1
|
López-Molina J, Groh S, Dzubiella J, Moncho-Jordá A. Nonequilibrium relaxation of soft responsive colloids. J Chem Phys 2024; 161:094902. [PMID: 39225526 DOI: 10.1063/5.0221903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Stimuli-responsive macromolecules display large conformational changes during their dynamics, sometimes switching between states. Such a multi-stability is useful for the development of soft functional materials. Here, we introduce a mean-field dynamical density functional theory for a model of responsive colloids to study the nonequilibrium dynamics of a colloidal dispersion in time-dependent external fields, with a focus on the coupling of translational and conformational dynamics during their relaxation. Specifically, we consider soft Gaussian particles with a bimodal size distribution between two confining walls with time-dependent (switching-on and off) external gravitational and osmotic fields. We find a rich relaxation behavior of the systems in excellent agreement with particle-based Brownian dynamics computer simulations. In particular, we find time-asymmetric relaxations of integrated observables (wall pressures, mean size, and liquid center-of-mass) for activation/deactivation of external potentials, respectively, which are tunable by the ratio of translational and conformational diffusion time scales. Our work thus paves the way for studying the nonequilibrium relaxation dynamics of complex soft matter with multiple degrees of freedom and hierarchical relaxations.
Collapse
Affiliation(s)
- José López-Molina
- Department of Applied Physics, University of Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Sebastien Groh
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg, Germany
| | - Arturo Moncho-Jordá
- Department of Applied Physics, University of Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
- Institute Carlos I for Theoretical and Computational Physics, University de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| |
Collapse
|
2
|
Sammüller F, Hermann S, Schmidt M. Why neural functionals suit statistical mechanics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:243002. [PMID: 38467072 DOI: 10.1088/1361-648x/ad326f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
We describe recent progress in the statistical mechanical description of many-body systems via machine learning combined with concepts from density functional theory and many-body simulations. We argue that the neural functional theory by Sammülleret al(2023Proc. Natl Acad. Sci.120e2312484120) gives a functional representation of direct correlations and of thermodynamics that allows for thorough quality control and consistency checking of the involved methods of artificial intelligence. Addressing a prototypical system we here present a pedagogical application to hard core particle in one spatial dimension, where Percus' exact solution for the free energy functional provides an unambiguous reference. A corresponding standalone numerical tutorial that demonstrates the neural functional concepts together with the underlying fundamentals of Monte Carlo simulations, classical density functional theory, machine learning, and differential programming is available online athttps://github.com/sfalmo/NeuralDFT-Tutorial.
Collapse
Affiliation(s)
- Florian Sammüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
3
|
Diaz Maier J, Wagner J. Structure and short-time diffusion of concentrated suspensions consisting of silicone-stabilised PMMA particles: a quantitative analysis taking polydispersity effects into account. SOFT MATTER 2024; 20:1309-1319. [PMID: 38240651 DOI: 10.1039/d3sm01510f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
We characterise structure and dynamics of concentrated suspensions of silicone-stabilised PMMA particles immersed in index-matching decalin-tetralin mixtures by means of static and quasielastic light scattering experiments. These particles can reproducibly be prepared via a comparatively easy route and are thus promising model systems with hard-sphere interaction. We demonstrate the hard-sphere behaviour of dense suspensions of these systems rigorously taking polydispersity effects into account. Structure factors S(Q) can in the entire range of volume fractions with liquid-like structure quantitatively be modelled using a multi-component Percus-Yevick ansatz regarding the particle size distribution and the form factor assuming a core-shell model with a scattering length density gradient in the PMMA core. Herewith, hydrodynamic functions H(Q) are in the whole accessible Q-range beyond the second maximum of H(Q) quantitatively modelled using a rescaled δγ-approach for all investigated volume fractions. With these data, previously provided characterisation of dilute systems is extended: the excellent agreement of structural and dynamic properties with theoretical predictions for hard spheres demonstrates the suitability of these particles as a model system for hard spheres.
Collapse
Affiliation(s)
- Joel Diaz Maier
- Institut für Chemie, Universität Rostock, 18051 Rostock, Germany.
| | - Joachim Wagner
- Institut für Chemie, Universität Rostock, 18051 Rostock, Germany.
| |
Collapse
|
4
|
Stuhlmüller NCX, Farrokhzad F, Kuświk P, Stobiecki F, Urbaniak M, Akhundzada S, Ehresmann A, Fischer TM, de Las Heras D. Simultaneous and independent topological control of identical microparticles in non-periodic energy landscapes. Nat Commun 2023; 14:7517. [PMID: 37980403 PMCID: PMC10657436 DOI: 10.1038/s41467-023-43390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Topological protection ensures stability of information and particle transport against perturbations. We explore experimentally and computationally the topologically protected transport of magnetic colloids above spatially inhomogeneous magnetic patterns, revealing that transport complexity can be encoded in both the driving loop and the pattern. Complex patterns support intricate transport modes when the microparticles are subjected to simple time-periodic loops of a uniform magnetic field. We design a pattern featuring a topological defect that functions as an attractor or a repeller of microparticles, as well as a pattern that directs microparticles along a prescribed complex trajectory. Using simple patterns and complex loops, we simultaneously and independently control the motion of several identical microparticles differing only in their positions above the pattern. Combining complex patterns and complex loops we transport microparticles from unknown locations to predefined positions and then force them to follow arbitrarily complex trajectories concurrently. Our findings pave the way for new avenues in transport control and dynamic self-assembly in colloidal science.
Collapse
Affiliation(s)
- Nico C X Stuhlmüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440, Bayreuth, Germany
| | - Farzaneh Farrokhzad
- Experimatalphysik X, Physikalisches Institut, Universität Bayreuth, D-95440, Bayreuth, Germany
| | - Piotr Kuświk
- Institute of Molecular Physics, Polish Academy of Sciences, 60-179, Poznań, Poland
| | - Feliks Stobiecki
- Institute of Molecular Physics, Polish Academy of Sciences, 60-179, Poznań, Poland
| | - Maciej Urbaniak
- Institute of Molecular Physics, Polish Academy of Sciences, 60-179, Poznań, Poland
| | - Sapida Akhundzada
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, D-34132, Kassel, Germany
| | - Arno Ehresmann
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, D-34132, Kassel, Germany
| | - Thomas M Fischer
- Experimatalphysik X, Physikalisches Institut, Universität Bayreuth, D-95440, Bayreuth, Germany
| | - Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440, Bayreuth, Germany.
| |
Collapse
|
5
|
de Las Heras D, Zimmermann T, Sammüller F, Hermann S, Schmidt M. Perspective: How to overcome dynamical density functional theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:271501. [PMID: 37023762 DOI: 10.1088/1361-648x/accb33] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
We argue in favour of developing a comprehensive dynamical theory for rationalizing, predicting, designing, and machine learning nonequilibrium phenomena that occur in soft matter. To give guidance for navigating the theoretical and practical challenges that lie ahead, we discuss and exemplify the limitations of dynamical density functional theory (DDFT). Instead of the implied adiabatic sequence of equilibrium states that this approach provides as a makeshift for the true time evolution, we posit that the pending theoretical tasks lie in developing a systematic understanding of the dynamical functional relationships that govern the genuine nonequilibrium physics. While static density functional theory gives a comprehensive account of the equilibrium properties of many-body systems, we argue that power functional theory is the only present contender to shed similar insights into nonequilibrium dynamics, including the recognition and implementation of exact sum rules that result from the Noether theorem. As a demonstration of the power functional point of view, we consider an idealized steady sedimentation flow of the three-dimensional Lennard-Jones fluid and machine-learn the kinematic map from the mean motion to the internal force field. The trained model is capable of both predicting and designing the steady state dynamics universally for various target density modulations. This demonstrates the significant potential of using such techniques in nonequilibrium many-body physics and overcomes both the conceptual constraints of DDFT as well as the limited availability of its analytical functional approximations.
Collapse
Affiliation(s)
- Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Toni Zimmermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Florian Sammüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
6
|
Sammüller F, de Las Heras D, Schmidt M. Inhomogeneous steady shear dynamics of a three-body colloidal gel former. J Chem Phys 2023; 158:054908. [PMID: 36754804 DOI: 10.1063/5.0130655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We investigate the stationary flow of a colloidal gel under an inhomogeneous external shear force using adaptive Brownian dynamics simulations. The interparticle forces are derived from the Stillinger-Weber potential, where the three-body term is tuned to enable network formation and gelation in equilibrium. When subjected to the shear force field, the system develops remarkable modulations in the one-body density profile. Depending on the shear magnitude, particles accumulate either in quiescent regions or in the vicinity of maximum net flow, and we deduce this strong non-equilibrium response to be characteristic of the gel state. Studying the components of the internal force parallel and perpendicular to the flow direction reveals that the emerging flow and structure of the stationary state are driven by significant viscous and structural superadiabatic forces. Thereby, the magnitude and nature of the observed non-equilibrium phenomena differ from the corresponding behavior of simple fluids. We demonstrate that a simple power functional theory reproduces accurately the viscous force profile, giving a rationale of the complex dynamical behavior of the system.
Collapse
Affiliation(s)
- Florian Sammüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
7
|
Tschopp SM, Brader JM. First-principles superadiabatic theory for the dynamics of inhomogeneous fluids. J Chem Phys 2022; 157:234108. [PMID: 36550050 DOI: 10.1063/5.0131441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
For classical many-body systems subject to Brownian dynamics, we develop a superadiabatic dynamical density functional theory (DDFT) for the description of inhomogeneous fluids out-of-equilibrium. By explicitly incorporating the dynamics of the inhomogeneous two-body correlation functions, we obtain superadiabatic forces directly from the microscopic interparticle interactions. We demonstrate the importance of these nonequilibrium forces for an accurate description of the one-body density by numerical implementation of our theory for three-dimensional hard-spheres in a time-dependent planar potential. The relaxation of the one-body density in superadiabatic-DDFT is found to be slower than that predicted by standard adiabatic DDFT and significantly improves the agreement with Brownian dynamics simulation data. We attribute this improved performance to the correct treatment of structural relaxation within the superadiabatic-DDFT. Our approach provides fundamental insight into the underlying structure of dynamical density functional theories and makes possible the study of situations for which standard approaches fail.
Collapse
Affiliation(s)
- S M Tschopp
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - J M Brader
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
8
|
Kundu M, Howard MP. Dynamic density functional theory for drying colloidal suspensions: Comparison of hard-sphere free-energy functionals. J Chem Phys 2022; 157:184904. [DOI: 10.1063/5.0118695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dynamic density functional theory (DDFT) is a promising approach for predicting the structural evolution of a drying suspension containing one or more types of colloidal particles. The assumed free-energy functional is a key component of DDFT that dictates the thermodynamics of the model and, in turn, the density flux due to a concentration gradient. In this work, we compare several commonly used free-energy functionals for drying hard-sphere suspensions, including local-density approximations based on the ideal-gas, virial, and Boublík–Mansoori–Carnahan–Starling–Leland (BMCSL) equations of state as well as a weighted-density approximation based on fundamental measure theory (FMT). To determine the accuracy of each functional, we model one- and two-component hard-sphere suspensions in a drying film with varied initial heights and compositions, and we compare the DDFT-predicted volume fraction profiles to particle-based Brownian dynamics (BD) simulations. FMT accurately predicts the structure of the one-component suspensions even at high concentrations and when significant density gradients develop, but the virial and BMCSL equations of state provide reasonable approximations for smaller concentrations at a reduced computational cost. In the two-component suspensions, FMT and BMCSL are similar to each other but modestly overpredict the extent of stratification by size compared to BD simulations. This work provides helpful guidance for selecting thermodynamic models for soft materials in nonequilibrium processes, such as solvent drying, solvent freezing, and sedimentation.
Collapse
Affiliation(s)
- Mayukh Kundu
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, USA
| | - Michael P. Howard
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, USA
| |
Collapse
|
9
|
Dong J, Turci F, Jack RL, Faers M, Royall CP. Direct Imaging of Contacts and Forces in Colloidal Gels. J Chem Phys 2022; 156:214907. [DOI: 10.1063/5.0089276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Colloidal dispersions are prized as model systems to understand basic properties of materials, and are central to a wide range of industries from cosmetics to foods to agrichemicals. Among the key developments in using colloids to address challenges in condensed matter is to resolve the particle coordinates in 3D, allowing a level of analysis usually only possible in computer simulation. However in amorphous materials, relating mechanical properties, and failure in particular to microscopic structure remains problematic. Here we address this challenge by studying the contacts and the forces between particles, as well as their positions. To do so, we use a colloidal model system (an emulsion) in which the interparticle forces and local stress can be linked to the microscopic structure. We demonstrate the potential of our method to reveal insights into the failure mechanisms of soft amorphous solids by determining local stress in a colloidal gel. In particular, we identify "force chains" of load--bearing droplets, and local stress anisotropy, and investigate their connection with locally rigid packings of the droplets.
Collapse
Affiliation(s)
- Jun Dong
- University of Bristol, United Kingdom
| | | | - Robert L. Jack
- DAMTP, University of Cambridge Department of Applied Mathematics and Theoretical Physics, United Kingdom
| | | | | |
Collapse
|
10
|
Yu H, Wang Z, Long T, Li Y, Thushara D, Bao B, Zhao S. Permeability and Selectivity Analysis for Affinity‐based Nanoparticle Separation through Nanochannels. AIChE J 2022. [DOI: 10.1002/aic.17583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hongping Yu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Zhichao Wang
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Ting Long
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Yu Li
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Dilantha Thushara
- Department of Chemical and Process Engineering University of Moratuwa Moratuwa Sri Lanka
| | - Bo Bao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai People's Republic of China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering Guangxi University Nanning People's Republic of China
| |
Collapse
|
11
|
Fang A. Dynamical effective field model for interacting ferrofluids: I. Derivations for homogeneous, inhomogeneous, and polydisperse cases. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:115102. [PMID: 34911056 DOI: 10.1088/1361-648x/ac4345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Quite recently I have proposed a nonperturbative dynamical effective field model (DEFM) to quantitatively describe the dynamics of interacting ferrofluids. Its predictions compare very well with the results from Brownian dynamics simulations. In this paper I put the DEFM on firm theoretical ground by deriving it within the framework of dynamical density functional theory, taking into account nonadiabatic effects. The DEFM is generalized to inhomogeneous finite-size samples for which the macroscopic and mesoscopic scale separation is nontrivial due to the presence of long-range dipole-dipole interactions. The demagnetizing field naturally emerges from microscopic considerations and is consistently accounted for. The resulting mesoscopic dynamics only involves macroscopically local quantities such as local magnetization and Maxwell field. Nevertheless, the local demagnetizing field essentially couples to magnetization at distant macroscopic locations. Thus, a two-scale parallel algorithm, involving information transfer between different macroscopic locations, can be applied to fully solve the dynamics in an inhomogeneous sample. I also derive the DEFM for polydisperse ferrofluids, in which different species can be strongly coupled to each other dynamically. I discuss the underlying assumptions in obtaining a thermodynamically consistent polydisperse magnetization relaxation equation, which is of the same generic form as that for monodisperse ferrofluids. The theoretical advances presented in this paper are important for both qualitative understanding and quantitative modeling of the dynamics of ferrofluids and other dipolar systems.
Collapse
Affiliation(s)
- Angbo Fang
- School of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450011, People's Republic of China
| |
Collapse
|
12
|
Abstract
A framework for performant Brownian Dynamics (BD) many-body simulations with adaptive timestepping is presented. Contrary to the Euler-Maruyama scheme in common non-adaptive BD, we employ an embedded Heun-Euler integrator for the propagation of the overdamped coupled Langevin equations of motion. This enables the derivation of a local error estimate and the formulation of criteria for the acceptance or rejection of trial steps and for the control of optimal stepsize. Introducing erroneous bias in the random forces is avoided by rejection sampling with memory due to Rackauckas and Nie, which makes use of the Brownian bridge theorem and guarantees the correct generation of a specified random process even when rejecting trial steps. For test cases of Lennard-Jones fluids in bulk and in confinement, it is shown that adaptive BD solves performance and stability issues of conventional BD, already outperforming the latter even in standard situations. We expect this novel computational approach to BD to be especially helpful in long-time simulations of complex systems, e.g., in non-equilibrium, where concurrent slow and fast processes occur.
Collapse
Affiliation(s)
- Florian Sammüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
13
|
Li B, Wang YL, Shi G, Gao Y, Shi X, Woodward CE, Forsman J. Phase Transitions of Oppositely Charged Colloidal Particles Driven by Alternating Current Electric Field. ACS NANO 2021; 15:2363-2373. [PMID: 33576616 PMCID: PMC8023798 DOI: 10.1021/acsnano.0c04095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We study systems containing oppositely charged colloidal particles under applied alternating current electric fields (AC fields) using overdamped Langevin dynamics simulations in three dimensions. We obtain jammed bands perpendicular to the field direction under intermediate frequencies and lanes parallel with the field under low frequencies. These structures also depend upon the particle charges. The pathway for generating jammed bands follows a stepwise mechanism, and intermediate bands are observed during lane formation in some systems. We investigate the component of the pressure tensors in the direction parallel to the field and observe that the jammed to lane transition occurs at a critical value for this pressure. We also find that the stable steady states appear to satisfy the principle of maximum entropy production. Our results may help to improve the understand of the underlying mechanisms for these types of dynamic phase transitions and the subsequent cooperative assemblies of colloidal particles under such non-equilibrium conditions.
Collapse
Affiliation(s)
- Bin Li
- Laboratory
of Theoretical and Computational Nanoscience, CAS Key Laboratory for
Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in
Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
- Theoretical
Chemistry, Chemical Center, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Guang Shi
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yangyang Gao
- Key
Laboratory of Beijing City on Preparation and Processing of Novel
Polymer Materials, Beijing University of
Chemical Technology, Beijing 10029, China
- State Key
Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, China
| | - Xinghua Shi
- Laboratory
of Theoretical and Computational Nanoscience, CAS Key Laboratory for
Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in
Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Clifford E. Woodward
- School
of Physical, Environmental and Mathematical Sciences, University College,
ADFA, University of New South Wales, Canberra, ACT 2600, Australia
| | - Jan Forsman
- Theoretical
Chemistry, Chemical Center, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| |
Collapse
|
14
|
Treffenstädt LL, Schmidt M. Universality in Driven and Equilibrium Hard Sphere Liquid Dynamics. PHYSICAL REVIEW LETTERS 2021; 126:058002. [PMID: 33605743 DOI: 10.1103/physrevlett.126.058002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
We demonstrate that the time evolution of the van Hove dynamical pair correlation function is governed by adiabatic forces that arise from the free energy and by superadiabatic forces that are induced by the flow of the van Hove function. The superadiabatic forces consist of drag, viscous, and structural contributions, as occur in active Brownian particles, in liquids under shear and in lane forming mixtures. For hard sphere liquids, we present a power functional theory that predicts these universal force fields in quantitative agreement with our Brownian dynamics simulation results.
Collapse
Affiliation(s)
- Lucas L Treffenstädt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
15
|
He B, Martin-Fabiani I, Roth R, Tóth GI, Archer AJ. Dynamical Density Functional Theory for the Drying and Stratification of Binary Colloidal Dispersions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1399-1409. [PMID: 33471532 DOI: 10.1021/acs.langmuir.0c02825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We develop a dynamical density functional theory based model for the drying of colloidal films on planar surfaces. We consider mixtures of two different sizes of hard-sphere colloids. Depending on the solvent evaporation rate and the initial concentrations of the two species, we observe varying degrees of stratification in the final dried films. Our model predicts the various structures described in the literature previously from experiments and computer simulations, in particular the small-on-top stratified films. Our model also includes the influence of adsorption of particles to the interfaces.
Collapse
Affiliation(s)
- Boshen He
- Department of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | | | - Roland Roth
- Institut für Theoretische Physik, Universität Tübingen, Tübingen, Germany
| | - Gyula I Tóth
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
- Interdisciplinary Centre for Mathematical Modelling, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Andrew J Archer
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
- Interdisciplinary Centre for Mathematical Modelling, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
16
|
Flow-Driven Release of Molecules from a Porous Surface Explored Using Dynamical Density Functional Theory. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Hernández-Meza JM, Vélez-Cordero J, Yáñez-Soto B, Ramírez-Saito A, Aranda-Espinoza S, Arauz-Lara J. Interaction of colloidal particles with biologically relevant complex surfaces. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Lebovka NI, Tarasevich YY, Bulavin LA, Kovalchuk VI, Vygornitskii NV. Sedimentation of a suspension of rods: Monte Carlo simulation of a continuous two-dimensional problem. Phys Rev E 2019; 99:052135. [PMID: 31212574 DOI: 10.1103/physreve.99.052135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Indexed: 06/09/2023]
Abstract
The sedimentation of a two-dimensional suspension containing rods was studied by means of Monte Carlo (MC) simulations. An off-lattice model with continuous positional and orientational degrees of freedom was considered. The initial state before sedimentation was produced using a model of random sequential adsorption. During such sedimentation, the rods undergo translational and rotational Brownian motions. The MC simulations were run at different initial number densities (the numbers of rods per unit area), ρ_{i}, and sedimentation rates, u. For sediment films, the spatial distributions of the rods, the order parameters, and the electrical conductivities were examined. Different types of sedimentation-driven self-assembly and anisotropy of the electrical conductivity were revealed inside the sediment films. This anisotropy can be finely regulated by changes in the values of ρ_{i} and u.
Collapse
Affiliation(s)
- Nikolai I Lebovka
- Department of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kiev, Ukraine 03142
- Department of Physics, Taras Shevchenko Kiev National University, Kiev, Ukraine 01033
| | - Yuri Yu Tarasevich
- Laboratory of Mathematical Modeling, Astrakhan State University, Astrakhan, Russia 414056
| | - Leonid A Bulavin
- Department of Physics, Taras Shevchenko Kiev National University, Kiev, Ukraine 01033
| | - Valery I Kovalchuk
- Department of Physics, Taras Shevchenko Kiev National University, Kiev, Ukraine 01033
| | - Nikolai V Vygornitskii
- Department of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kiev, Ukraine 03142
| |
Collapse
|
19
|
Yang YJ, Franses EI, Corti DS. Effects of Light Dispersed Particles on the Stability of Dense Suspended Particles Against Sedimentation. J Phys Chem B 2019; 123:922-935. [PMID: 30605618 DOI: 10.1021/acs.jpcb.8b10172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yung-Jih Yang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907-2100, United States
| | - Elias I. Franses
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907-2100, United States
| | - David S. Corti
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907-2100, United States
| |
Collapse
|
20
|
Schindler T, Wittmann R, Brader JM. Particle-conserving dynamics on the single-particle level. Phys Rev E 2019; 99:012605. [PMID: 30780382 DOI: 10.1103/physreve.99.012605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 06/09/2023]
Abstract
We generalize the particle-conserving dynamics method of de las Heras et al. [J. Phys.: Condens. Matter 28, 244024 (2016)JCOMEL0953-898410.1088/0953-8984/28/24/244024] to binary mixtures and apply this to hard rods in one dimension. Considering the case of one species consisting of only one particle enables us to address the tagged-particle dynamics. The time-evolution of the species-labeled density profiles is compared to exact Brownian dynamics and (grand-canonical) dynamical density functional theory. The particle-conserving dynamics yields improved results over the dynamical density functional theory and well reproduces the simulation data at short and intermediate times. However, the neglect of a strict particle order (due to the fundamental statistical assumption of ergodicity) leads to errors at long times for our one-dimensional setup. The isolated study of that error makes clear the fundamental limitations of (adiabatic) density-based theoretical approaches when applied to systems of any dimension for which particle caging is a dominant physical mechanism.
Collapse
Affiliation(s)
- T Schindler
- Institute for Theoretical Physics I, Friedrich-Alexander University Erlangen-Nürnberg Theoretical Physics II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - R Wittmann
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - J M Brader
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
21
|
Jabeen Z, Yu HY, Eckmann DM, Ayyaswamy PS, Radhakrishnan R. Rheology of colloidal suspensions in confined flow: Treatment of hydrodynamic interactions in particle-based simulations inspired by dynamical density functional theory. Phys Rev E 2018; 98:042602. [PMID: 30687804 PMCID: PMC6345264 DOI: 10.1103/physreve.98.042602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigate the microstructure and rheology of a hard-sphere suspension in a Newtonian fluid confined in a cylindrical channel and undergoing pressure-driven flow using Monte Carlo simulations. We develop a hydrodynamic framework inspired by dynamical density functional theory approaches in which the contributions due to various flow-induced hydrodynamic interactions (HI) are included in the form of thermodynamic work done by these HI-derived forces in displacing the hard spheres. Using this framework, we can self-consistently determine the effect of the local microstructure on the average flow field, and vice versa, and coevolve the inhomogeneous density distribution and the flattening velocity profile with increase in the density of suspended particles. Specifically, we explore the effect on the local microstructure due to the inclusion of forces arising from confinement-induced inertial effects, forces due to solvent-mediated interparticle interactions, and the dependence of the diffusivity on the local density. We examine the dependence of the apparent viscosity of the suspension on the volume fraction of hard spheres in the cylinder, the flow rate, and the diameter of the cylinder and investigate their effects on the local microstructure.
Collapse
Affiliation(s)
- Zahera Jabeen
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hsiu-Yu Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - David M. Eckmann
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Portonovo S. Ayyaswamy
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
22
|
Spiteri L, Messina R, Gonzalez-Rodriguez D, Bécu L. Ordering of sedimenting paramagnetic colloids in a monolayer. Phys Rev E 2018; 98:020601. [PMID: 30253577 DOI: 10.1103/physreve.98.020601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 11/07/2022]
Abstract
Sedimentation enables self-assembly of colloidal particles into crystalline structures, as needed for catalysis or photonics applications. Here we combine experiments, theory, and simulations to investigate the equilibrium structure of a colloidal monolayer with tunable interparticle repulsion via an applied external magnetic field. Experimental observations of the equilibrium structure are in excellent agreement with density functional theory. Within a (zero-temperature) local density approximation, we derive a simple analytical expression that quantitatively captures the inhomogeneous ordering ranging from solid to liquidlike states. Monte Carlo simulations corroborate these findings and explore an even wider range of sedimentation conditions, thus providing a global view of the sedimentation-mediated ordering in colloidal monolayers with tunable long-ranged interparticle repulsions. Our findings shed further light on the classical sedimentation problem in colloidal science and related areas.
Collapse
Affiliation(s)
- Ludovic Spiteri
- Laboratoire de Physique et Chimie Théoriques LPCT-UMR CNRS 7019, Université de Lorraine, 1 Boulevard Arago, 57070 Metz, France.,LCP-A2MC, Institut Jean Barriol, Université de Lorraine, 1 Boulevard Arago, 57070 Metz, France
| | - René Messina
- Laboratoire de Physique et Chimie Théoriques LPCT-UMR CNRS 7019, Université de Lorraine, 1 Boulevard Arago, 57070 Metz, France
| | | | - Lydiane Bécu
- LCP-A2MC, Institut Jean Barriol, Université de Lorraine, 1 Boulevard Arago, 57070 Metz, France
| |
Collapse
|
23
|
Stopper D, Roth R. Nonequilibrium phase transitions of sheared colloidal microphases: Results from dynamical density functional theory. Phys Rev E 2018; 97:062602. [PMID: 30011532 DOI: 10.1103/physreve.97.062602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 06/08/2023]
Abstract
By means of classical density functional theory and its dynamical extension, we consider a colloidal fluid with spherically symmetric competing interactions, which are well known to exhibit a rich bulk phase behavior. This includes complex three-dimensional periodically ordered cluster phases such as lamellae, two-dimensional hexagonally packed cylinders, gyroid structures, or spherical micelles. While the bulk phase behavior has been studied extensively in earlier work, in this paper we focus on such structures confined between planar repulsive walls under shear flow. For sufficiently high shear rates, we observe that microphase separation can become fully suppressed. For lower shear rates, however, we find that, e.g., the gyroid structure undergoes a kinetic phase transition to a hexagonally packed cylindrical phase, which is found experimentally and theoretically in amphiphilic block copolymer systems. As such, besides the known similarities between the latter and colloidal systems regarding the equilibrium phase behavior, our work reveals further intriguing nonequilibrium relations between copolymer melts and colloidal fluids with competing interactions.
Collapse
Affiliation(s)
- Daniel Stopper
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Roland Roth
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| |
Collapse
|
24
|
de Las Heras D, Schmidt M. Better Than Counting: Density Profiles from Force Sampling. PHYSICAL REVIEW LETTERS 2018; 120:218001. [PMID: 29883170 DOI: 10.1103/physrevlett.120.218001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Calculating one-body density profiles in equilibrium via particle-based simulation methods involves counting of events of particle occurrences at (histogram-resolved) space points. Here, we investigate an alternative method based on a histogram of the local force density. Via an exact sum rule, the density profile is obtained with a simple spatial integration. The method circumvents the inherent ideal gas fluctuations. We have tested the method in Monte Carlo, Brownian dynamics, and molecular dynamics simulations. The results carry a statistical uncertainty smaller than that of the standard counting method, reducing therefore the computation time.
Collapse
Affiliation(s)
- Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
25
|
Stopper D, Thorneywork AL, Dullens RPA, Roth R. Bulk dynamics of Brownian hard disks: Dynamical density functional theory versus experiments on two-dimensional colloidal hard spheres. J Chem Phys 2018; 148:104501. [DOI: 10.1063/1.5019447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Daniel Stopper
- Institute for Theoretical Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Alice L. Thorneywork
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Roel P. A. Dullens
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Roland Roth
- Institute for Theoretical Physics, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
26
|
Hermann S, Schmidt M. Active ideal sedimentation: exact two-dimensional steady states. SOFT MATTER 2018; 14:1614-1621. [PMID: 29411843 DOI: 10.1039/c7sm02515g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We consider an ideal gas of active Brownian particles that undergo self-propelled motion and both translational and rotational diffusion under the influence of gravity. We solve analytically the corresponding Smoluchowski equation in two space dimensions for steady states. The resulting one-body density is given as a series, where each term is a product of an orientation-dependent Mathieu function and a height-dependent exponential. A lower hard wall is implemented as a no-flux boundary condition. Numerical evaluation of the suitably truncated analytical solution shows the formation of two different spatial regimes upon increasing Peclet number. These regimes differ in their mean particle orientation and in their variation of the orientation-averaged density with height.
Collapse
Affiliation(s)
- Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany.
| | | |
Collapse
|
27
|
Spyrogianni A, Karadima KS, Goudeli E, Mavrantzas VG, Pratsinis SE. Mobility and settling rate of agglomerates of polydisperse nanoparticles. J Chem Phys 2018; 148:064703. [PMID: 29448768 DOI: 10.1063/1.5012037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Agglomerate settling impacts nanotoxicology and nanomedicine as well as the stability of engineered nanofluids. Here, the mobility of nanostructured fractal-like SiO2 agglomerates in water is investigated and their settling rate in infinitely dilute suspensions is calculated by a Brownian dynamics algorithm tracking the agglomerate translational and rotational motion. The corresponding friction matrices are obtained using the HYDRO++ algorithm [J. G. de la Torre, G. del Rio Echenique, and A. Ortega, J. Phys. Chem. B 111, 955 (2007)] from the Kirkwood-Riseman theory accounting for hydrodynamic interactions of primary particles (PPs) through the Rotne-Prager-Yamakawa tensor, properly modified for polydisperse PPs. Agglomerates are generated by an event-driven method and have constant mass fractal dimension but varying PP size distribution, mass, and relative shape anisotropy. The calculated diffusion coefficient from HYDRO++ is used to obtain the agglomerate mobility diameter dm and is compared with that from scaling laws for fractal-like agglomerates. The ratio dm/dg of the mobility diameter to the gyration diameter of the agglomerate decreases with increasing relative shape anisotropy. For constant dm and mean dp, the agglomerate settling rate, us, increases with increasing PP geometric standard deviation σp,g (polydispersity). A linear relationship between us and agglomerate mass to dm ratio, m/dm, is revealed and attributed to the fast Brownian rotation of such small and light nanoparticle agglomerates. An analytical expression for the us of agglomerates consisting of polydisperse PPs is then derived, us=1-ρfρpg3πμmdm (ρf is the density of the fluid, ρp is the density of PPs, μ is the viscosity of the fluid, and g is the acceleration of gravity), valid for agglomerates for which the characteristic rotational time is considerably shorter than their settling time. Our calculations demonstrate that the commonly made assumption of monodisperse PPs underestimates us by a fraction depending on σp,g and agglomerate mass mobility exponent. Simulations are in excellent agreement with deposition rate measurements of fumed SiO2 agglomerates in water.
Collapse
Affiliation(s)
- Anastasia Spyrogianni
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Katerina S Karadima
- Department of Chemical Engineering, University of Patras, Patras 26504, Greece
| | - Eirini Goudeli
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Vlasis G Mavrantzas
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Sotiris E Pratsinis
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
28
|
Ketzetzi S, Russo J, Bonn D. Crystal nucleation in sedimenting colloidal suspensions. J Chem Phys 2018; 148:064901. [DOI: 10.1063/1.4990101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Stefania Ketzetzi
- Van der Waals-Zeeman Institute, Institute of Physics, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - John Russo
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
| | - Daniel Bonn
- Van der Waals-Zeeman Institute, Institute of Physics, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
29
|
de Las Heras D, Schmidt M. Velocity Gradient Power Functional for Brownian Dynamics. PHYSICAL REVIEW LETTERS 2018; 120:028001. [PMID: 29376691 DOI: 10.1103/physrevlett.120.028001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Indexed: 06/07/2023]
Abstract
We present an explicit and simple approximation for the superadiabatic excess (over ideal gas) free power functional, admitting the study of the nonequilibrium dynamics of overdamped Brownian many-body systems. The functional depends on the local velocity gradient and is systematically obtained from treating the microscopic stress distribution as a conjugate field. The resulting superadiabatic forces are beyond dynamical density functional theory and are of a viscous nature. Their high accuracy is demonstrated by comparison to simulation results.
Collapse
Affiliation(s)
- Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
30
|
González-Pinto M, Martínez-Ratón Y, Velasco E. Dynamical properties of heterogeneous nucleation of parallel hard squares. SOFT MATTER 2017; 13:9246-9258. [PMID: 29199755 DOI: 10.1039/c7sm01857f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We use the Dynamic Density-Functional Formalism and the Fundamental Measure Theory as applied to a fluid of parallel hard squares to study the dynamics of heterogeneous growth of non-uniform phases with columnar and crystalline symmetries. The hard squares are (i) confined between soft repulsive walls with a square symmetry, or (ii) exposed to external potentials that mimic the presence of obstacles with circular, square, rectangular or triangular symmetries. For the first case the final equilibrium profile of a well commensurated cavity consists of a crystal phase with highly localized particles in concentric square layers at the nodes of a slightly deformed square lattice. We characterize the growth dynamics of the crystal phase by quantifying the interlayer and intralayer fluxes and the non-monotonicity of the former, the saturation time, and other dynamical quantities. The interlayer fluxes are much more monotonic in time, and dominant for poorly commensurated cavities, while the opposite is true for well commensurated cells: although smaller, the time evolution of interlayer fluxes is much more complex, presenting strongly damped oscillations which dramatically increase the saturation time. We also study how the geometry of the obstacle affects the symmetry of the final equilibrium non-uniform phase (columnar vs. crystal). For obstacles with fourfold symmetry, (circular and square) the crystal is more stable, while the columnar phase is stabilized for obstacles without this symmetry (rectangular or triangular). We find that, in general, density waves of columnar symmetry grow from the obstacle. However, additional particle localization along the wavefronts gives rise to a crystalline structure which is conserved for circular and square obstacles, but destroyed for the other two obstacles where columnar symmetry is restored.
Collapse
Affiliation(s)
- Miguel González-Pinto
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049, Madrid, Spain.
| | | | | |
Collapse
|
31
|
Wang M, Brady JF. Microstructures and mechanics in the colloidal film drying process. SOFT MATTER 2017; 13:8156-8170. [PMID: 29075714 DOI: 10.1039/c7sm01585b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We use Brownian Dynamics (BD) simulations and continuum models to study the microstructures and mechanics in the colloidal film drying process. Colloidal suspensions are compressed between a planar moving interface and a stationary substrate. In the BD simulations, we develop a new Energy Minimization Potential-Free (EMPF) algorithm to enforce the hard-sphere potential in confined systems and to accurately measure the stress profile. The interface moves either at a constant velocity Uw or via a constant imposed normal stress Σe. Comparing the interface motions to the particle Brownian motion defines the Péclet numbers PeU = Uwa/d0 and PeΣ = Σea3/kBT, respectively, where d0 = kBT/ζ with kBT the thermal energy scale, ζ the single-particle resistance, and a the particle radius. With a constant interface velocity, thermodynamics drives the suspension behavior when PeU ≪ 1, and homogeneous crystallization appears when the gap spacing between the two boundaries pushes the volume fraction above the equilibrium phase boundary. In contrast, when PeU ≫ 1, local epitaxial crystal growth appears adjacent to the moving interface even for large gap sizes. Interestingly, the most amorphous film microstructures are found at moderate PeU. The film stress profile develops sharp transitions and becomes step-like with growing Péclet number. With a constant imposed stress, the interface stops moving as the suspension pressure increases and the microstructural and mechanical behaviors are similar to the constant velocity case. Comparison with the simulations shows that the model accurately captures the stress on the moving interface, and quantitatively resolves the local stress and volume fraction distributions for low to moderate Péclet numbers. This work demonstrates the critical role of interface motion on the film microstructures and stresses.
Collapse
Affiliation(s)
- Mu Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
32
|
Lin NYC, Bierbaum M, Cohen I. Determining Quiescent Colloidal Suspension Viscosities Using the Green-Kubo Relation and Image-Based Stress Measurements. PHYSICAL REVIEW LETTERS 2017; 119:138001. [PMID: 29341681 DOI: 10.1103/physrevlett.119.138001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Indexed: 06/07/2023]
Abstract
By combining confocal microscopy and stress assessment from local structural anisotropy, we directly measure stresses in 3D quiescent colloidal liquids. Our noninvasive and nonperturbative method allows us to measure forces ≲50 fN with a small and tunable probing volume, enabling us to resolve the stress fluctuations arising from particle thermal motions. We use the Green-Kubo relation to relate these measured stress fluctuations to the bulk Brownian viscosity at different volume fractions, comparing against simulations and conventional rheometry measurements. We find that the Green-Kubo analysis gives excellent agreement with these prior results, suggesting that similar methods could be applied to investigations of local flow properties in many poorly understood far-from-equilibrium systems, including suspensions that are glassy, strongly sheared, or highly confined.
Collapse
Affiliation(s)
- Neil Y C Lin
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Matthew Bierbaum
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
33
|
Stopper D, Roth R. Massively parallel GPU-accelerated minimization of classical density functional theory. J Chem Phys 2017; 147:064508. [DOI: 10.1063/1.4997636] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniel Stopper
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Roland Roth
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| |
Collapse
|
34
|
|
35
|
Geigenfeind T, de Las Heras D. The role of sample height in the stacking diagram of colloidal mixtures under gravity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:064006. [PMID: 28002052 DOI: 10.1088/1361-648x/aa4e04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bulk phase separation is responsible for the occurrence of stacks of different layers in sedimentation of colloidal mixtures. A recently proposed theory (de las Heras and Schmidt 2013 Soft Matter 9 8636) establishes a unique connection between the bulk phase behaviour and sedimentation-diffusion-equilibrium. The theory constructs a stacking diagram of all possible sequences of stacks under gravity in the limit of very high (infinite) sample heights. Here, we study the stacking diagrams of colloidal mixtures at finite sample height, h. We demonstrate that h plays a vital role in sedimentation-diffusion-equilibrium of colloidal mixtures. The region of the stacking diagram occupied by a given sequence of stacks depends on h. Hence, two samples with different heights but identical colloidal concentrations can develop different stacking sequences. In addition, the stacking diagrams for different heights can be qualitatively different since some stacking sequences occur only in a given interval of sample heights. We use the theory to investigate the stacking diagrams of both model bulk systems and mixtures of patchy particles that differ either by the number or by the types of patches.
Collapse
Affiliation(s)
- Thomas Geigenfeind
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | |
Collapse
|
36
|
Bakker HE, Besseling TH, Wijnhoven JEGJ, Helfferich PH, van Blaaderen A, Imhof A. Microelectrophoresis of Silica Rods Using Confocal Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:881-890. [PMID: 28045541 PMCID: PMC5348103 DOI: 10.1021/acs.langmuir.6b03863] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/31/2016] [Indexed: 06/06/2023]
Abstract
The electrophoretic mobility and the zeta potential (ζ) of fluorescently labeled colloidal silica rods, with an aspect ratio of 3.8 and 6.1, were determined with microelectrophoresis measurements using confocal microscopy. In the case where the colloidal particles all move at the same speed parallel to the direction of the electric field, we record a xyz-stack over the whole depth of the capillary. This method is faster and more robust compared to taking xyt-series at different depths inside the capillary to obtain the parabolic flow profile, as was done in previous work from our group. In some cases, rodlike particles do not move all at the same speed in the electric field, but exhibit a velocity that depends on the angle between the long axis of the rod and the electric field. We measured the orientation-dependent velocity of individual silica rods during electrophoresis as a function of κa, where κ-1 is the double layer thickness and a is the radius of the rod associated with the diameter. Thus, we determined the anisotropic electrophoretic mobility of the silica rods with different sized double layers. The size of the double layer was tuned by suspending silica rods in different solvents at different electrolyte concentrations. We compared these results with theoretical predictions. We show that even at already relatively high κa when the Smoluchowski limiting law is assumed to be valid (κa > 10), an orientation dependent velocity was measured. Furthermore, we observed that at decreasing values of κa the anisotropy in the electrophoretic mobility of the rods increases. However, in low polar solvents with κa < 1, this trend was reversed: the anisotropy in the electrophoretic mobility of the rods decreased. We argue that this decrease is due to end effects, which was already predicted theoretically. When end effects are not taken into account, this will lead to strong underestimation of the experimentally determined zeta potential.
Collapse
|
37
|
Stopper D, Roth R, Hansen-Goos H. Structural relaxation and diffusion in a model colloid-polymer mixture: dynamical density functional theory and simulation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:455101. [PMID: 27608916 DOI: 10.1088/0953-8984/28/45/455101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Within the Asakura-Oosawa model, we study structural relaxation in mixtures of colloids and polymers subject to Brownian motion in the overdamped limit. We obtain the time evolution of the self and distinct parts of the van Hove distribution function G(r,t) by means of dynamical density functional theory (DDFT) using an accurate free-energy functional based on Rosenfeld's fundamental measure theory. In order to remove unphysical interactions within the self part, we extend the recently proposed quenched functional framework (Stopper et al 2015 J. Chem. Phys. 143 181105) toward mixtures. In addition, we obtain results for the long-time self diffusion coefficients of colloids and polymers from dynamic Monte Carlo simulations, which we incorporate into the DDFT. From the resulting DDFT equations we calculate G(r, t), which we find to agree very well with our simulations. In particular, we examine the influence of polymers which are slow relative to the colloids-a scenario for which both DDFT and simulation show a significant peak forming at r = 0 in the colloid-colloid distribution function, akin to experimental findings involving gelation of colloidal suspensions. Moreover, we observe that, in the presence of slow polymers, the long-time self diffusivity of the colloids displays a maximum at an intermediate colloid packing fraction. This behavior is captured by a simple semi-empirical formula, which provides an excellent description of the data.
Collapse
Affiliation(s)
- Daniel Stopper
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | | | | |
Collapse
|
38
|
Bernreuther E, Schmidt M. Superadiabatic forces in the dynamics of the one-dimensional Gaussian core model. Phys Rev E 2016; 94:022105. [PMID: 27627244 DOI: 10.1103/physreve.94.022105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 06/06/2023]
Abstract
Using Brownian dynamics computer simulations we investigate the dynamics of the one-body density and one-body current in a one-dimensional system of particles that interact with a repulsive Gaussian pair potential. We systematically split the internal force distribution into an adiabatic part, which originates from the equilibrium free energy, and a superadiabatic contribution, which is neglected in dynamical density functional theory. We find a strong dependence of the magnitude and phase of the superadiabatic force distribution on the initial state of the system. While the magnitude of the superadiabatic force is small if the system evolves from an equilibrium state inside of a parabolic external potential, it is large for particles with equidistant initial separations at high temperature. We analyze these findings in the light of the known mean-field behavior of Gaussian core particles and discuss a multi-occupancy mechanism which generates superadiabatic forces that are out of phase with respect to the adiabatic force.
Collapse
Affiliation(s)
- Elias Bernreuther
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
39
|
de Las Heras D, Brader JM, Fortini A, Schmidt M. Particle conservation in dynamical density functional theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:244024. [PMID: 27115673 DOI: 10.1088/0953-8984/28/24/244024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present the exact adiabatic theory for the dynamics of the inhomogeneous density distribution of a classical fluid. Erroneous particle number fluctuations of dynamical density functional theory are absent, both for canonical and grand canonical initial conditions. We obtain the canonical free energy functional, which yields the adiabatic interparticle forces of overdamped Brownian motion. Using an exact and one of the most advanced approximate hard core free energy functionals, we obtain excellent agreement with simulations. The theory applies to finite systems in and out of equilibrium.
Collapse
Affiliation(s)
- Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | | | | |
Collapse
|
40
|
Yang YJ, Kelkar AV, Corti DS, Franses EI. Effect of Interparticle Interactions on Agglomeration and Sedimentation Rates of Colloidal Silica Microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5111-5123. [PMID: 27120677 DOI: 10.1021/acs.langmuir.6b00925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Yung-Jih Yang
- School of Chemical Engineering, Purdue University , 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Aniruddha V Kelkar
- School of Chemical Engineering, Purdue University , 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - David S Corti
- School of Chemical Engineering, Purdue University , 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Elias I Franses
- School of Chemical Engineering, Purdue University , 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
41
|
de las Heras D, Treffenstädt LL, Schmidt M. Reentrant network formation in patchy colloidal mixtures under gravity. Phys Rev E 2016; 93:030601. [PMID: 27078278 DOI: 10.1103/physreve.93.030601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 06/05/2023]
Abstract
We study a two-dimensional binary mixture of patchy colloids in sedimentation-diffusion equilibrium using Monte Carlo simulation and Wertheim's theory. By tuning the buoyant masses of the colloids we can control the gravity-induced sequence of fluid stacks of differing density and percolation properties. We find complex stacking sequences with up to four layers and reentrant network formation, consistently in simulations and theoretically using only the bulk phase diagram as input. Our theory applies to general patchy colloidal mixtures and is relevant to understanding experiments under gravity.
Collapse
Affiliation(s)
- Daniel de las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Lucas L Treffenstädt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
42
|
Teich EG, van Anders G, Klotsa D, Dshemuchadse J, Glotzer SC. Clusters of polyhedra in spherical confinement. Proc Natl Acad Sci U S A 2016; 113:E669-78. [PMID: 26811458 PMCID: PMC4760782 DOI: 10.1073/pnas.1524875113] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dense particle packing in a confining volume remains a rich, largely unexplored problem, despite applications in blood clotting, plasmonics, industrial packaging and transport, colloidal molecule design, and information storage. Here, we report densest found clusters of the Platonic solids in spherical confinement, for up to [Formula: see text] constituent polyhedral particles. We examine the interplay between anisotropic particle shape and isotropic 3D confinement. Densest clusters exhibit a wide variety of symmetry point groups and form in up to three layers at higher N. For many N values, icosahedra and dodecahedra form clusters that resemble sphere clusters. These common structures are layers of optimal spherical codes in most cases, a surprising fact given the significant faceting of the icosahedron and dodecahedron. We also investigate cluster density as a function of N for each particle shape. We find that, in contrast to what happens in bulk, polyhedra often pack less densely than spheres. We also find especially dense clusters at so-called magic numbers of constituent particles. Our results showcase the structural diversity and experimental utility of families of solutions to the packing in confinement problem.
Collapse
Affiliation(s)
- Erin G Teich
- Applied Physics Program, University of Michigan, Ann Arbor, MI 48109
| | - Greg van Anders
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Daphne Klotsa
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Julia Dshemuchadse
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Sharon C Glotzer
- Applied Physics Program, University of Michigan, Ann Arbor, MI 48109; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
43
|
Liu Y. Development of 3-dimensional time-dependent density functional theory and its application to gas diffusion in nanoporous materials. Phys Chem Chem Phys 2016; 18:13158-63. [DOI: 10.1039/c6cp01610c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An entropy scaling based TDDFT has been proposed and applied to diffusion in a nanoporous material.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Chemical Engineering and Department of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
44
|
Stopper D, Roth R, Hansen-Goos H. Communication: Dynamical density functional theory for dense suspensions of colloidal hard spheres. J Chem Phys 2015; 143:181105. [DOI: 10.1063/1.4935967] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
45
|
Olais-Govea JM, López-Flores L, Medina-Noyola M. Non-equilibrium theory of arrested spinodal decomposition. J Chem Phys 2015; 143:174505. [DOI: 10.1063/1.4935000] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Kodger TE, Guerra RE, Sprakel J. Precise colloids with tunable interactions for confocal microscopy. Sci Rep 2015; 5:14635. [PMID: 26420044 PMCID: PMC4588590 DOI: 10.1038/srep14635] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/02/2015] [Indexed: 11/08/2022] Open
Abstract
Model colloidal systems studied with confocal microscopy have led to numerous insights into the physics of condensed matter. Though confocal microscopy is an extremely powerful tool, it requires a careful choice and preparation of the colloid. Uncontrolled or unknown variations in the size, density, and composition of the individual particles and interactions between particles, often influenced by the synthetic route taken to form them, lead to difficulties in interpreting the behavior of the dispersion. Here we describe the straightforward synthesis of copolymer particles which can be refractive index- and density-matched simultaneously to a non-plasticizing mixture of high dielectric solvents. The interactions between particles are accurately tuned by surface grafting of polymer brushes using Atom Transfer Radical Polymerization (ATRP), from hard-sphere-like to long-ranged electrostatic repulsion or mixed charge attraction. We also modify the buoyant density of the particles by altering the copolymer ratio while maintaining their refractive index match to the suspending solution resulting in well controlled sedimentation. The tunability of the inter-particle interactions, the low volatility of the solvents, and the capacity to simultaneously match both the refractive index and density of the particles to the fluid opens up new possibilities for exploring the physics of colloidal systems.
Collapse
Affiliation(s)
- Thomas E. Kodger
- School of Engineering and Applies Sciences, Harvard University, Cambridge, 02138, USA
| | - Rodrigo E. Guerra
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB, Wageningen, the Netherlands
| |
Collapse
|
47
|
Stopper D, Marolt K, Roth R, Hansen-Goos H. Modeling diffusion in colloidal suspensions by dynamical density functional theory using fundamental measure theory of hard spheres. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022151. [PMID: 26382387 DOI: 10.1103/physreve.92.022151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 06/05/2023]
Abstract
We study the dynamics of colloidal suspensions of hard spheres that are subject to Brownian motion in the overdamped limit. We obtain the time evolution of the self- and distinct parts of the van Hove function by means of dynamical density functional theory. The free-energy model for the hard-sphere fluid that we use is the very accurate White Bear II version of Rosenfeld's fundamental measure theory. However, in order to remove interactions within the self-part of the van Hove function, a nontrivial modification has to be applied to the free-energy functional. We compare our theoretical results with data that we obtain from dynamical Monte Carlo simulations, and we find that the latter are well described by our approach even for colloid packing fractions as large as 40%.
Collapse
Affiliation(s)
- Daniel Stopper
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Kevin Marolt
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Roland Roth
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Hendrik Hansen-Goos
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| |
Collapse
|
48
|
Angioletti-Uberti S, Ballauff M, Dzubiella J. Dynamic density functional theory of protein adsorption on polymer-coated nanoparticles. SOFT MATTER 2014; 10:7932-7945. [PMID: 25052205 DOI: 10.1039/c4sm01170h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a theoretical model for the description of the adsorption kinetics of globular proteins onto charged core-shell microgel particles based on Dynamic Density Functional Theory (DDFT). This model builds on a previous description of protein adsorption thermodynamics [Yigit et al., Langmuir, 2012, 28], shown to well interpret the available calorimetric experimental data of binding isotherms. In practice, a spatially-dependent free-energy functional including the same physical interactions is built, and used to study the kinetics via a generalised diffusion equation. To test this model, we apply it to the case study of lysozyme adsorption on PNIPAM coated nanoparticles, and show that the dynamics obtained within DDFT is consistent with that extrapolated from experiments. We also perform a systematic study of the effect of various parameters in our model, and investigate the loading dynamics as a function of proteins' valence and hydrophobic adsorption energy, as well as their concentration and that of the nanoparticles. Although we concentrated here on the case of adsorption for a single protein type, the model's generality allows to study multi-component system, providing a reliable instrument for future studies of competitive and cooperative adsorption effects often encountered in protein adsorption experiments.
Collapse
|
49
|
Turci F, Schilling T. Crystal growth from a supersaturated melt: relaxation of the solid-liquid dynamic stiffness. J Chem Phys 2014; 141:054706. [PMID: 25106599 DOI: 10.1063/1.4891671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We discuss the growth process of a crystalline phase out of a metastable over-compressed liquid that is brought into contact with a crystalline substrate. The process is modeled by means of molecular dynamics. The particles interact via the Lennard-Jones potential and their motion is locally thermalized by Langevin dynamics. We characterize the relaxation process of the solid-liquid interface, showing that the growth speed is maximal for liquid densities above the solid coexistence density, and that the structural properties of the interface rapidly converge to equilibrium-like properties. In particular, we show that the off-equilibrium dynamic stiffness can be extracted using capillary wave theory arguments, even if the growth front moves fast compared to the typical diffusion time of the compressed liquid, and that the dynamic stiffness converges to the equilibrium stiffness in times much shorter than the diffusion time.
Collapse
Affiliation(s)
- Francesco Turci
- Theory of Soft Condensed Matter, Physics and Materials Science Research Unit, Université du Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Tanja Schilling
- Theory of Soft Condensed Matter, Physics and Materials Science Research Unit, Université du Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
50
|
Sánchez-Díaz LE, Lázaro-Lázaro E, Olais-Govea JM, Medina-Noyola M. Non-equilibrium dynamics of glass-forming liquid mixtures. J Chem Phys 2014; 140:234501. [DOI: 10.1063/1.4882356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|