK ANALYSIS AND MINING 2014. [DOI: 10.1007/s13278-014-0190-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Chatterjee R, Chatterjee S, Pradhan P, Manna SS. Interacting particles in a periodically moving potential: traveling wave and transport. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022138. [PMID: 25353453 DOI: 10.1103/physreve.89.022138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Indexed: 06/04/2023]
Abstract
We study a system of interacting particles in a periodically moving external potential, within the simplest possible description of paradigmatic symmetric exclusion process on a ring. The model describes diffusion of hardcore particles where the diffusion dynamics is locally modified at a uniformly moving defect site, mimicking the effect of the periodically moving external potential. The model, though simple, exhibits remarkably rich features in particle transport, such as polarity reversal and double peaks in particle current upon variation of defect velocity and particle density. By tuning these variables, the most efficient transport can be achieved in either direction along the ring. These features can be understood in terms of a traveling density wave propagating in the system. Our results could be experimentally tested, e.g., in a system of colloidal particles driven by a moving optical tweezer.
Collapse
Affiliation(s)
- Rakesh Chatterjee
- CMP Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064, India
| | - Sakuntala Chatterjee
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098, India
| | - Punyabrata Pradhan
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098, India
| | - S S Manna
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098, India
| |
Collapse
|
36
|
Roldán É. Estimating the Kullback–Leibler Divergence. IRREVERSIBILITY AND DISSIPATION IN MICROSCOPIC SYSTEMS 2014. [DOI: 10.1007/978-3-319-07079-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
37
|
Gradenigo G, Puglisi A, Sarracino A, Marconi UMB. Nonequilibrium fluctuations in a driven stochastic Lorentz gas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:031112. [PMID: 22587043 DOI: 10.1103/physreve.85.031112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Indexed: 05/31/2023]
Abstract
We study the stationary state of a one-dimensional kinetic model where a probe particle is driven by an external field E and collides, elastically or inelastically, with a bath of particles at temperature T. We focus on the stationary distribution of the velocity of the particle, and of two estimates of the total entropy production Δs(tot). One is the entropy production of the medium Δs(m), which is equal to the energy exchanged with the scatterers, divided by a parameter θ, coinciding with the particle temperature at E=0. The other is the work W done by the external field, again rescaled by θ. At small E, a good collapse of the two distributions is found: in this case, the two quantities also verify the fluctuation relation (FR), indicating that both are good approximations of Δs(tot). Differently, for large values of E, the fluctuations of W violate the FR, while Δs(m) still verifies it.
Collapse
Affiliation(s)
- G Gradenigo
- CNR-ISC and Dipartimento di Fisica, Università Sapienza, Roma, Italy
| | | | | | | |
Collapse
|
38
|
Roldán E, Parrondo JMR. Entropy production and Kullback-Leibler divergence between stationary trajectories of discrete systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:031129. [PMID: 22587060 DOI: 10.1103/physreve.85.031129] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Indexed: 05/31/2023]
Abstract
The irreversibility of a stationary time series can be quantified using the Kullback-Leibler divergence (KLD) between the probability of observing the series and the probability of observing the time-reversed series. Moreover, this KLD is a tool to estimate entropy production from stationary trajectories since it gives a lower bound to the entropy production of the physical process generating the series. In this paper we introduce analytical and numerical techniques to estimate the KLD between time series generated by several stochastic dynamics with a finite number of states. We examine the accuracy of our estimators for a specific example, a discrete flashing ratchet, and investigate how close the KLD is to the entropy production depending on the number of degrees of freedom of the system that are sampled in the trajectories.
Collapse
Affiliation(s)
- Edgar Roldán
- Departamento de Física Atómica, Molecular y Nuclear and GISC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
39
|
Sagawa T, Ueda M. Nonequilibrium thermodynamics of feedback control. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:021104. [PMID: 22463150 DOI: 10.1103/physreve.85.021104] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 12/13/2011] [Indexed: 05/10/2023]
Abstract
We establish a general theory of feedback control on classical stochastic thermodynamic systems and generalize nonequilibrium equalities such as the fluctuation theorem and the Jarzynski equality in the presence of feedback control with multiple measurements. Our results are generalizations of the previous relevant works to the situations with general measurements and multiple heat baths. The obtained equalities involve additional terms that characterize the information obtained by measurements or the efficacy of feedback control. A generalized Szilard engine and a feedback-controlled ratchet are shown to satisfy the derived equalities.
Collapse
|
40
|
Chaudhuri D, Chaudhuri A. Modified fluctuation-dissipation and Einstein relation at nonequilibrium steady states. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:021102. [PMID: 22463148 DOI: 10.1103/physreve.85.021102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Indexed: 05/31/2023]
Abstract
Starting from the pioneering work of Agarwal [G. S. Agarwal, Zeitschrift für Physik 252, 25 (1972)], we present a unified derivation of a number of modified fluctuation-dissipation relations (MFDR) that relate response to small perturbations around nonequilibrium steady states to steady-state correlations. Using this formalism we show the equivalence of velocity forms of MFDR derived using continuum Langevin and discrete master equation dynamics. The resulting additive correction to the Einstein relation is exemplified using a flashing ratchet model of molecular motors.
Collapse
Affiliation(s)
- Debasish Chaudhuri
- FOM Institute for Atomic and Molecular Physics, Science Park 104, NL-1098XG Amsterdam, The Netherlands.
| | | |
Collapse
|
41
|
|
42
|
Kiss P, Jánosi IM. Time-asymmetric fluctuations in the atmosphere: daily mean temperatures and total-column ozone. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:5721-5735. [PMID: 21078645 DOI: 10.1098/rsta.2010.0265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Fluctuations breaking time-reversal symmetry are common attributes of dissipative systems operating far from equilibrium. Recent developments in non-equilibrium statistical physics represent a significant step towards an understanding of how time-reversible microscopic laws can yield to inherent irreversibility on meso- or macroscopic scales. Most of the theoretical conclusions consider quantities (e.g. entropy production) that are difficult to obtain with an appropriate accuracy in real systems. Probably less-complicated measures, such as the simple step-number ratio used in this work, can also help to characterize time-asymmetric fluctuations. In the first part, we give a short summary of recent results on asymmetric daily mean temperature changes. The second part discusses total-column ozone fluctuations, where statistically significant asymmetries are also detected. A detailed correlation analysis of ozone signals and high-altitude temperature records supports the strong coupling between tropospheric dynamics and stratospheric processes on synoptic time scales.
Collapse
Affiliation(s)
- Péter Kiss
- Department of Physics of Complex Systems, Eötvös Loránd University, Pázmány P. s. 1/A, 1117 Budapest, Hungary
| | | |
Collapse
|
43
|
Roldán E, Parrondo JMR. Estimating dissipation from single stationary trajectories. PHYSICAL REVIEW LETTERS 2010; 105:150607. [PMID: 21230886 DOI: 10.1103/physrevlett.105.150607] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/06/2010] [Indexed: 05/30/2023]
Abstract
In this Letter we show that the time reversal asymmetry of a stationary time series provides information about the entropy production of the physical mechanism generating the series, even if one ignores any detail of that mechanism. We develop estimators for the entropy production which can detect nonequilibrium processes even when there are no measurable flows in the time series.
Collapse
Affiliation(s)
- Edgar Roldán
- Departamento de Física Atómica, Molecular y Nuclear and GISC, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | | |
Collapse
|
44
|
Lev BI, Kiselev AD. Energy representation for nonequilibrium brownian-like systems: steady states and fluctuation relations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:031101. [PMID: 21230019 DOI: 10.1103/physreve.82.031101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Indexed: 05/30/2023]
Abstract
Stochastic dynamics in the energy representation is used as a method to represent nonequilibrium Brownian-like systems. It is shown that the equation of motion for the energy of such systems can be taken in the form of the Langevin equation with multiplicative noise. Properties of the steady states are examined by solving the Fokker-Planck equation for the energy distribution functions. The generalized integral fluctuation theorem is deduced for the systems characterized by the shifted probability flux operator. From this theorem, a number of entropy and fluctuation relations such as the Evans-Searles fluctuation theorem, the Hatano-Sasa identity, and the Jarzynski's equality are derived.
Collapse
Affiliation(s)
- Bohdan I Lev
- M.M. Bogolyubov Institute for Theoretical Physics, The NAS of Ukraine, 14-b Metrolohichna Str., Kyïv, Ukraine.
| | | |
Collapse
|
45
|
Esposito M, Van den Broeck C. Three detailed fluctuation theorems. PHYSICAL REVIEW LETTERS 2010; 104:090601. [PMID: 20366974 DOI: 10.1103/physrevlett.104.090601] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Indexed: 05/16/2023]
Abstract
The total entropy production of a trajectory can be split into an adiabatic and a nonadiabatic contribution, deriving, respectively, from the breaking of detailed balance via nonequilibrium boundary conditions or by external driving. We show that each of them, the total, the adiabatic, and the nonadiabatic trajectory entropy, separately satisfies a detailed fluctuation theorem.
Collapse
Affiliation(s)
- Massimiliano Esposito
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, CP 231, Campus Plaine, B-1050 Brussels, Belgium
| | | |
Collapse
|
46
|
Xiao T, Hou Z, Xin H. Stochastic Thermodynamics in Mesoscopic Chemical Oscillation Systems. J Phys Chem B 2009; 113:9316-20. [DOI: 10.1021/jp901610x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tiejun Xiao
- Hefei National Lab for Physical Science at Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
| | - Zhonghuai Hou
- Hefei National Lab for Physical Science at Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
| | - Houwen Xin
- Hefei National Lab for Physical Science at Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
| |
Collapse
|
47
|
Andrieux D, Gaspard P. Molecular information processing in nonequilibrium copolymerizations. J Chem Phys 2009; 130:014901. [PMID: 19140632 DOI: 10.1063/1.3050099] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We consider general fluctuating copolymerization processes, with or without underlying templates. We study the spatial ordering resulting from the nonequilibrium conditions as well as the information transmitted between the template and the synthesized copolymer. Information transmission turns out to be optimal in the infinite-dissipation limit when no correlations between the monomers are present. By contrast, we show that optimized regimes of information generation may exist when template and correlations effects interact.
Collapse
Affiliation(s)
- David Andrieux
- Center for Nonlinear Phenomena and Complex Systems, Universite Libre de Bruxelles, Code Postal 231, Campus Plaine, B-1050 Brussels, Belgium.
| | | |
Collapse
|
48
|
Gaveau B, Moreau M, Schulman LS. Generalized Clausius relation and power dissipation in nonequilibrium stochastic systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:010102. [PMID: 19256988 DOI: 10.1103/physreve.79.010102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 12/02/2008] [Indexed: 05/27/2023]
Abstract
In the framework of the stochastic dynamics of open Markov systems, we derive an extension of the Clausius inequality for transitions between states of the system. We give a formula for the power produced when the system is in its stationary state and relate it to the dissipation of energy needed to maintain the system out of equilibrium. We deduce that, near equilibrium, maximal power production requires an energy dissipation of the same order of magnitude as the power production.
Collapse
Affiliation(s)
- B Gaveau
- Department of Mathematics, University Pierre et Marie Curie, 75252 Paris Cedex 05, France
| | | | | |
Collapse
|
49
|
Scofield D, Huq P. Lagrangian marker particle trajectory and microconductivity measurements in a mixing tank. Chem Eng Sci 2009. [DOI: 10.1016/j.ces.2008.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Nonequilibrium generation of information in copolymerization processes. Proc Natl Acad Sci U S A 2008; 105:9516-21. [PMID: 18606997 DOI: 10.1073/pnas.0802049105] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We consider general fluctuating copolymerization processes, with or without underlying templates. The dissipation associated with these nonequilibrium processes turns out to be closely related to the information generated. This shows in particular how information acquisition results from the interplay between stored patterns and dynamical evolution in nonequilibrium environments. In addition, we apply these results to the process of DNA replication.
Collapse
|