1
|
Huang Z, Zhang S, Chen R, Zhu Q, Shi P, Shen Y. The transporter PHO84/NtPT1 is a target of aluminum to affect phosphorus absorption in Saccharomyces cerevisiae and Nicotiana tabacum L. Metallomics 2023; 15:mfad069. [PMID: 37994650 DOI: 10.1093/mtomcs/mfad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
The molecular mechanism of aluminum toxicity in biological systems is not completely understood. Saccharomyces cerevisiae is one of the most used model organisms in the study of environmental metal toxicity. Using an unbiased metallomic approach in yeast, we found that aluminum treatment caused phosphorus deprivation, and the lack of phosphorus increased as the pH of the environment decreased compared to the control strain. By screening the phosphate signaling and response pathway (PHO pathway) in yeast with the synthetic lethality of a new phosphorus-restricted aluminum-sensitive gene, we observed that pho84Δ mutation conferred severe growth defect to aluminum under low-phosphorus conditions, and the addition of phosphate alleviated this sensitivity. Subsequently, the data showed that PHO84 determined the intracellular aluminum-induced phosphorus deficiency, and the expression of PHO84 was positively correlated with aluminum stress, which was mediated by phosphorus through the coordinated regulation of PHO4/PHO2. Moreover, aluminum reduced phosphorus absorption and inhibited tobacco plant growth in acidic media. In addition, the high-affinity phosphate transporter NtPT1 in tobacco exhibited similar effects to PHO84, and overexpression of NtPT1 conferred aluminum resistance in yeast cells. Taken together, positive feedback regulation of the PHO pathway centered on the high-affinity phosphate transporters is a highly conservative mechanism in response to aluminum toxicity. The results may provide a basis for aluminum-resistant microorganisms or plant engineering and acidic soil treatment.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Shixuan Zhang
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Ranran Chen
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Qian Zhu
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuhu Shen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
2
|
Makete N, Rizzu M, Seddaiu G, Gohole L, Otinga A. Fluoride toxicity in cropping systems: Mitigation, adaptation strategies and related mechanisms. A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155129. [PMID: 35405235 DOI: 10.1016/j.scitotenv.2022.155129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Environmental fluoride (F-) contamination, mainly due to natural geogenic processes, and in spot cases also of anthropogenic origin, is a widespread global issue, which has been recognized to affect all living organisms. From the contaminated soil and water, F- is absorbed by plants which can manifest symptoms of abiotic stress including oxidative stress and interference with essential physiological and biochemical processes involved in seed germination and plant growth and development. Depending on the diet of the population living in the high F-polluted areas, F-contaminated crops can be key contributors to excessive F- intake along food chains which can lead to human and animal health issues. Various strategies are being explored with the objective of reducing both F- bioaccumulation and its damage on plants (e.g. by means of immobilization or phytoextraction processes) or aimed at limiting the F- anthropogenic input in the soil (e.g. through the use of alternative phosphate fertilizers) but the literature is still fragmented. After a brief overview on the effects of F- on the production and safety of food crops, its sources, mobility and bioavailability in agricultural soils, this paper reviews the available F- mitigation and adaptation options and the involved mechanisms with the aim of providing stakeholders with knowledge to make informed decisions when selecting methods for coping with F- impacts in agricultural systems. Research gaps and possible areas for future studies have also been suggested.
Collapse
Affiliation(s)
- Noel Makete
- NSRC-Department of Agronomy, Kenya Agricultural & Livestock Research Organization, P.O. Box 7816-01000, Thika, Kenya
| | - Margherita Rizzu
- Dipartimento di Agraria, University of Sassari, Viale Italia 39/A, 07100 Sassari, Italy; Nucleo di Ricerca sulla Desertificazione, NRD, University of Sassari, Viale Italia 39/A, 07100 Sassari, Italy.
| | - Giovanna Seddaiu
- Dipartimento di Agraria, University of Sassari, Viale Italia 39/A, 07100 Sassari, Italy; Nucleo di Ricerca sulla Desertificazione, NRD, University of Sassari, Viale Italia 39/A, 07100 Sassari, Italy
| | - Linnet Gohole
- Department of Seed, Crop and Horticultural Sciences, University of Eldoret, P. O. BOX 1125-30100 Eldoret, Kenya
| | - Abigael Otinga
- Department of Soil Science, University of Eldoret, P. O. BOX 1125-30100 Eldoret, Kenya
| |
Collapse
|
3
|
Chen F, Ai H, Wei M, Qin C, Feng Y, Ran S, Wei Z, Niu H, Zhu Q, Zhu H, Chen L, Sun J, Hou H, Chen K, Ye H. Distribution and phytotoxicity of soil labile aluminum fractions and aluminum species in soil water extracts and their effects on tall fescue. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:180-187. [PMID: 30053588 DOI: 10.1016/j.ecoenv.2018.07.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Soil acidification can alter the biogeochemistry of ecosystems and adversely affect biota; however, there are still many debates about the toxicity of aluminum (Al) fractions and Al species in soil:water extracts to plants. In this study, five crude soils with different pH values (4.92-8.51) were collected, seeded with tall fescue and grown in rhizosphere boxes for 120 days. Then, soil properties, labile Al fractions and Al species in soil:water extracts were determined, and their toxicities to plants were analyzed. Our study showed that a stable exchangeable Al fraction (ExAl) pool exists and is supplied by other labile Al fractions. Dissolution of Al from adsorbed hydroxyl-Al fraction (HyAl) and organic-Al fraction (OrAl) may play important roles in soil Al toxicity, as HyAl and OrAl account for major parts of soil labile Al. Additionally, Al3+ and mononuclear hydroxyl-Al species in soil:water extracts have few effects to plants. Nevertheless, high negative correlations were found between Al-F- complexes and tall fescue biomass, indicating their toxicity in the natural soil environment. Thus, in many cases, Al3+ toxicity should not be emphasized because of its lower activity in soil water extracts. Moreover, toxicities of AlF3(aq) and AlF4- to plants should be emphasized, because they have been confirmed in soil water extracts in this study.
Collapse
Affiliation(s)
- Fangman Chen
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, PR China
| | - Honglian Ai
- College of Pharmacy, South-Central University for Nationalities, Wuhan, PR China
| | - Mengting Wei
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, PR China
| | - Chunliu Qin
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, PR China
| | - Yang Feng
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, PR China
| | - Shangming Ran
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, PR China
| | - Zhihui Wei
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, PR China
| | - Hong Niu
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, PR China
| | - Qing Zhu
- Wuhan Kaidi Electric Power Environmental Co., Ltd., Wuhan, PR China
| | - Huihui Zhu
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, PR China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan, PR China
| | - Jie Sun
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, PR China
| | - Haobo Hou
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, PR China
| | - Ke Chen
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, PR China.
| | - Hengpeng Ye
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, PR China.
| |
Collapse
|
4
|
Kopittke PM, Menzies NW, Wang P, Blamey FPC. Kinetics and nature of aluminium rhizotoxic effects: a review. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4451-67. [PMID: 27302129 DOI: 10.1093/jxb/erw233] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Acid soils with elevated levels of soluble aluminium (Al) comprise ~40% of the world's arable land, but there remains much uncertainty regarding the mechanisms by which Al is rhizotoxic. This review examines the kinetics of the toxic effects of Al on the root elongation rate (RER), its effects on root tissues, and its location at a subcellular level. Depending upon the concentration and plant species, soluble Al decreases the RER in a median time of 73min, but in as little as 5min in soybean. This is initially due to a decreased rate at which cells expand anisotropically in the elongation zone. Thereafter, rhizodermal and outer cortical cells rupture through decreased cell wall relaxation. It is in this region where most Al accumulates in the apoplast. Subsequently, Al impacts root growth at a subcellular level through adverse effects on the plasma membrane (PM), cytoplasm, and nucleus. At the PM, Al alters permeability, fluidity, and integrity in as little as 0.5h, whilst it also depolarizes the PM and reduces H(+)-ATPase activity. The Al potentially crosses the PM within 0.5h where it is able to bind to the nucleus and inhibit cell division; sequestration within the vacuole is required to reduce the toxic effects of Al within the cytoplasm. This review demonstrates the increasing evidence of the importance of the initial Al-induced inhibition of wall loosening, but there is evidence also of the deleterious effects of Al on other cellular processes which are important for long-term root growth and function.
Collapse
Affiliation(s)
- Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Neal W Menzies
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Peng Wang
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - F Pax C Blamey
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| |
Collapse
|
5
|
Ma Z, Huang B, Xu S, Chen Y, Cao G, Ding G, Lin S. Ion Flux in Roots of Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook) under Aluminum Stress. PLoS One 2016; 11:e0156832. [PMID: 27270726 PMCID: PMC4894599 DOI: 10.1371/journal.pone.0156832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 05/21/2016] [Indexed: 12/05/2022] Open
Abstract
Chinese fir is a tall, fast-growing species that is unique to southern China. In Chinese fir plantations, successive plantings have led to a decline in soil fertility, and aluminum toxicity is thought to be one of the main reasons for this decline. In this study, Non-invasive Micro-test Technology was used to study the effect of aluminum stress on the absorption of 4 different ions in the roots of the Chinese fir clone FS01. The results are as follows: with increased aluminum concentration and longer periods of aluminum stress, the H+ ion flow gradually changed from influx into efflux; there was a large variation in the K+ efflux, which gradually decreased with increasing duration of aluminum stress; and 1 h of aluminum stress uniformly resulted in Ca2+ influx, but it changed from influx to efflux after a longer period of aluminum stress. Changes in the different concentrations of aluminum had the largest influence on Mg2+.
Collapse
Affiliation(s)
- Zhihui Ma
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, Fujian, China
| | - Binlong Huang
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, Fujian, China
- Fujian Provincial Forestry Survey and Design Institute, Fuzhou, Fujian, China
| | - Shanshan Xu
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, Fujian, China
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
| | - Yu Chen
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, Fujian, China
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
| | - Guangqiu Cao
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, Fujian, China
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
| | - Guochang Ding
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, Fujian, China
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
| | - Sizu Lin
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, Fujian, China
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
6
|
Boukhris A, Laffont-Schwob I, Rabier J, Salducci MD, El Kadri L, Tonetto A, Tatoni T, Chaieb M. Changes in mesophyll element distribution and phytometabolite contents involved in fluoride tolerance of the arid gypsum-tolerant plant species Atractylis serratuloides Sieber ex Cass. (Asteraceae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7918-7929. [PMID: 25510616 DOI: 10.1007/s11356-014-3957-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/04/2014] [Indexed: 06/04/2023]
Abstract
Atractylis serratuloides is an abundant native spiny species that grows in the surroundings of superphosphate factories in Tunisia. This plant species is adapted to arid environments and tolerates a high level of fluoride pollution in soils. The aim of this study was to better understand the physiological mechanisms of fluoride tolerance of this species, comparing the fluoride-contaminated sites of Gabes and Skhira with the reference site of Smara. Results demonstrated the involvement of leaf element and phytometabolite balances in the in situ response of A. serrulatoides to fluoride. Calcium, sulphur and magnesium were differently distributed between the sites of Gabes and Smara in all plant organs. No specific tissue fluorine accumulation in root, stem and leaf, even in the most contaminated site at Gabes, was detected by EDAX mapping. Lower anthocyan and flavonol levels but enhanced nitrogen balance index were found in A. serrulatoides leaves from Gabes compared to the two other sites. A. serratuloides appeared as a fluoride excluder and its tolerance involved calcium interactions with fluoride. Moreover, an occurrence of dark septate endophytes and arbuscular mycorhizal fungi in root systems of A. serratuloides was reported for the first time, and these symbioses were present but low at all sites. We suggest the use of this plant species for fluoride-polluted soil stabilization.
Collapse
Affiliation(s)
- Asma Boukhris
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, 52 Avenue Normandie-Niemen, 13397, Marseille CEDEX 20, France,
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Specificity of Ion Uptake and Homeostasis Maintenance During Acid and Aluminium Stresses. ALUMINUM STRESS ADAPTATION IN PLANTS 2015. [DOI: 10.1007/978-3-319-19968-9_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Crémazy A, Campbell PGC, Fortin C. In the presence of fluoride, free Sc³⁺ is not a good predictor of Sc bioaccumulation by two unicellular algae: possible role of fluoro-complexes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9754-9761. [PMID: 24978590 DOI: 10.1021/es5016247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We investigated the effect of fluoride complexation on scandium accumulation by two unicellular algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. This trivalent metal was selected for its chemical similarities with aluminum and for its convenient radioisotope (Sc-46), which can be used as a tracer in short-term bioaccumulation studies. Scandium surface-bound concentrations (Sc(ads)) and uptake fluxes (J(int)) were estimated in the two algae over short-term (<1 h) exposures at pH 5 and in the presence of 0 to 40 μM F(-). Although the computed proportion of dissolved Sc(3+) dropped from 20% to 0.01% over this [F(-)] range, Sc(ads) and J(int) values for both algae decreased only slightly, suggesting a participation of Sc fluoro-complexes in both processes. Surface adsorption and uptake of fluoride complexes with aluminum have been reported in the literature. These observations are not taken into account by current models for trace metal bioaccumulation (e.g., the biotic ligand model). Results from a previous study, where the effects of pH on Sc uptake were investigated, suggested that Sc hydroxo-complexes were internalized by C. reinhardtii. There is thus growing evidence that the free ion concentration may not be adequate to predict the accumulation of Sc (and potentially of other trivalent metals) in aquatic organisms.
Collapse
Affiliation(s)
- Anne Crémazy
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement (INRS-ETE) , 490 de la Couronne, G1K 9A9, Québec Canada
| | | | | |
Collapse
|
9
|
Bose J, Babourina O, Shabala S, Rengel Z. Low-pH and aluminum resistance in arabidopsis correlates with high cytosolic magnesium content and increased magnesium uptake by plant roots. PLANT & CELL PHYSIOLOGY 2013; 54:1093-104. [PMID: 23620479 DOI: 10.1093/pcp/pct064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Low-pH stress and Al(3+) toxicity affect root growth in acid soils. It was hypothesized that the capacity of genotypes to maintain Mg(2+) uptake in acidic environments may contribute to low-pH and Al resistance, but explicit evidence is lacking. In this work, an Al-resistant alr104 mutant and two Al-sensitive mutants (als5 and als3) of Arabidopsis thaliana were compared with the wild type (Col-0) for Mg(2+) uptake and intracellular Mg(2+) concentration under low-pH and combined low-pH/Al stresses. Magnesium accumulation in roots was measured in long-term (7 d) experiments. The Mg(2+) fluxes were measured using ion-sensitive microelectrodes at the distal elongation and the mature root zones in short-term (0-60 min) experiments. Intracellular Mg(2+) concentrations were measured in intact root cells at the distal elongation zone using magnesium-specific fluorescent dye and fluorescent lifetime imaging (FLIM) analysis. Under low-pH stress, Arabidopsis mutants als5 and alr104 maintained a higher Mg concentration in roots, and had greater Mg(2+) influx than the wild type and the als3 mutant. Under combined low-pH/Al treatment, Al-resistant genotypes (wild type and alr104) maintained a higher Mg(2+) accumulation, and had a higher Mg(2+) influx and higher intracellular Mg(2+) concentration than Al-sensitive genotypes (als3 and als5). Overall, these results show that increased Mg(2+) uptake correlates with an enhanced capacity of Arabidopsis genotypes to cope with low-pH and combined low-pH/Al stresses.
Collapse
Affiliation(s)
- Jayakumar Bose
- School of Earth and Environment, University of Western Australia, Crawley, WA 6009, Australia.
| | | | | | | |
Collapse
|
10
|
Prystupa J. Fluorine—A current literature review. An NRC and ATSDR based review of safety standards for exposure to fluorine and fluorides. Toxicol Mech Methods 2011; 21:103-70. [DOI: 10.3109/15376516.2010.542931] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Manoharan V, Loganathan P, Tillman RW, Parfitt RL. Interactive effects of soil acidity and fluoride on soil solution aluminium chemistry and barley (Hordeum vulgare L.) root growth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 145:778-86. [PMID: 16831500 DOI: 10.1016/j.envpol.2006.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 05/10/2006] [Accepted: 05/14/2006] [Indexed: 05/10/2023]
Abstract
A greenhouse study was conducted to determine if concentrations of fluoride (F), which would be added to acid soils via P fertilisers, were detrimental to barley root growth. Increasing rates of F additions to soil significantly increased the soil solution concentrations of aluminium (Al) and F irrespective of the initial adjusted soil pH, which ranged from 4.25 to 5.48. High rates of F addition severely restricted root growth; the effect was more pronounced in the strongly acidic soil. Speciation calculations demonstrated that increasing rates of F additions substantially increased the concentrations of Al-F complexes in the soil. Stepwise regression analysis showed that it was the combination of the activities of AlF2(1+) and AlF(2+) complexes that primarily controlled barley root growth. The results suggested that continuous input of F to soils, and increased soil acidification, may become an F risk issue in the future.
Collapse
Affiliation(s)
- V Manoharan
- Soil and Earth Sciences, Institute of Natural Resources, Massey University, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
12
|
Yang JL, You JF, Li YY, Wu P, Zheng SJ. Magnesium enhances aluminum-induced citrate secretion in rice bean roots (Vigna umbellata) by restoring plasma membrane H+-ATPase activity. PLANT & CELL PHYSIOLOGY 2007; 48:66-73. [PMID: 17132634 DOI: 10.1093/pcp/pcl038] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We demonstrated that magnesium (Mg) can alleviate aluminum (Al) toxicity in rice bean [Vigna umbellata (Thunb.) Ohwi & Ohashi] more effectively than is expected from a non-specific cation response. Micromolar concentrations of Mg alleviated the inhibition of root growth by Al but not by lanthanum, and neither strontium nor barium at the micromolar level alleviates Al toxicity. Aluminum also induced citrate efflux from rice bean roots, and this response was stimulated by inclusion of 10 microM Mg in the treatment solution. The increase in the Al-induced citrate efflux by Mg paralleled the improvement in root growth, suggesting that the ameliorative effect of Mg might be related to greater citrate efflux. Vanadate (an effective H+-ATPase inhibitor) decreased the Al-induced citrate efflux, while addition of Mg partly restored the efflux. Mg addition also increased the activity of Al-reduced plasma membrane H+-ATPase, as well as helping to maintain the Mg and calcium contents in root apices. We propose that the addition of Mg to the toxic Al treatment helps maintain the tissue Mg content and the activity of the plasma membrane H+-ATPase. These changes enhanced the Al-dependent efflux of citrate which provided extra protection from Al stress.
Collapse
Affiliation(s)
- Jian Li Yang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, PR China
| | | | | | | | | |
Collapse
|
13
|
Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ, Ligaba A, Yan XL, Ahn SJ, Yamaguchi M, Sasakawa H, Hideo S, Matsumoto H. Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. PLANT PHYSIOLOGY 2005; 138:287-96. [PMID: 15834009 PMCID: PMC1104183 DOI: 10.1104/pp.104.058065] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2004] [Revised: 02/15/2005] [Accepted: 02/21/2005] [Indexed: 05/18/2023]
Abstract
The aluminum (Al)-induced secretion of citrate has been regarded as an important mechanism for Al resistance in soybean (Glycine max). However, the mechanism of how Al induces citrate secretion remains unclear. In this study, we investigated the regulatory role of plasma membrane H+-ATPase on the Al-induced secretion of citrate from soybean roots. Experiments performed with plants grown in full nutrient solution showed that Al-induced activity of plasma membrane H+-ATPase paralleled secretion of citrate. Vanadate and fusicoccin, an inhibitor and an activator, respectively, of plasma membrane H+-ATPase, exerted inhibitory and stimulatory effects on the Al-induced secretion of citrate. Higher activity of plasma membrane H+-ATPase coincided with more citrate secretion in Al-resistant than Al-sensitive soybean cultivars. These results suggested that the effects of Al stress on citrate secretion were mediated via modulation of the activity of plasma membrane H+-ATPase. The relationship between the Al-induced secretion of citrate and the activity of plasma membrane H+-ATPase was further demonstrated by analysis of plasma membrane H+-ATPase transgenic Arabidopsis (Arabidopsis thaliana). When plants were grown on Murashige and Skoog medium containing 30 microM Al (9.1 microM Al3+ activity), transgenic plants exuded more citrate compared with wild-type Arabidopsis. Results from real-time reverse transcription-PCR and immunodetection analysis indicated that the increase of plasma membrane H+-ATPase activity by Al is caused by transcriptional and translational regulation. Furthermore, plasma membrane H+-ATPase activity and expression were higher in an Al-resistant cultivar than in an Al-sensitive cultivar. Al activated the threonine-oriented phosphorylation of plasma membrane H+-ATPase in a dose- and time-dependent manner. Taken together, our results demonstrated that up-regulation of plasma membrane H+-ATPase activity was associated with the secretion of citrate from soybean roots.
Collapse
Affiliation(s)
- Hong Shen
- Lab of Plant Nutritional Genetics and Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|