1
|
Sun J, Dai W, Zhao S, Liu J, Zhang J, Xu J, He P. Response to the CO 2 concentrating mechanisms and transcriptional time series analysis of Ulva prolifera under inorganic carbon limitation. HARMFUL ALGAE 2024; 139:102727. [PMID: 39567081 DOI: 10.1016/j.hal.2024.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 11/22/2024]
Abstract
Ulva prolifera is a dominant species in green tides and has been affecting marine ecosystem for many years. Due to the low availability of CO2 in the environment, U. prolifera utilizes the CO2 concentrating mechanisms (CCMs) to increase intracellular inorganic carbon concentration. However, the transcriptional response mechanism and temporal changes of U. prolifera CCMs based on transcriptomics have not been thoroughly described. Therefore, we induced U. prolifera CCMs in a low CO2 environment to explore the dynamic regulation of CCMs expression under inadequate inorganic carbon supply. The results showed that inorganic carbon limitation increased the inorganic carbon affinity of U. prolifera, upregulating CCMs. The first 24 h of inorganic carbon environmental changes were the most active period for U. prolifera's expression regulation. U. prolifera gradually achieved a new steady state by regulating metabolic processes such as nucleic acids, energy, and ethylene-activated signaling pathways. In the carbon fixation system of U. prolifera, there are characteristics of both biophysical and biochemical CCMs. After 24 h of inorganic carbon limitation, the biophysical CCMs becomes more effective under conditions of inorganic carbon depletion. This study aids in exploring the CCMs of U. prolifera and their evolution in response to environmental changes.
Collapse
Affiliation(s)
- Jingyi Sun
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Dai
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shuang Zhao
- Ocean College, Fujian Polytechnic Normal University, Fuzhou 350300, China
| | - Jinlin Liu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China; Project Management Office of China National Scientific Seafloor Observatory, Tongji University, Shanghai 200092, China
| | - Jianheng Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Juntian Xu
- Jiangsu Key Laboratory for Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
2
|
Liu D, Wei L. Epigenetic Regulation in Response to CO 2 Fluctuation in Marine Microalga Nannochloropsis oceanica. MICROBIAL ECOLOGY 2023; 87:4. [PMID: 38015286 DOI: 10.1007/s00248-023-02322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/22/2023] [Indexed: 11/29/2023]
Abstract
Microalgae often undergo different CO2 experiment in their habitat. To adapt to low CO2, carbon concentrating mechanism (CCM) could be launched in majority of microalgae and CCM are regulated at RNA level are well known. However, epigenetic modifications and their potential regulation of the transcription of masked genes at the genome level in response to CO2 fluctuation remain unclear. Here epigenetic regulation in response to CO2 fluctuation and epigenome-association with phenotypic plasticity of CCM are firstly uncovered in marine microalga Nannochloropsis oceanica IMET1. The result showed that lysine butyrylation (Kbu) and histone H3K9m2 modifications were present in N. oceanica IMET1. Moreover, Kbu modification positively regulated gene expression. In response to CO2 fluctuation, there were 5,438 and 1,106 genes regulated by Kbu and H3K9m2 in Nannochloropsis, respectively. Gained or lost histone methylations were closely associated with activating or repressing gene expressions. Differential modifications were mainly enriched in carbon fixation, photorespiration, photosynthesis, and lipid metabolism etc. Massive genome-wide epigenetic reprogramming was observed after N. oceanica cells shifted from high CO2 to low CO2. Particularly, we firstly noted that the transcription of the key low CO2 responsive carbonic anhydrase (CA5), a key component involved in CCM stress signaling, was potentially regulated by bivalent Kbu-H3K9m2 modifications in microalgae. This study provides novel insights into the relationship between gene transcription and epigenetic modification in Nannochloropsis, which will lay foundation on genetic improvement of CCM at epigenetic level.
Collapse
Affiliation(s)
- Danmei Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Li Wei
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
- Hainan Observation and Research Station of Dongzhaigang Mangrove Wetland Ecosystem, Haikou, 571129, China.
- International Science and Technology Cooperation Laboratory for Marine Microalgae Ecological Carbon Sinks, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
3
|
Burlacot A, Peltier G. Energy crosstalk between photosynthesis and the algal CO 2-concentrating mechanisms. TRENDS IN PLANT SCIENCE 2023; 28:795-807. [PMID: 37087359 DOI: 10.1016/j.tplants.2023.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Microalgal photosynthesis is responsible for nearly half of the CO2 annually captured by Earth's ecosystems. In aquatic environments where the CO2 availability is low, the CO2-fixing efficiency of microalgae greatly relies on mechanisms - called CO2-concentrating mechanisms (CCMs) - for concentrating CO2 at the catalytic site of the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). While the transport of inorganic carbon (Ci) across membrane bilayers against a concentration gradient consumes part of the chemical energy generated by photosynthesis, the bioenergetics and cellular mechanisms involved are only beginning to be elucidated. Here, we review the current knowledge relating to the energy requirement of CCMs in the light of recent advances in photosynthesis regulatory mechanisms and the spatial organization of CCM components.
Collapse
Affiliation(s)
- Adrien Burlacot
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Gilles Peltier
- Aix-Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
4
|
Zhang B, Xie X, Liu X, He L, Sun Y, Wang G. The carbonate concentration mechanism of Pyropia yezoensis (Rhodophyta): evidence from transcriptomics and biochemical data. BMC PLANT BIOLOGY 2020; 20:424. [PMID: 32933475 PMCID: PMC7491142 DOI: 10.1186/s12870-020-02629-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/30/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Pyropia yezoensis (Rhodophyta) is widely cultivated in East Asia and plays important economic, ecological and research roles. Although inorganic carbon utilization of P. yezoensis has been investigated from a physiological aspect, the carbon concentration mechanism (CCM) of P. yezoensis remains unclear. To explore the CCM of P. yezoensis, especially during its different life stages, we tracked changes in the transcriptome, photosynthetic efficiency and in key enzyme activities under different inorganic carbon concentrations. RESULTS Photosynthetic efficiency demonstrated that sporophytes were more sensitive to low carbon (LC) than gametophytes, with increased photosynthesis rate during both life stages under high carbon (HC) compared to normal carbon (NC) conditions. The amount of starch and number of plastoglobuli in cells corresponded with the growth reaction to different inorganic carbon (Ci) concentrations. We constructed 18 cDNA libraries from 18 samples (three biological replicates per Ci treatment at two life cycles stages) and sequenced these using the Illumina platform. De novo assembly generated 182,564 unigenes, including approximately 275 unigenes related to CCM. Most genes encoding internal carbonic anhydrase (CA) and bicarbonate transporters involved in the biophysical CCM pathway were induced under LC in comparison with NC, with transcript abundance of some PyCAs in gametophytes typically higher than that in sporophytes. We identified all key genes participating in the C4 pathway and showed that their RNA abundances changed with varying Ci conditions. High decarboxylating activity of PEPCKase and low PEPCase activity were observed in P. yezoensis. Activities of other key enzymes involved in the C4-like pathway were higher under HC than under the other two conditions. Pyruvate carboxylase (PYC) showed higher carboxylation activity than PEPC under these Ci conditions. Isocitrate lyase (ICL) showed high activity, but the activity of malate synthase (MS) was very low. CONCLUSION We elucidated the CCM of P. yezoensis from transcriptome and enzyme activity levels. All results indicated at least two types of CCM in P. yezoensis, one involving CA and an anion exchanger (transporter), and a second, C4-like pathway belonging to the PEPCK subtype. PYC may play the main carboxylation role in this C4-like pathway, which functions in both the sporophyte and gametophyte life cycles.
Collapse
Affiliation(s)
- Baoyu Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiujun Xie
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuehua Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linwen He
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuanyuan Sun
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
5
|
Raven JA, Beardall J, Quigg A. Light-Driven Oxygen Consumption in the Water-Water Cycles and Photorespiration, and Light Stimulated Mitochondrial Respiration. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Wei L, El Hajjami M, Shen C, You W, Lu Y, Li J, Jing X, Hu Q, Zhou W, Poetsch A, Xu J. Transcriptomic and proteomic responses to very low CO 2 suggest multiple carbon concentrating mechanisms in Nannochloropsis oceanica. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:168. [PMID: 31297156 PMCID: PMC6599299 DOI: 10.1186/s13068-019-1506-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/18/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND In industrial oleaginous microalgae such as Nannochloropsis spp., the key components of the carbon concentration mechanism (CCM) machineries are poorly defined, and how they are mobilized to facilitate cellular utilization of inorganic carbon remains elusive. RESULTS For Nannochloropsis oceanica, to unravel genes specifically induced by CO2 depletion which are thus potentially underpinning its CCMs, transcriptome, proteome and metabolome profiles were tracked over 0 h, 3 h, 6 h, 12 h and 24 h during cellular response from high CO2 level (HC; 50,000 ppm) to very low CO2 (VLC; 100 ppm). The activity of a biophysical CCM is evidenced based on induction of transcripts encoding a bicarbonate transporter and two carbonic anhydrases under VLC. Moreover, the presence of a potential biochemical CCM is supported by the upregulation of a number of key C4-like pathway enzymes in both protein abundance and enzymatic activity under VLC, consistent with a mitochondria-implicated C4-based CCM. Furthermore, a basal CCM underpinned by VLC-induced upregulation of photorespiration and downregulation of ornithine-citrulline shuttle and the ornithine urea cycles is likely present, which may be responsible for efficient recycling of mitochondrial CO2 for chloroplastic carbon fixation. CONCLUSIONS Nannochloropsis oceanica appears to mobilize a comprehensive set of CCMs in response to very low CO2. Its genes induced by the stress are quite distinct from those of Chlamydomonas reinhardtii and Phaeodactylum tricornutum, suggesting tightly regulated yet rather unique CCMs. These findings can serve the first step toward rational engineering of the CCMs for enhanced carbon fixation and biomass productivity in industrial microalgae.
Collapse
Affiliation(s)
- Li Wei
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- University of Chinese Academy of Science, Beijing, China
| | - Mohamed El Hajjami
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Chen Shen
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- University of Chinese Academy of Science, Beijing, China
| | - Wuxin You
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Yandu Lu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- University of Chinese Academy of Science, Beijing, China
| | - Jing Li
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- University of Chinese Academy of Science, Beijing, China
| | - Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- University of Chinese Academy of Science, Beijing, China
| | - Qiang Hu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei China
- University of Chinese Academy of Science, Beijing, China
| | - Wenxu Zhou
- Department of Chemistry and Biochemistry, Center for Chemical Biology, Texas Tech University, Lubbock, TX USA
| | - Ansgar Poetsch
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
- School of Biomedical and Healthcare Sciences, University of Plymouth, Plymouth, UK
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- University of Chinese Academy of Science, Beijing, China
| |
Collapse
|
7
|
Poschenrieder C, Fernández JA, Rubio L, Pérez L, Terés J, Barceló J. Transport and Use of Bicarbonate in Plants: Current Knowledge and Challenges Ahead. Int J Mol Sci 2018; 19:E1352. [PMID: 29751549 PMCID: PMC5983714 DOI: 10.3390/ijms19051352] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/09/2023] Open
Abstract
Bicarbonate plays a fundamental role in the cell pH status in all organisms. In autotrophs, HCO₃− may further contribute to carbon concentration mechanisms (CCM). This is especially relevant in the CO₂-poor habitats of cyanobacteria, aquatic microalgae, and macrophytes. Photosynthesis of terrestrial plants can also benefit from CCM as evidenced by the evolution of C₄ and Crassulacean Acid Metabolism (CAM). The presence of HCO₃− in all organisms leads to more questions regarding the mechanisms of uptake and membrane transport in these different biological systems. This review aims to provide an overview of the transport and metabolic processes related to HCO₃− in microalgae, macroalgae, seagrasses, and terrestrial plants. HCO₃− transport in cyanobacteria and human cells is much better documented and is included for comparison. We further comment on the metabolic roles of HCO₃− in plants by focusing on the diversity and functions of carbonic anhydrases and PEP carboxylases as well as on the signaling role of CO₂/HCO₃− in stomatal guard cells. Plant responses to excess soil HCO₃− is briefly addressed. In conclusion, there are still considerable gaps in our knowledge of HCO₃− uptake and transport in plants that hamper the development of breeding strategies for both more efficient CCM and better HCO₃− tolerance in crop plants.
Collapse
Affiliation(s)
- Charlotte Poschenrieder
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - José Antonio Fernández
- Department Biologia. Vegetal, Campus Teatinos, Universidad de Málaga, 29071 Málaga, Spain.
| | - Lourdes Rubio
- Department Biologia. Vegetal, Campus Teatinos, Universidad de Málaga, 29071 Málaga, Spain.
| | - Laura Pérez
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - Joana Terés
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - Juan Barceló
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
8
|
|
9
|
Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 181:31-43. [PMID: 29486460 DOI: 10.1016/j.jphotobiol.2018.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 02/17/2018] [Accepted: 02/17/2018] [Indexed: 01/31/2023]
Abstract
This study describes the impacts of inorganic carbon limitation on the photosynthetic efficiency and operation of photosynthetic electron transport pathways in the biofuel-candidate microalga Nannochloropsis oculata. Using a combination of highly-controlled cultivation setup (photobioreactor), variable chlorophyll a fluorescence and transient spectroscopy methods (electrochromic shift (ECS) and P700 redox kinetics), we showed that net photosynthesis and effective quantum yield of Photosystem II (PSII) decreased in N. oculata under carbon limitation. This was accompanied by a transient increase in total proton motive force and energy-dependent non-photochemical quenching as well as slightly elevated respiration. On the other hand, under carbon limitation the rapid increase in proton motive force (PMF, estimated from the total ECS signal) was also accompanied by reduced conductivity of ATP synthase to protons (estimated from the rate of ECS decay in dark after actinic illumination). This indicates that the slow operation of ATP synthase results in the transient build-up of PMF, which leads to the activation of fast energy dissipation mechanisms such as energy-dependent non-photochemical quenching. N. oculata also increased content of lipids under carbon limitation, which compensated for reduced NAPDH consumption during decreased CO2 fixation. The integrated knowledge of the underlying energetic regulation of photosynthetic processes attained with a combination of biophysical methods may be used to identify photo-physiological signatures of the onset of carbon limitation in microalgal cultivation systems, as well as to potentially identify microalgal strains that can better acclimate to carbon limitation.
Collapse
|
10
|
Raven JA, Giordano M. Acquisition and metabolism of carbon in the Ochrophyta other than diatoms. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160400. [PMID: 28717026 PMCID: PMC5516109 DOI: 10.1098/rstb.2016.0400] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 11/12/2022] Open
Abstract
The acquisition and assimilation of inorganic C have been investigated in several of the 15 clades of the Ochrophyta other than diatoms, with biochemical, physiological and genomic data indicating significant mechanistic variation. Form ID Rubiscos in the Ochrophyta are characterized by a broad range of kinetics values. In spite of relatively high K0.5CO2 and low CO2 : O2 selectivity, diffusive entry of CO2 occurs in the Chrysophyceae and Synurophyceae. Eustigmatophyceae and Phaeophyceae, on the contrary, have CO2 concentrating mechanisms, usually involving the direct or indirect use of [Formula: see text] This variability is possibly due to the ecological contexts of the organism. In brown algae, C fixation generally takes place through a classical C3 metabolism, but there are some hints of the occurrence of C4 metabolism and low amplitude CAM in a few members of the Fucales. Genomic data show the presence of a number of potential C4 and CAM genes in Ochrophyta other than diatoms, but the other core functions of many of these genes give a very limited diagnostic value to their presence and are insufficient to conclude that C4 photosynthesis is present in these algae.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Mario Giordano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona 60131, Italy
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Trěboň 37901, Czech Republic
| |
Collapse
|
11
|
Gee CW, Niyogi KK. The carbonic anhydrase CAH1 is an essential component of the carbon-concentrating mechanism in Nannochloropsis oceanica. Proc Natl Acad Sci U S A 2017; 114:4537-4542. [PMID: 28396394 PMCID: PMC5410810 DOI: 10.1073/pnas.1700139114] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aquatic photosynthetic organisms cope with low environmental CO2 concentrations through the action of carbon-concentrating mechanisms (CCMs). Known eukaryotic CCMs consist of inorganic carbon transporters and carbonic anhydrases (and other supporting components) that culminate in elevated [CO2] inside a chloroplastic Rubisco-containing structure called a pyrenoid. We set out to determine the molecular mechanisms underlying the CCM in the emerging model photosynthetic stramenopile, Nannochloropsis oceanica, a unicellular picoplanktonic alga that lacks a pyrenoid. We characterized CARBONIC ANHYDRASE 1 (CAH1) as an essential component of the CCM in N. oceanica CCMP1779. We generated insertions in this gene by directed homologous recombination and found that the cah1 mutant has severe defects in growth and photosynthesis at ambient CO2 We identified CAH1 as an α-type carbonic anhydrase, providing a biochemical role in CCM function. CAH1 was found to localize to the lumen of the epiplastid endoplasmic reticulum, with its expression regulated by the external inorganic carbon concentration at both the transcript and protein levels. Taken together, these findings show that CAH1 is an indispensable component of what may be a simple but effective and dynamic CCM in N. oceanica.
Collapse
Affiliation(s)
- Christopher W Gee
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720;
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
12
|
Effect of CO 2 in the aeration gas on cultivation of the microalga Nannochloropsis oculata : Experimental study and mathematical modeling of CO 2 assimilation. ALGAL RES 2016. [DOI: 10.1016/j.algal.2015.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Abstract
It is difficult to distinguish influx and efflux of inorganic C in photosynthesizing tissues; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases. Some irreversible carboxylases use CO2; others use HCO3(-). The relative role of permeation through the lipid bilayer versus movement through CO2-selective membrane proteins in the downhill, non-energized, movement of CO2 is not clear. Passive permeation explains most CO2 entry, including terrestrial and aquatic organisms with C3 physiology and biochemistry, terrestrial C4 plants and all crassulacean acid metabolism (CAM) plants, as well as being part of some mechanisms of HCO3(-) use in CO2 concentrating mechanism (CCM) function, although further work is needed to test the mechanism in some cases. However, there is some evidence of active CO2 influx at the plasmalemma of algae. HCO3(-) active influx at the plasmalemma underlies all cyanobacterial and some algal CCMs. HCO3(-) can also enter some algal chloroplasts, probably as part of a CCM. The high intracellular CO2 and HCO3(-) pools consequent upon CCMs result in leakage involving CO2, and occasionally HCO3(-). Leakage from cyanobacterial and microalgal CCMs involves up to half, but sometimes more, of the gross inorganic C entering in the CCM; leakage from terrestrial C4 plants is lower in most environments. Little is known of leakage from other organisms with CCMs, though given the leakage better-examined organisms, leakage occurs and increases the energetic cost of net carbon assimilation.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK†, and School of Plant Biology, University of Western Australia, M084, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - John Beardall
- School of Biological Sciences, Monash University, VIC 3800, Australia
| |
Collapse
|
14
|
Hanson DT, Collins AM, Jones HDT, Roesgen J, Lopez-Nieves S, Timlin JA. On-line stable isotope gas exchange reveals an inducible but leaky carbon concentrating mechanism in Nannochloropsis salina. PHOTOSYNTHESIS RESEARCH 2014; 121:311-22. [PMID: 24844569 PMCID: PMC8078823 DOI: 10.1007/s11120-014-0001-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/24/2014] [Indexed: 05/28/2023]
Abstract
Carbon concentrating mechanisms (CCMs) are common among microalgae, but their regulation and even existence in some of the most promising biofuel production strains is poorly understood. This is partly because screening for new strains does not commonly include assessment of CCM function or regulation despite its fundamental role in primary carbon metabolism. In addition, the inducible nature of many microalgal CCMs means that environmental conditions should be considered when assessing CCM function and its potential impact on biofuels. In this study, we address the effect of environmental conditions by combining novel, high frequency, on-line (13)CO2 gas exchange screen with microscope-based lipid characterization to assess CCM function in Nannochloropsis salina and its interaction with lipid production. Regulation of CCM function was explored by changing the concentration of CO2 provided to continuous cultures in airlift bioreactors where cell density was kept constant across conditions by controlling the rate of media supply. Our isotopic gas exchange results were consistent with N. salina having an inducible "pump-leak" style CCM similar to that of Nannochloropsis gaditana. Though cells grew faster at high CO2 and had higher rates of net CO2 uptake, we did not observe significant differences in lipid content between conditions. Since the rate of CO2 supply was much higher for the high CO2 conditions, we calculated that growing cells bubbled with low CO2 is about 40 % more efficient for carbon capture than bubbling with high CO2. We attribute this higher efficiency to the activity of a CCM under low CO2 conditions.
Collapse
Affiliation(s)
- David T Hanson
- Department of Biology, University of New Mexico, Albuquerque, NM, USA,
| | | | | | | | | | | |
Collapse
|
15
|
Johansson P, Eriksson KM, Axelsson L, Blanck H. Effects of seven antifouling compounds on photosynthesis and inorganic carbon use in sugar kelp Saccharina latissima (Linnaeus). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 63:365-77. [PMID: 22743627 DOI: 10.1007/s00244-012-9778-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/04/2012] [Indexed: 06/01/2023]
Abstract
Macroalgae depend on carbon-concentrating mechanisms (CCMs) to maintain a high photosynthetic activity under conditions of low carbon dioxide (CO(2)) availability. Because such conditions are prevalent in marine environments, CCMs are important for upholding the macroalgal primary productivity in coastal zones. This study evaluated the effects of seven antifouling compounds-chlorothalonil, DCOIT, dichlofluanid, diuron, irgarol, tolylfluanid, and zinc pyrithione (ZnTP)-on the photosynthesis and CCM of sugar kelp (Saccharina latissima (L.)). Concentration-response curves of these toxicants were established using inhibition of carbon incorporation, whereas their effects over time and their inhibition of the CCM were studied using inhibition of O(2) evolution. We demonstrate that exposure to all compounds except ZnTP (< 1000 nM) resulted in toxicity to photosynthesis of S. latissima. However, carbon incorporation and O(2) evolution differed in their ability to detect toxicity from some of the compounds. Diuron, irgarol, DCOIT, tolylfluanid, and, to some extent, dichlofluanid inhibited carbon incorporation. Chlorothalonil did not inhibit carbon incorporation but clearly inhibited oxygen (O(2)) evolution. Photosynthesis showed only little recovery during the 2-h postexposure period. Inhibition of photosynthesis even increased after the end of exposure to chlorothalonil and tolylfluanid. Through changes in pH of the medium, toxic effects on the CCM could be studied isolated from photosynthesis effects. The CCM of S. latissima was inhibited by chlorothalonil, DCOIT, dichlofluanid, and tolylfluanid. Such inhibition of the CCM, or the absence thereof, deepens the understanding the mechanism of action of the studied compounds.
Collapse
|
16
|
Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS One 2012; 7:e34659. [PMID: 22509341 PMCID: PMC3324498 DOI: 10.1371/journal.pone.0034659] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 03/06/2012] [Indexed: 02/02/2023] Open
Abstract
As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.
Collapse
|
17
|
Chen Z, Cheng H, Chen X. Effect of Cl− on photosynthetic bicarbonate uptake in two cyanobacteria Microcystis aeruginosa and Synechocystis PCC6803. Sci Bull (Beijing) 2009. [DOI: 10.1007/s11434-009-0148-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Carr H, Axelsson L. Photosynthetic utilization of bicarbonate in Zostera marina is reduced by inhibitors of mitochondrial ATPase and electron transport. PLANT PHYSIOLOGY 2008; 147:879-85. [PMID: 18434609 PMCID: PMC2409045 DOI: 10.1104/pp.107.115584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 04/15/2008] [Indexed: 05/26/2023]
Abstract
When Zostera marina was irradiated after a period of darkness, initiation of photosynthetic O2 evolution occurred in two phases. During a lag phase, lasting 4 to 5 min, photosynthesis was supported by a diffusive entry of CO2. Photosynthesis then rapidly increased to its full rate. Tris buffer, at a concentration of 50 mm, completely inhibited this increase without affecting CO2-supported photosynthesis during the lag phase. These results verify that the increase in photosynthesis after the lag phase depended on an activation of bicarbonate (HCO3-) utilization through acid zones generated by proton pumps located to the outer cell membrane. In similar experiments, 6.25 microm of the mitochondrial ATPase blocker oligomycin inhibited photosynthetic HCO3(-) utilization by more than 60%. Antimycin A, a selective blocker of mitochondrial electron transport, caused a similar inhibition of HCO3(-) utilization. Measurements at elevated CO2 concentrations verified that neither oligomycin nor antimycin interfered with linear photosynthetic electron transport or with CO2 fixation. Thus, a major part of the ATP used for the generation of acid zones involved in HCO3(-) utilization in Z. marina was derived from mitochondrial respiration.
Collapse
Affiliation(s)
- Herman Carr
- Department of Botany, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | |
Collapse
|
19
|
Raven JA, Ball LA, Beardall J, Giordano M, Maberly SC. Algae lacking carbon-concentrating mechanisms. ACTA ACUST UNITED AC 2005. [DOI: 10.1139/b05-074] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most of the algae and cyanobacteria that have been critically examined express a carbon-concentrating mechanism (CCM) when grown at, or below, the current atmospheric CO2 concentration. This paper considers algae that appear to lack a CCM. Critical examination of the evidence on which the presence or absence of a CCM is decided shows that more information is frequently needed before the criteria can be fully applied. Examples are the pathways of glycolate metabolism in nongreen algae, and the 13C/12C discrimination shown by form ID Rubisco in vitro. The available evidence suggests that the algae lacking CCMs are some terrestrial green microalgae, some florideophyte freshwater red macroalgae, and a number of florideophyte red macroalgae from the supralittoral, littoral, and sublittoral, and almost all of the freshwater chrysophytes and synurophytes examined. Certain environmental, biochemical, and biophysical factors may permit the occurrence of algae lacking CCMs. The absence of CCMs is presumably the plesiomorphic (i.e., ancestral) condition in cyanobacteria (and algae?).Key words: CO2 diffusion, chrysophyte algae, ecology, evolution, green algae, photosynthesis, red algae.
Collapse
|
20
|
Schönfeld C, Wobbe L, Borgstädt R, Kienast A, Nixon PJ, Kruse O. The nucleus-encoded protein MOC1 is essential for mitochondrial light acclimation in Chlamydomonas reinhardtii. J Biol Chem 2004; 279:50366-74. [PMID: 15448140 DOI: 10.1074/jbc.m408477200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial respiration plays an important role in optimizing photosynthetic efficiency in plants. As yet, the mechanisms by which plant mitochondria sense and respond to changes in the environment are unclear, particularly when exposed to light. Here we describe the characterization of the Chlamydomonas reinhardtii mutant stm6, which was identified on the basis of impaired state transitions, a mechanism that regulates light harvesting in the chloroplast. The gene disrupted in stm6, termed Moc1, encodes a homologue of the human mitochondrial transcription termination factor (mTERF). MOC1 is targeted to the mitochondrion, and its expression is up-regulated in response to light. Loss of MOC1 causes a high light-sensitive phenotype and disrupts the transcription and expression profiles of the mitochondrial respiratory complexes causing, as compared with wild type, light-mediated changes in the expression levels of nuclear and mitochondrial encoded cytochrome c oxidase subunits and ubiquinone-NAD subunits. The absence of MOC1 leads to a reduction in the levels of cytochrome c oxidase and of rotenone-insensitive external NADPH dehydrogenase activities of the mitochondrial respiratory electron transfer chain. Overall, we have identified a novel mitochondrial factor that regulates the composition of the mitochondrial respiratory chain in the light so that it can act as an effective sink for reductant produced by the chloroplast.
Collapse
Affiliation(s)
- Christine Schönfeld
- Molecular Cell Physiology Group, Department of Biology, University of Bielefeld, 33501 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|