1
|
Xu Y, Zhang S, Zhang M, Jiao S, Guo Y, Jiang T. The role of reactive oxygen species in plant-virus interactions. PLANT CELL REPORTS 2024; 43:197. [PMID: 39014054 DOI: 10.1007/s00299-024-03280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Reactive oxygen species (ROS) play a complex role in interactions between plant viruses and their host plants. They can both help the plant defend against viral infection and support viral infection and spread. This review explores the various roles of ROS in plant-virus interactions, focusing on their involvement in symptom development and the activation of plant defense mechanisms. The article discusses how ROS can directly inhibit viral infection, as well as how they can regulate antiviral mechanisms through various pathways involving miRNAs, virus-derived small interfering RNAs, viral proteins, and host proteins. Additionally, it examines how ROS can enhance plant resistance by interacting with hormonal pathways and external substances. The review also considers how ROS might promote viral infection and transmission, emphasizing their intricate role in plant-virus dynamics. These insights offer valuable guidance for future research, such as exploring the manipulation of ROS-related gene expression through genetic engineering, developing biopesticides, and adjusting environmental conditions to improve plant resistance to viruses. This framework can advance research in plant disease resistance, agricultural practices, and disease control.
Collapse
Affiliation(s)
- Yao Xu
- School of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Sutong Zhang
- School of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Mengyuan Zhang
- School of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Sibo Jiao
- School of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Yifan Guo
- A School of Pharmaceutical Science, Capital Medical University, Beijing, 100069, China
| | - Tong Jiang
- School of Life Science, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
2
|
Chang H, Chen YT, Huang HE, Ger MJ. Overexpressing plant ferredoxin-like protein enhances photosynthetic efficiency and carbohydrates accumulation in Phalaenopsis. Transgenic Res 2023; 32:547-560. [PMID: 37851307 DOI: 10.1007/s11248-023-00370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Crassulacean acid metabolism (CAM) is one of three major models of carbon dioxide assimilation pathway with better water-use efficiency and slower photosynthetic efficiency in photosynthesis. Previous studies indicated that the gene of sweet pepper plant ferredoxin-like protein (PFLP) shows high homology to the ferredoxin-1(Fd-1) family that belongs to photosynthetic type Fd and involves in photosystem I. It is speculated that overexpressing pflp in the transgenic plant may enhance photosynthetic efficiency through the electron transport chain (ETC). To reveal the function of PFLP in photosynthetic efficiency, pflp transgenic Phalaenopsis, a CAM plant, was generated to analyze photosynthetic markers. Transgenic plants exhibited 1.2-folds of electron transport rate than that of wild type (WT), and higher CO2 assimilation rates up to 1.6 and 1.5-folds samples at 4 pm and 10 pm respectively. Enzyme activity of phosphoenolpyruvate carboxylase (PEPC) was increased to 5.9-folds in Phase III, and NAD+-linked malic enzyme (NAD+-ME) activity increased 1.4-folds in Phase IV in transgenic plants. The photosynthesis products were analyzed between transgenic plants and WT. Soluble sugars contents such as glucose, fructose, and sucrose were found to significantly increase to 1.2, 1.8, and 1.3-folds higher in transgenic plants. The starch grains were also accumulated up to 1.4-folds in transgenic plants than that of WT. These results indicated that overexpressing pflp in transgenic plants increases carbohydrates accumulation by enhancing electron transport flow during photosynthesis. This is the first evidence for the PFLP function in CAM plants. Taken altogether, we suggest that pflp is an applicable gene for agriculture application that enhances electron transport chain efficiency during photosynthesis.
Collapse
Affiliation(s)
- Hsiang Chang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, 30015, Taiwan
| | - Yen-Ting Chen
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Hsiang-En Huang
- Department of Life Sciences, National Taitung University, Taitung, 95002, Taiwan
| | - Mang-Jye Ger
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
3
|
Jiang T, Zhou T. Unraveling the Mechanisms of Virus-Induced Symptom Development in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2830. [PMID: 37570983 PMCID: PMC10421249 DOI: 10.3390/plants12152830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Plant viruses, as obligate intracellular parasites, induce significant changes in the cellular physiology of host cells to facilitate their multiplication. These alterations often lead to the development of symptoms that interfere with normal growth and development, causing USD 60 billion worth of losses per year, worldwide, in both agricultural and horticultural crops. However, existing literature often lacks a clear and concise presentation of the key information regarding the mechanisms underlying plant virus-induced symptoms. To address this, we conducted a comprehensive review to highlight the crucial interactions between plant viruses and host factors, discussing key genes that increase viral virulence and their roles in influencing cellular processes such as dysfunction of chloroplast proteins, hormone manipulation, reactive oxidative species accumulation, and cell cycle control, which are critical for symptom development. Moreover, we explore the alterations in host metabolism and gene expression that are associated with virus-induced symptoms. In addition, the influence of environmental factors on virus-induced symptom development is discussed. By integrating these various aspects, this review provides valuable insights into the complex mechanisms underlying virus-induced symptoms in plants, and emphasizes the urgency of addressing viral diseases to ensure sustainable agriculture and food production.
Collapse
Affiliation(s)
| | - Tao Zhou
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Ali O, Ramsubhag A, Jayaraman J. Transcriptome-wide modulation by Sargassum vulgare and Acanthophora spicifera extracts results in a prime-triggered plant signalling cascade in tomato and sweet pepper. AOB PLANTS 2022; 14:plac046. [PMID: 36483312 PMCID: PMC9724562 DOI: 10.1093/aobpla/plac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Seaweed extracts (SWEs) are becoming integrated into crop production systems due to their multiple beneficial effects including growth promotion and induction of defence mechanisms. However, the comprehensive molecular mechanisms of these effects are yet to be elucidated. The current study investigated the transcriptomic changes induced by SWEs derived from Sargassum vulgare and Acanthophora spicifera on tomato and sweet pepper plants. Tomato and sweet pepper plants were subjected to foliar treatment with alkaline extracts prepared from the above seaweeds. Transcriptome changes in the plants were assessed 72 h after treatments using RNA sequencing. The treated plants were also analysed for defence enzyme activities, nutrient composition and phytohormonal profiles. The results showed the significant enrichment of genes associated with several growth and defence processes including photosynthesis, carbon and nitrogen metabolism, plant hormone signal transduction, plant-pathogen interaction, secondary metabolite metabolism, MAPK signalling and amino acid biosynthesis. Activities of defence enzymes were also significantly increased in SWE-treated plants. Plant nutrient profiling showed significant increases in calcium, potassium, nitrogen, sulphur, boron, copper, iron, manganese, zinc and phosphorous levels in SWE-treated plants. Furthermore, the levels of auxins, cytokinins and gibberellins were also significantly increased in the treated plants. The severity of bacterial leaf spot and early blight incidence in plants treated with SWE was significantly reduced, in addition to other effects like an increase in chlorophyll content, plant growth, and fruit yield. The results demonstrated the complex effect of S. vulgare and A. spicifera extracts on the plants' transcriptome and provided evidence of a strong role of these extracts in increasing plant growth responses while priming the plants against pathogenic attack simultaneously. The current study contributes to the understanding of the molecular mechanisms of SWEs in plants and helps their usage as a viable organic input for sustainable crop production.
Collapse
Affiliation(s)
- Omar Ali
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine TTO, 00000, Trinidad and Tobago
| | - Adesh Ramsubhag
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine TTO, 00000, Trinidad and Tobago
| | | |
Collapse
|
5
|
Sakoda K, Adachi S, Yamori W, Tanaka Y. Towards improved dynamic photosynthesis in C3 crops by utilizing natural genetic variation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3109-3121. [PMID: 35298629 DOI: 10.1093/jxb/erac100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Under field environments, fluctuating light conditions induce dynamic photosynthesis, which affects carbon gain by crop plants. Elucidating the natural genetic variations among untapped germplasm resources and their underlying mechanisms can provide an effective strategy to improve dynamic photosynthesis and, ultimately, improve crop yields through molecular breeding approaches. In this review, we first overview two processes affecting dynamic photosynthesis, namely (i) biochemical processes associated with CO2 fixation and photoprotection and (ii) gas diffusion processes from the atmosphere to the chloroplast stroma. Next, we review the intra- and interspecific variations in dynamic photosynthesis in relation to each of these two processes. It is suggested that plant adaptations to different hydrological environments underlie natural genetic variation explained by gas diffusion through stomata. This emphasizes the importance of the coordination of photosynthetic and stomatal dynamics to optimize the balance between carbon gain and water use efficiency under field environments. Finally, we discuss future challenges in improving dynamic photosynthesis by utilizing natural genetic variation. The forward genetic approach supported by high-throughput phenotyping should be introduced to evaluate the effects of genetic and environmental factors and their interactions on the natural variation in dynamic photosynthesis.
Collapse
Affiliation(s)
- Kazuma Sakoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
- Japan Society for the Promotion of Science, Japan
| | - Shunsuke Adachi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Yu Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Meng X, Zhang Y, Wang N, He H, Wen B, Zhang R, Fu X, Xiao W, Li D, Li L, Chen X. Genome-wide identification and characterization of the Prunus persica ferredoxin gene family and its role in improving heat tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:108-119. [PMID: 35334371 DOI: 10.1016/j.plaphy.2022.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/05/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Ferredoxin is involved in many biological processes, such as carbon fixation, nitrogen assimilation, chlorophyll metabolism, and fatty acid synthesis, and it plays a role in plant resistance to stress. However, the functions of Fds in peach during stress are unclear. In this study, 11 members of the peach Fd gene family were identified and divided into six groups (I- VI). We carried out bioinformatics analysis on these sequences, analyzed the physical and chemical properties of PpFd protein and the cis-elements in its promoter region, and predicted and compared the differences in gene structure and conserved protein motifs among groups. The results showed that the PpFd protein was highly conserved in plant species. In addition, overexpression of PpFd08 significantly increased the tolerance of transgenic tomato to high-temperature stress. The transcriptome analysis and qRT-PCR results of PpFd08 transgenic apple calli showed that PpFd08 might enhance heat resistance by modulating the expression of heat tolerance related genes. The results of this study provide a new understanding for the further study of the function of PpFd protein in peach and a candidate gene for improving the heat resistance of peach.
Collapse
Affiliation(s)
- Xiangguang Meng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Yuzheng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Ning Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Huajie He
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Rui Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China.
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China.
| |
Collapse
|
7
|
Nazari M, Tohidfar M, Ramshini H, Vahdati K. Molecular and morphological evaluation of transgenic Persian walnut plants harboring Fld gene under osmotic stress condition. Mol Biol Rep 2021; 49:433-441. [PMID: 34743274 DOI: 10.1007/s11033-021-06893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Soil drought stress is a limiting factor of productivity in walnut (Juglans regia L). Ferredoxin (Fd) level decreases under adverse environmental stress. Functional replacement of decreased Fd by Fld (Flavodoxin) had been shown to have protective effect under abiotic stress condition. This study aimed to evaluate four transgenic lines (L3, L4, L13 and L17) along with non-transgenic line under three osmotic stresses levels (0, 10 and 12% PEG). METHODS AND RESULTS This experiment carried out based on a completely randomized design with four replications. To confirm that the Fld gene is successfully integrated into the walnut genome, PCR and dot blot analysis were carried out. The transgenic lines of walnut expressing Fld displayed increased tolerance to osmotic stress at 10 and 12% PEG condition. Lines expressing Fld exhibited increasing tolerance to drought stress and maintained health of plants under osmotic conditions. Results of real time PCR showed that expression level of Fld gene in L4 was higher than the others. Among transgenic lines, L4 was more tolerant than other lines under osmotic stress. CONCLUSIONS These findings indicate that expression of Fld gene can increase tolerance to osmotic stress in Persian walnut and is useful tool for walnut production in arid and semi-arid regions.
Collapse
Affiliation(s)
- Mansoureh Nazari
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Masoud Tohidfar
- Department of Plant Biotechnology, Faculty of Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hossein Ramshini
- Department of Agronomy and Plant Breeding Sciences, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Kourosh Vahdati
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran.
| |
Collapse
|
8
|
Light-Independent Nitrogen Assimilation in Plant Leaves: Nitrate Incorporation into Glutamine, Glutamate, Aspartate, and Asparagine Traced by 15N. PLANTS 2020; 9:plants9101303. [PMID: 33023108 PMCID: PMC7600499 DOI: 10.3390/plants9101303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 01/26/2023]
Abstract
Although the nitrate assimilation into amino acids in photosynthetic leaf tissues is active under the light, the studies during 1950s and 1970s in the dark nitrate assimilation provided fragmental and variable activities, and the mechanism of reductant supply to nitrate assimilation in darkness remained unclear. 15N tracing experiments unraveled the assimilatory mechanism of nitrogen from nitrate into amino acids in the light and in darkness by the reactions of nitrate and nitrite reductases, glutamine synthetase, glutamate synthase, aspartate aminotransferase, and asparagine synthetase. Nitrogen assimilation in illuminated leaves and non-photosynthetic roots occurs either in the redundant way or in the specific manner regarding the isoforms of nitrogen assimilatory enzymes in their cellular compartments. The electron supplying systems necessary to the enzymatic reactions share in part a similar electron donor system at the expense of carbohydrates in both leaves and roots, but also distinct reducing systems regarding the reactions of Fd-nitrite reductase and Fd-glutamate synthase in the photosynthetic and non-photosynthetic organs.
Collapse
|
9
|
Takagi D, Miyake C. PROTON GRADIENT REGULATION 5 supports linear electron flow to oxidize photosystem I. PHYSIOLOGIA PLANTARUM 2018; 164:337-348. [PMID: 29604096 DOI: 10.1111/ppl.12723] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/22/2023]
Abstract
In higher plants, light drives the linear photosynthetic electron transport reaction from H2 O to electron sinks, which is called the linear electron flow (LEF). LEF activity should be regulated depending on electron sinks; otherwise excess electrons accumulate in the thylakoid membranes and stimulate reactive oxygen species (ROS) production in photosystem I (PSI), which causes oxidative damage to PSI. To prevent ROS production in PSI, PSI should be oxidized during photosynthesis, and PROTON GRADIENT REGULATION 5 (PGR5) and PGR like 1 (PGRL1) are important for this oxidation. PGR5 and PGRL1 are recognized as a component of ferredoxin-dependent cyclic electron flow around PSI (Fd-CEF-PSI), however there is no direct evidence for the significant operation of Fd-CEF-PSI during photosynthesis in wild-type (WT) plants. Thus, electron distribution by PGR5 and PGRL1 between Fd-CEF-PSI and LEF is still elusive. Here, we show direct evidence that Fd-CEF-PSI activity is minor during steady-state photosynthesis by measuring the Fd redox state in vivo in Arabidopsis thaliana. We found that Fd oxidation rate is determined by LEF activity during steady-state photosynthesis in WT. On the other hand, pgr5 and pgrl1 showed lower electron transport efficiency from PSI to electron sinks through Fd during steady-state photosynthesis. These results demonstrate that electrons are exclusively consumed in electron sinks through Fd, and the phenotypes of pgr5 and pgrl1 are likely caused by the disturbance of the LEF between PSI and electron sinks. We suggest that PGR5 and PGRL1 modulate the LEF according to electron sink activities around PSI.
Collapse
Affiliation(s)
- Daisuke Takagi
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
10
|
Qiu Y, Zhang Y, Wang C, Lei R, Wu Y, Li X, Zhu S. Cucumber mosaic virus coat protein induces the development of chlorotic symptoms through interacting with the chloroplast ferredoxin I protein. Sci Rep 2018; 8:1205. [PMID: 29352213 PMCID: PMC5775247 DOI: 10.1038/s41598-018-19525-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/28/2017] [Indexed: 11/15/2022] Open
Abstract
Cucumber mosaic virus (CMV) infection could induce mosaic symptoms on a wide-range of host plants. However, there is still limited information regarding the molecular mechanism underlying the development of the symptoms. In this study, the coat protein (CP) was confirmed as the symptom determinant by exchanging the CP between a chlorosis inducing CMV-M strain and a green-mosaic inducing CMV-Q strain. A yeast two-hybrid analysis and bimolecular fluorescence complementation revealed that the chloroplast ferredoxin I (Fd I) protein interacted with the CP of CMV-M both in vitro and in vivo, but not with the CP of CMV-Q. The severity of chlorosis was directly related to the expression of Fd1, that was down-regulated in CMV-M but not in CMV-Q. Moreover, the silencing of Fd I induced chlorosis symptoms that were similar to those elicited by CMV-M. Subsequent analyses indicated that the CP of CMV-M interacted with the precursor of Fd I in the cytoplasm and disrupted the transport of Fd I into chloroplasts, leading to the suppression of Fd I functions during a viral infection. Collectively, our findings accentuate that the interaction between the CP of CMV and Fd I is the primary determinant for the induction of chlorosis in tobacco.
Collapse
Affiliation(s)
- Yanhong Qiu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yongjiang Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Chaonan Wang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- China Agricultural University, Beijing, 100129, China
| | - Rong Lei
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yupin Wu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Xinshi Li
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Shuifang Zhu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
11
|
Li Z, Yuan S, Jia H, Gao F, Zhou M, Yuan N, Wu P, Hu Q, Sun D, Luo H. Ectopic expression of a cyanobacterial flavodoxin in creeping bentgrass impacts plant development and confers broad abiotic stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:433-446. [PMID: 27638479 PMCID: PMC5362689 DOI: 10.1111/pbi.12638] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 05/18/2023]
Abstract
Flavodoxin (Fld) plays a pivotal role in photosynthetic microorganisms as an alternative electron carrier flavoprotein under adverse environmental conditions. Cyanobacterial Fld has been demonstrated to be able to substitute ferredoxin of higher plants in most electron transfer processes under stressful conditions. We have explored the potential of Fld for use in improving plant stress response in creeping bentgrass (Agrostis stolonifera L.). Overexpression of Fld altered plant growth and development. Most significantly, transgenic plants exhibited drastically enhanced performance under oxidative, drought and heat stress as well as nitrogen (N) starvation, which was associated with higher water retention and cell membrane integrity than wild-type controls, modified expression of heat-shock protein genes, production of more reduced thioredoxin, elevated N accumulation and total chlorophyll content as well as up-regulated expression of nitrite reductase and N transporter genes. Further analysis revealed that the expression of other stress-related genes was also impacted in Fld-expressing transgenics. Our data establish a key role of Fld in modulating plant growth and development and plant response to multiple sources of adverse environmental conditions in crop species. This demonstrates the feasibility of manipulating Fld in crop species for genetic engineering of plant stress tolerance.
Collapse
Affiliation(s)
- Zhigang Li
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Shuangrong Yuan
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Haiyan Jia
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Centreand National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsuChina
| | - Fangyuan Gao
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- Crop Research InstituteSichuan Academy of Agricultural SciencesChengduSichuanChina
| | - Man Zhou
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Ning Yuan
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Peipei Wu
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Qian Hu
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Dongfa Sun
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Hong Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| |
Collapse
|
12
|
Chang H, Huang HE, Cheng CF, Ho MH, Ger MJ. Constitutive expression of a plant ferredoxin-like protein (pflp) enhances capacity of photosynthetic carbon assimilation in rice (Oryza sativa). Transgenic Res 2017; 26:279-289. [PMID: 28054169 DOI: 10.1007/s11248-016-0005-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022]
Abstract
The plant ferredoxin-like protein (PFLP) gene, cloned from sweet peppers predicted as an electron carrier in photosynthesis, shows high homology to the Fd-I sequence of Arabidopsis thaliana, Lycopersicon esculentum, Oryza sativa and Spinacia oleracea. Most of pflp related studies focused on anti-pathogenic effects, while less understanding for the effects in photosynthesis with physiological aspects, such as photosynthesis rate, and levels of carbohydrate metabolites. This project focuses on the effects of pflp overexpression on photosynthesis by physiological evaluations of carbon assimilation with significant higher levels of carbohydrates with higher photosynthesis efficiency. In this report, two independent transgenic lines of rice plants (designated as pflp-1 and pflp-2) were generated from non-transgenic TNG67 rice plant (WT). Both transgenic pflp rice plants exhibited enhanced photosynthesis efficiency, and gas exchange rates of photosynthesis were 1.3- and 1.2-fold higher for pflp-1 and pflp-2 than WT respectively. Significantly higher electron transport rates of pflp rice plants were observed. Moreover, photosynthetic products, such as fructose, glucose, sucrose and starch contents of pflp transgenic lines were increased accordingly. Molecular evidences of carbohydrate metabolism related genes activities (osHXK5, osHXK6, osAGPL3, osAGPS2α, osSPS, ospFBPase, oscFBPase, and osSBPase) in transgenic lines were higher than those of WT. For performance of crop production, 1000-grain weight for pflp-1 and pflp-2 rice plants were 52.9 and 41.1 g that were both significantly higher than 31.6 g for WT, and panicles weights were 1.4- and 1.2-fold higher than WT. Panicle number, tiller number per plants for pflp rice plants were all significantly higher compared with those of WT where there was no significant difference observed between two pflp rice plants. Taken altogether; this study demonstrated that constitutive pflp expression can improve rice production by enhancing the capacity of photosynthetic carbon assimilation.
Collapse
Affiliation(s)
- Hsiang Chang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, 30015, Taiwan.
| | - Hsiang-En Huang
- Department of Life Sciences, National Taitung University, Taitung, 95092, Taiwan
| | - Chin-Fu Cheng
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Mei-Hsuan Ho
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Mang-Jye Ger
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
13
|
Van Dingenen J, Blomme J, Gonzalez N, Inzé D. Plants grow with a little help from their organelle friends. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6267-6281. [PMID: 27815330 DOI: 10.1093/jxb/erw399] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chloroplasts and mitochondria are indispensable for plant development. They not only provide energy and carbon sources to cells, but also have evolved to become major players in a variety of processes such as amino acid metabolism, hormone biosynthesis and cellular signalling. As semi-autonomous organelles, they contain a small genome that relies largely on nuclear factors for its maintenance and expression. An intensive crosstalk between the nucleus and the organelles is therefore essential to ensure proper functioning, and the nuclear genes encoding organellar proteins involved in photosynthesis and oxidative phosphorylation are obviously crucial for plant growth. Organ growth is determined by two main cellular processes: cell proliferation and cell expansion. Here, we review how plant growth is affected in mutants of organellar proteins that are differentially expressed during leaf and root development. Our findings indicate a clear role for organellar proteins in plant organ growth, primarily during cell proliferation. However, to date, the role of the nuclear-encoded organellar proteins in the cellular processes driving organ growth has not been investigated in much detail. We therefore encourage researchers to extend their phenotypic characterization beyond macroscopic features in order to get a better view on how chloroplasts and mitochondria regulate the basic processes of cell proliferation and cell expansion, essential to driving growth.
Collapse
Affiliation(s)
- Judith Van Dingenen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Jonas Blomme
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
14
|
Choe E, Drnevich J, Williams MM. Identification of Crowding Stress Tolerance Co-Expression Networks Involved in Sweet Corn Yield. PLoS One 2016; 11:e0147418. [PMID: 26796516 PMCID: PMC4721684 DOI: 10.1371/journal.pone.0147418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/04/2016] [Indexed: 11/19/2022] Open
Abstract
Tolerance to crowding stress has played a crucial role in improving agronomic productivity in field corn; however, commercial sweet corn hybrids vary greatly in crowding stress tolerance. The objectives were to 1) explore transcriptional changes among sweet corn hybrids with differential yield under crowding stress, 2) identify relationships between phenotypic responses and gene expression patterns, and 3) identify groups of genes associated with yield and crowding stress tolerance. Under conditions of crowding stress, three high-yielding and three low-yielding sweet corn hybrids were grouped for transcriptional and phenotypic analyses. Transcriptional analyses identified from 372 to 859 common differentially expressed genes (DEGs) for each hybrid. Large gene expression pattern variation among hybrids and only 26 common DEGs across all hybrid comparisons were identified, suggesting each hybrid has a unique response to crowding stress. Over-represented biological functions of DEGs also differed among hybrids. Strong correlation was observed between: 1) modules with up-regulation in high-yielding hybrids and yield traits, and 2) modules with up-regulation in low-yielding hybrids and plant/ear traits. Modules linked with yield traits may be important crowding stress response mechanisms influencing crop yield. Functional analysis of the modules and common DEGs identified candidate crowding stress tolerant processes in photosynthesis, glycolysis, cell wall, carbohydrate/nitrogen metabolic process, chromatin, and transcription regulation. Moreover, these biological functions were greatly inter-connected, indicating the importance of improving the mechanisms as a network.
Collapse
Affiliation(s)
- Eunsoo Choe
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Urbana, Illinois, United States of America
| | - Jenny Drnevich
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, Illinois, United States of America
| | - Martin M. Williams
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
15
|
Li C, Hu Y, Huang R, Ma X, Wang Y, Liao T, Zhong P, Xiao F, Sun C, Xu Z, Deng X, Wang P. Mutation of FdC2 gene encoding a ferredoxin-like protein with C-terminal extension causes yellow-green leaf phenotype in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:127-34. [PMID: 26259181 DOI: 10.1016/j.plantsci.2015.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 05/07/2023]
Abstract
Ferredoxins (Fds) are small iron-sulfur proteins that mediate electron transfer in a wide range of metabolic reactions. Besides Fds, there is a type of Fd-like proteins designated as FdC, which have conserved elements of Fds, but contain a significant C-terminal extension. So far, only two FdC genes of Arabidopsis (Arabidopsis thaliana) have been identified in higher plants and thus the functions of FdC proteins remain largely unknown. In this study, we isolated a yellow-green leaf mutant, 501ys, in rice (Oryza sativa). The mutant exhibited yellow-green leaf phenotype and reduced chlorophyll level. The phenotype of 501ys was caused by mutation of a gene on rice chromosome 3. Map-based cloning of this mutant resulted in identification of OsFdC2 gene (LOC_Os03g48040) showing high identity with Arabidopsis FdC2 gene (AT1G32550). OsFdC2 was expressed most abundantly in leaves and its encoded protein was targeted to the chloroplast. In 501ys mutant, a missense mutation was detected in DNA sequence of the gene, resulting in an amino acid change in the encoded protein. The mutant phenotype was rescued by introduction of the wild-type gene. Therefore, we successfully identified FdC2 gene via map-based cloning approach, and demonstrated that mutation of this gene caused yellow-green leaf phenotype in rice.
Collapse
Affiliation(s)
- Chunmei Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Hu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Huang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaozhi Ma
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingting Liao
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Zhong
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fuliang Xiao
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Changhui Sun
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjun Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaojian Deng
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Pingrong Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
16
|
Pierella Karlusich JJ, Ceccoli RD, Graña M, Romero H, Carrillo N. Environmental selection pressures related to iron utilization are involved in the loss of the flavodoxin gene from the plant genome. Genome Biol Evol 2015; 7:750-67. [PMID: 25688107 PMCID: PMC5322553 DOI: 10.1093/gbe/evv031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress and iron limitation represent the grim side of life in an oxygen-rich atmosphere. The versatile electron transfer shuttle ferredoxin, an iron-sulfur protein, is particularly sensitive to these hardships, and its downregulation under adverse conditions severely compromises survival of phototrophs. Replacement of ferredoxin by a stress-resistant isofunctional carrier, flavin-containing flavodoxin, is a widespread strategy employed by photosynthetic microorganisms to overcome environmental adversities. The flavodoxin gene was lost in the course of plant evolution, but its reintroduction in transgenic plants confers increased tolerance to environmental stress and iron starvation, raising the question as to why a genetic asset with obvious adaptive value was not kept by natural selection. Phylogenetic analyses reveal that the evolutionary history of flavodoxin is intricate, with several horizontal gene transfer events between distant organisms, including Eukarya, Bacteria, and Archaea. The flavodoxin gene is unevenly distributed in most algal lineages, with flavodoxin-containing species being overrepresented in iron-limited regions and scarce or absent in iron-rich environments. Evaluation of cyanobacterial genomic and metagenomic data yielded essentially the same results, indicating that there was little selection pressure to retain flavodoxin in iron-rich coastal/freshwater phototrophs. Our results show a highly dynamic evolution pattern of flavodoxin tightly connected to the bioavailability of iron. Evidence presented here also indicates that the high concentration of iron in coastal and freshwater habitats may have facilitated the loss of flavodoxin in the freshwater ancestor of modern plants during the transition of photosynthetic organisms from the open oceans to the firm land.
Collapse
Affiliation(s)
- Juan J Pierella Karlusich
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
| | - Romina D Ceccoli
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina Present address: Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario; CONICET, Rosario, Argentina
| | - Martín Graña
- Unidad de Bioinformática, Institut Pasteur Montevideo, Uruguay
| | - Héctor Romero
- Departamento de Ecología y Evolución, Facultad de Ciencias/CURE, Universidad de la República, Montevideo, Uruguay
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
| |
Collapse
|
17
|
Pierella Karlusich JJ, Lodeyro AF, Carrillo N. The long goodbye: the rise and fall of flavodoxin during plant evolution. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5161-78. [PMID: 25009172 PMCID: PMC4400536 DOI: 10.1093/jxb/eru273] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 05/18/2023]
Abstract
Ferredoxins are electron shuttles harbouring iron-sulfur clusters that connect multiple oxido-reductive pathways in organisms displaying different lifestyles. Some prokaryotes and algae express an isofunctional electron carrier, flavodoxin, which contains flavin mononucleotide as cofactor. Both proteins evolved in the anaerobic environment preceding the appearance of oxygenic photosynthesis. The advent of an oxygen-rich atmosphere proved detrimental to ferredoxin owing to iron limitation and oxidative damage to the iron-sulfur cluster, and many microorganisms induced flavodoxin expression to replace ferredoxin under stress conditions. Paradoxically, ferredoxin was maintained throughout the tree of life, whereas flavodoxin is absent from plants and animals. Of note is that flavodoxin expression in transgenic plants results in increased tolerance to multiple stresses and iron deficit, through mechanisms similar to those operating in microorganisms. Then, the question remains open as to why a trait that still confers plants such obvious adaptive benefits was not retained. We compare herein the properties of ferredoxin and flavodoxin, and their contrasting modes of expression in response to different environmental stimuli. Phylogenetic analyses suggest that the flavodoxin gene was already absent in the algal lineages immediately preceding land plants. Geographical distribution of phototrophs shows a bias against flavodoxin-containing organisms in iron-rich coastal/freshwater habitats. Based on these observations, we propose that plants evolved from freshwater macroalgae that already lacked flavodoxin because they thrived in an iron-rich habitat with no need to back up ferredoxin functions and therefore no selective pressure to keep the flavodoxin gene. Conversely, ferredoxin retention in the plant lineage is probably related to its higher efficiency as an electron carrier, compared with flavodoxin. Several lines of evidence supporting these contentions are presented and discussed.
Collapse
Affiliation(s)
- Juan J Pierella Karlusich
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Anabella F Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| |
Collapse
|
18
|
Liu J, Wang P, Liu B, Feng D, Zhang J, Su J, Zhang Y, Wang JF, Wang HB. A deficiency in chloroplastic ferredoxin 2 facilitates effective photosynthetic capacity during long-term high light acclimation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:861-874. [PMID: 24118453 DOI: 10.1111/tpj.12341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 06/02/2023]
Abstract
Photosynthetic electron transport is the major energy source for cellular metabolism in plants, and also has the potential to generate excess reactive oxygen species that cause irreversible damage to photosynthetic apparatus under adverse conditions. Ferredoxins (Fds), as the electron-distributing hub in the chloroplast, contribute to redox regulation and antioxidant defense. However, the steady-state levels of photosynthetic Fd decrease in plants when they are exposed to environmental stress conditions. To understand the effect of Fd down-regulation on plant growth, we characterized Arabidopsis thaliana plants lacking Fd2 (Fd2-KO) under long-term high light (HL) conditions. Unexpectedly, Fd2-KO plants exhibited efficient photosynthetic capacity and stable thylakoid protein complexes. At the transcriptional level, photoprotection-related genes were up-regulated more in the mutant plants, suggesting that knockout Fd2 lines possess a relatively effective photo-acclimatory responses involving enhanced plastid redox signaling. In contrast to the physiological characterization of Fd2-KO under short-term HL, the plastoquinone pool returned to a relatively balanced redox state via elevated PGR5-dependent cyclic electron flow during extended HL. fd2 pgr5 double mutant plants displayed severely impaired photosynthetic capacity under HL treatment, further supporting a role for PGR5 in adaptation to HL in the Fd2-KO plants. These results suggest potential benefits of reducing Fd levels in plants grown under long-term HL conditions.
Collapse
Affiliation(s)
- Jun Liu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Xie X, Gu W, Gao S, Lu S, Li J, Pan G, Wang G, Shen S. Alternative electron transports participate in the maintenance of violaxanthin De-epoxidase activity of Ulva sp. under low irradiance. PLoS One 2013; 8:e78211. [PMID: 24250793 PMCID: PMC3826755 DOI: 10.1371/journal.pone.0078211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022] Open
Abstract
The xanthophyll cycle (Xc), which involves violaxanthin de-epoxidase (VDE) and the zeaxanthin epoxidase (ZEP), is one of the most rapid and efficient responses of plant and algae to high irradiance. High light intensity can activate VDE to convert violaxanthin (Vx) to zeaxanthin (Zx) via antheraxanthin (Ax). However, it remains unclear whether VDE remains active under low light or dark conditions when there is no significant accumulation of Ax and Zx, and if so, how the ΔpH required for activation of VDE is built. In this study, we used salicylaldoxime (SA) to inhibit ZEP activity in the intertidal macro-algae Ulva sp. (Ulvales, Chlorophyta) and then characterized VDE under low light and dark conditions with various metabolic inhibitors. With inhibition of ZEP by SA, VDE remained active under low light and dark conditions, as indicated by large accumulations of Ax and Zx at the expense of Vx. When PSII-mediated linear electron transport systems were completely inhibited by SA and DCMU, alternative electron transport systems (i.e., cyclic electron transport and chlororespiration) could maintain VDE activity. Furthermore, accumulations of Ax and Zx decreased significantly when SA, DCMU, or DBMIB together with an inhibitor of chlororespiration (i.e., propyl gallate (PG)) were applied to Ulva sp. This result suggests that chlororespiration not only participates in the build-up of the necessary ΔpH, but that it also possibly influences VDE activity indirectly by diminishing the oxygen level in the chloroplast.
Collapse
Affiliation(s)
- Xiujun Xie
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenhui Gu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Shan Gao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Shan Lu
- School of Life Science, Nanjing University, Nanjing, China
| | - Jian Li
- Earth and Life Institute, Catholic University of Louvain, Louvain la Neuve, Belgium
| | - Guanghua Pan
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Guangce Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Songdong Shen
- College of Life Sciences, Soochow University, Suzhou, China
| |
Collapse
|
20
|
Overexpression of ferredoxin, PETF, enhances tolerance to heat stress in Chlamydomonas reinhardtii. Int J Mol Sci 2013; 14:20913-29. [PMID: 24141188 PMCID: PMC3821650 DOI: 10.3390/ijms141020913] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) produced by plants in adverse environments can cause damage to organelles and trigger cell death. Removal of excess ROS can be achieved through the ascorbate scavenger pathway to prevent plant cell death. The amount of this scavenger can be regulated by ferredoxin (FDX). Chloroplastic FDXs are electron transfer proteins that perform in distributing photosynthetic reducing power. In this study, we demonstrate that overexpression of the endogenous photosynthetic FDX gene, PETF, in Chlamydomonas reinhardtii could raise the level of reduced ascorbate and diminish H2O2 levels under normal growth conditions. Furthermore, the overexpressing PETF transgenic Chlamydomonas lines produced low levels of H2O2 and exhibited protective effects that were observed through decreased chlorophyll degradation and increased cell survival under heat-stress conditions. The findings of this study suggest that overexpression of PETF can increase the efficiency of ROS scavenging in chloroplasts to confer heat tolerance. The roles of PETF in the downregulation of the ROS level offer a method for potentially improving the tolerance of crops against heat stress.
Collapse
|
21
|
Hanke G, Mulo P. Plant type ferredoxins and ferredoxin-dependent metabolism. PLANT, CELL & ENVIRONMENT 2013; 36:1071-1084. [PMID: 23190083 DOI: 10.1111/pce.12046] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 05/24/2023]
Abstract
Ferredoxin (Fd) is a small [2Fe-2S] cluster-containing protein found in all organisms performing oxygenic photosynthesis. Fd is the first soluble acceptor of electrons on the stromal side of the chloroplast electron transport chain, and as such is pivotal to determining the distribution of these electrons to different metabolic reactions. In chloroplasts, the principle sink for electrons is in the production of NADPH, which is mostly consumed during the assimilation of CO2 . In addition to this primary function in photosynthesis, Fds are also involved in a number of other essential metabolic reactions, including biosynthesis of chlorophyll, phytochrome and fatty acids, several steps in the assimilation of sulphur and nitrogen, as well as redox signalling and maintenance of redox balance via the thioredoxin system and Halliwell-Asada cycle. This makes Fds crucial determinants of the electron transfer between the thylakoid membrane and a variety of soluble enzymes dependent on these electrons. In this article, we will first describe the current knowledge on the structure and function of the various Fd isoforms present in chloroplasts of higher plants and then discuss the processes involved in oxidation of Fd, introducing the corresponding enzymes and discussing what is known about their relative interaction with Fd.
Collapse
Affiliation(s)
- Guy Hanke
- Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076, Osnabrück, Germany
| | | |
Collapse
|
22
|
Blanco NE, Ceccoli RD, Vía MVD, Voss I, Segretin ME, Bravo-Almonacid FF, Melzer M, Hajirezaei MR, Scheibe R, Hanke GT. Expression of the minor isoform pea ferredoxin in tobacco alters photosynthetic electron partitioning and enhances cyclic electron flow. PLANT PHYSIOLOGY 2013; 161:866-79. [PMID: 23370717 PMCID: PMC3561025 DOI: 10.1104/pp.112.211078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/04/2012] [Indexed: 05/07/2023]
Abstract
Ferredoxins (Fds) are ferrosulfoproteins that function as low-potential electron carriers in plants. The Fd family is composed of several isoforms that share high sequence homology but differ in functional characteristics. In leaves, at least two isoforms conduct linear and cyclic photosynthetic electron transport around photosystem I, and mounting evidence suggests the existence of at least partial division of duties between these isoforms. To evaluate the contribution of different kinds of Fds to the control of electron fluxes along the photosynthetic electron transport chain, we overexpressed a minor pea (Pisum sativum) Fd isoform (PsFd1) in tobacco (Nicotiana tabacum) plants. The transplastomic OeFd1 plants exhibited variegated leaves and retarded growth and developmental rates. Photosynthetic studies of these plants indicated a reduction in carbon dioxide assimilation rates, photosystem II photochemistry, and linear electron flow. However, the plants showed an increase in nonphotochemical quenching, better control of excitation pressure at photosystem II, and no evidence of photoinhibition, implying a better dynamic regulation to remove excess energy from the photosynthetic electron transport chain. Finally, analysis of P700 redox status during illumination confirmed that the minor pea Fd isoform promotes enhanced cyclic flow around photosystem I. The two novel features of this work are: (1) that Fd levels achieved in transplastomic plants promote an alternative electron partitioning even under greenhouse light growth conditions, a situation that is exacerbated at higher light intensity measurements; and (2) that an alternative, minor Fd isoform has been overexpressed in plants, giving new evidence of labor division among Fd isoforms.
Collapse
Affiliation(s)
- Nicolás E Blanco
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87 Umea, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Takahashi H, Clowez S, Wollman FA, Vallon O, Rappaport F. Cyclic electron flow is redox-controlled but independent of state transition. Nat Commun 2013; 4:1954. [PMID: 23760547 PMCID: PMC3709502 DOI: 10.1038/ncomms2954] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/29/2013] [Indexed: 11/23/2022] Open
Abstract
Photosynthesis is the biological process that feeds the biosphere with reduced carbon. The assimilation of CO2 requires the fine tuning of two co-existing functional modes: linear electron flow, which provides NADPH and ATP, and cyclic electron flow, which only sustains ATP synthesis. Although the importance of this fine tuning is appreciated, its mechanism remains equivocal. Here we show that cyclic electron flow as well as formation of supercomplexes, thought to contribute to the enhancement of cyclic electron flow, are promoted in reducing conditions with no correlation with the reorganization of the thylakoid membranes associated with the migration of antenna proteins towards Photosystems I or II, a process known as state transition. We show that cyclic electron flow is tuned by the redox power and this provides a mechanistic model applying to the entire green lineage including the vast majority of the cases in which state transition only involves a moderate fraction of the antenna.
Collapse
Affiliation(s)
- Hiroko Takahashi
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P et M Curie, 75005 Paris, France
- These authors contributed equally to this work
| | - Sophie Clowez
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P et M Curie, 75005 Paris, France
- These authors contributed equally to this work
| | - Francis-André Wollman
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P et M Curie, 75005 Paris, France
| | - Olivier Vallon
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P et M Curie, 75005 Paris, France
| | - Fabrice Rappaport
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P et M Curie, 75005 Paris, France
| |
Collapse
|
24
|
Dwyer SA, Chow WS, Yamori W, Evans JR, Kaines S, Badger MR, von Caemmerer S. Antisense reductions in the PsbO protein of photosystem II leads to decreased quantum yield but similar maximal photosynthetic rates. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4781-95. [PMID: 22922640 PMCID: PMC3428074 DOI: 10.1093/jxb/ers156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Photosystem (PS) II is the multisubunit complex which uses light energy to split water, providing the reducing equivalents needed for photosynthesis. The complex is susceptible to damage from environmental stresses such as excess excitation energy and high temperature. This research investigated the in vivo photosynthetic consequences of impairments to PSII in Arabidopsis thaliana (ecotype Columbia) expressing an antisense construct to the PsbO proteins of PSII. Transgenic lines were obtained with between 25 and 60% of wild-type (WT) total PsbO protein content, with the PsbO1 isoform being more strongly reduced than PsbO2. These changes coincided with a decrease in functional PSII content. Low PsbO (less than 50% WT) plants grew more slowly and had lower chlorophyll content per leaf area. There was no change in content per unit area of cytochrome b6f, ATP synthase, or Rubisco, whereas PSI decreased in proportion to the reduction in chlorophyll content. The irradiance response of photosynthetic oxygen evolution showed that low PsbO plants had a reduced quantum yield, but matched the oxygen evolution rates of WT plants at saturating irradiance. It is suggested that these plants had a smaller pool of PSII centres, which are inefficiently connected to antenna pigments resulting in reduced photochemical efficiency.
Collapse
Affiliation(s)
- Simon A Dwyer
- Research School of BiologyThe Australian National UniversityCanberra ACT 0200Australia
| | - Wah Soon Chow
- Research School of BiologyThe Australian National UniversityCanberra ACT 0200Australia
| | - Wataru Yamori
- Research School of BiologyThe Australian National UniversityCanberra ACT 0200Australia
| | - John R Evans
- Research School of BiologyThe Australian National UniversityCanberra ACT 0200Australia
| | - Sarah Kaines
- Research School of BiologyThe Australian National UniversityCanberra ACT 0200Australia
| | - Murray R Badger
- Research School of BiologyThe Australian National UniversityCanberra ACT 0200Australia
| | - Susanne von Caemmerer
- Research School of BiologyThe Australian National UniversityCanberra ACT 0200Australia
| |
Collapse
|
25
|
Lodeyro AF, Ceccoli RD, Pierella Karlusich JJ, Carrillo N. The importance of flavodoxin for environmental stress tolerance in photosynthetic microorganisms and transgenic plants. Mechanism, evolution and biotechnological potential. FEBS Lett 2012; 586:2917-24. [PMID: 22819831 DOI: 10.1016/j.febslet.2012.07.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
Ferredoxins are electron shuttles harboring iron-sulfur clusters which participate in oxido-reductive pathways in organisms displaying very different lifestyles. Ferredoxin levels decline in plants and cyanobacteria exposed to environmental stress and iron starvation. Flavodoxin is an isofunctional flavoprotein present in cyanobacteria and algae (not plants) which is induced and replaces ferredoxin under stress. Expression of a chloroplast-targeted flavodoxin in plants confers tolerance to multiple stresses and iron deficit. We discuss herein the bases for functional equivalence between the two proteins, the reasons for ferredoxin conservation despite its susceptibility to aerobic stress and for the loss of flavodoxin as an adaptive trait in higher eukaryotes. We also propose a mechanism to explain the tolerance conferred by flavodoxin when expressed in plants.
Collapse
Affiliation(s)
- Anabella F Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | | | | | | |
Collapse
|
26
|
Giró M, Ceccoli RD, Poli HO, Carrillo N, Lodeyro AF. An in vivo system involving co-expression of cyanobacterial flavodoxin and ferredoxin-NADP(+) reductase confers increased tolerance to oxidative stress in plants. FEBS Open Bio 2011; 1:7-13. [PMID: 23650570 PMCID: PMC3642056 DOI: 10.1016/j.fob.2011.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress in plants causes ferredoxin down-regulation and NADP+ shortage, over-reduction of the photosynthetic electron transport chain, electron leakage to oxygen and generation of reactive oxygen species (ROS). Expression of cyanobacterial flavodoxin in tobacco chloroplasts compensates for ferredoxin decline and restores electron delivery to productive routes, resulting in enhanced stress tolerance. We have designed an in vivo system to optimize flavodoxin reduction and NADP+ regeneration under stress using a version of cyanobacterial ferredoxin–NADP+ reductase without the thylakoid-binding domain. Co-expression of the two soluble flavoproteins in the chloroplast stroma resulted in lines displaying maximal tolerance to redox-cycling oxidants, lower damage and decreased ROS accumulation. The results underscore the importance of chloroplast redox homeostasis in plants exposed to adverse conditions, and provide a tool to improve crop tolerance toward environmental hardships.
Collapse
Key Words
- Cytb6f, cytochrome b6f
- Electron transport
- FNR, Ferredoxin–NADP+ reductase
- Fd, ferredoxin
- Ferredoxin
- Ferredoxin–NADP+ reductase
- Flavodoxin
- Fld, flavodoxin
- MV, methyl viologen
- NPQ, non-photochemical quenching
- Oxidative stress
- PC, plastocyanin
- PETC, photosynthetic electron transport chain
- PQ, plastoquinone
- PS, photosystem
- Photosynthesis
- ROS, reactive oxygen species
- TP, transit peptide
- sFNR, soluble cyanobacterial FNR
Collapse
Affiliation(s)
- Mariana Giró
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | | | | | | | | |
Collapse
|
27
|
Ceccoli RD, Blanco NE, Medina M, Carrillo N. Stress response of transgenic tobacco plants expressing a cyanobacterial ferredoxin in chloroplasts. PLANT MOLECULAR BIOLOGY 2011; 76:535-44. [PMID: 21584860 DOI: 10.1007/s11103-011-9786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/05/2011] [Indexed: 05/02/2023]
Abstract
Expression of the chloroplast electron shuttle ferredoxin is induced by light through mechanisms that partially depend on sequences lying in the coding region of the gene, complicating its manipulation by promoter engineering. Ferredoxin expression is also down-regulated under virtually all stress situations, and it is unclear if light-dependent induction and stress-dependent repression proceed through the same or similar mechanisms. Previous reports have shown that expression of a cyanobacterial flavodoxin in tobacco plastids results in plants with enhanced tolerance to adverse environmental conditions such as drought, chilling and xenobiotics (Tognetti et al. in Plant Cell 18:2035-2050, 2006). The protective effect of flavodoxin was linked to functional replacement of ferredoxin, suggesting the possibility that tolerant phenotypes might be obtained by simply increasing ferredoxin contents. To bypass endogenous regulatory constraints, we transformed tobacco plants with a ferredoxin gene from Anabaena sp. PCC7120, which has only 53% identity with plant orthologs. The cyanobacterial protein was able to interact in vitro with ferredoxin-dependent plant enzymes and to mediate NADP(+) photoreduction by tobacco thylakoids. Expression of Anabaena ferredoxin was constitutive and light-independent. However, homozygous lines accumulating threefold higher ferredoxin levels than the wild-type failed to show enhanced tolerance to oxidative stress and chilling temperatures. Under these adverse conditions, Anabaena ferredoxin was down-regulated even faster than the endogenous counterparts. The results indicate that: (1) light- and stress-dependent regulations of ferredoxin expression proceed through different pathways, and (2) overexpression of ferredoxin is not an alternative to flavodoxin expression for the development of increased stress tolerance in plants.
Collapse
Affiliation(s)
- Romina D Ceccoli
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), División Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | | | | | | |
Collapse
|
28
|
Blanco NE, Ceccoli RD, Segretin ME, Poli HO, Voss I, Melzer M, Bravo-Almonacid FF, Scheibe R, Hajirezaei MR, Carrillo N. Cyanobacterial flavodoxin complements ferredoxin deficiency in knocked-down transgenic tobacco plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:922-35. [PMID: 21205028 DOI: 10.1111/j.1365-313x.2010.04479.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ferredoxins are the main electron shuttles in chloroplasts, accepting electrons from photosystem I and delivering them to essential oxido-reductive pathways in the stroma. Ferredoxin levels decrease under adverse environmental conditions in both plants and photosynthetic micro-organisms. In cyanobacteria and some algae, this decrease is compensated for by induction of flavodoxin, an isofunctional flavoprotein that can replace ferredoxin in many reactions. Flavodoxin is not present in plants, but tobacco lines expressing a plastid-targeted cyanobacterial flavodoxin developed increased tolerance to environmental stress. Chloroplast-located flavodoxin interacts productively with endogenous ferredoxin-dependent pathways, suggesting that its protective role results from replacement of stress-labile ferredoxin. We tested this hypothesis by using RNA antisense and interference techniques to decrease ferredoxin levels in transgenic tobacco. Ferredoxin-deficient lines showed growth arrest, leaf chlorosis and decreased CO(2) assimilation. Chlorophyll fluorescence measurements indicated impaired photochemistry, over-reduction of the photosynthetic electron transport chain and enhanced non-photochemical quenching. Expression of flavodoxin from the nuclear or plastid genome restored growth, pigment contents and photosynthetic capacity, and relieved the electron pressure on the electron transport chain. Tolerance to oxidative stress also recovered. In the absence of flavodoxin, ferredoxin could not be decreased below 45% of physiological content without fatally compromising plant survival, but in its presence, lines with only 12% remaining ferredoxin could grow autotrophically, with almost wild-type phenotypes. The results indicate that the stress tolerance conferred by flavodoxin expression in plants stems largely from functional complementation of endogenous ferredoxin by the cyanobacterial flavoprotein.
Collapse
Affiliation(s)
- Nicolás E Blanco
- División Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Voss I, Goss T, Murozuka E, Altmann B, McLean KJ, Rigby SEJ, Munro AW, Scheibe R, Hase T, Hanke GT. FdC1, a novel ferredoxin protein capable of alternative electron partitioning, increases in conditions of acceptor limitation at photosystem I. J Biol Chem 2010; 286:50-9. [PMID: 20966083 DOI: 10.1074/jbc.m110.161562] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In higher plants, [2Fe-2S] ferredoxin (Fd) proteins are the unique electron acceptors from photosystem I (PSI). Fds are soluble, and distribute electrons to many enzymes, including Fd:NADP(H) reductase (FNR), for the photoreduction of NADP(+). In addition to well studied [2Fe-2S] Fd proteins, higher plants also possess genes for significantly different, as yet uncharacterized Fd proteins, with extended C termini (FdCs). Whether these FdC proteins function as photosynthetic electron transfer proteins is not known. We examined whether these proteins play a role as alternative electron acceptors at PSI, using quantitative RT-PCR to follow how their expression changes in response to acceptor limitation at PSI, in mutant Arabidopsis plants lacking 90-95% of photosynthetic [2Fe-2S] Fd. Expression of the gene encoding one FdC protein, FdC1, was identified as being strongly up-regulated. We confirmed that this protein was chloroplast localized and increased in abundance on PSI acceptor limitation. We purified the recombinant FdC1 protein, which exhibited a UV-visible spectrum consistent with a [2Fe-2S] cluster, confirmed by EPR analysis. Measurements of electron transfer show that FdC1 is capable of accepting electrons from PSI, but cannot support photoreduction of NADP(+). Whereas FdC1 was capable of electron transfer with FNR, redox potentiometry showed that it had a more positive redox potential than photosynthetic Fds by around 220 mV. These results indicate that FdC1 electron donation to FNR is prevented because it is thermodynamically unfavorable. Based on our data, we speculate that FdC1 has a specific function in conditions of acceptor limitation at PSI, and channels electrons away from NADP(+) photoreduction.
Collapse
Affiliation(s)
- Ingo Voss
- Department of Plant Physiology, University of Osnabrück, Barbara Strasse 11, 49076 Osnabrück, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zurbriggen MD, Hajirezaei MR, Carrillo N. Engineering the future. Development of transgenic plants with enhanced tolerance to adverse environments. Biotechnol Genet Eng Rev 2010; 27:33-56. [PMID: 21415892 DOI: 10.1080/02648725.2010.10648144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Environmental stresses - especially drought and salinity - and iron limitation are the primary causes of crop yield losses. Therefore, improvement of plant stress tolerance has paramount relevance for agriculture, and vigorous efforts are underway to design stress-tolerant crops. Three aspects of this ongoing research are reviewed here. First, attempts have been made to strengthen endogenous plant defences, which are characterised by intertwined, hierarchical gene networks involved in stress perception, signalling, regulation and expression of effector proteins, enzymes and metabolites. The multigenic nature of this response requires detailed knowledge of the many actors and interactions involved in order to identify proper intervention points, followed by significant engineering of the prospective genes to prevent undesired side-effects. A second important aspect refers to the effect of concurrent stresses as plants normally meet in the field (e.g., heat and drought). Recent findings indicate that plant responses to combined environmental hardships are somehow unique and cannot be predicted from the addition of the individual stresses, underscoring the importance of programming research within this conceptual framework. Finally, the photosynthetic microorganisms from which plants evolved (i.e., algae and cyanobacteria) deploy a totally different strategy to acquire stress tolerance, based on the substitution of stress-vulnerable targets by resistant isofunctional proteins that could take over the lost functions under adverse conditions. Reintroduction of these ancient traits in model and crop plants has resulted in increased tolerance to environmental hardships and iron starvation, opening a new field of opportunities to increase the endurance of crops growing under suboptimal conditions.
Collapse
Affiliation(s)
- Matias D Zurbriggen
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | | | | |
Collapse
|
31
|
Tsuyama M, Kobayashi Y. Reduction of the primary donor P700 of photosystem I during steady-state photosynthesis under low light in Arabidopsis. PHOTOSYNTHESIS RESEARCH 2009; 99:37-47. [PMID: 18975133 DOI: 10.1007/s11120-008-9379-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 10/06/2008] [Indexed: 05/27/2023]
Abstract
During steady-state photosynthesis in low-light, 830-nm absorption (A(830)) by leaves was close to that in darkness in Arabidopsis, indicating that the primary donor P700 in the reaction center of photosystem I (PSI) was in reduced form. However, P700 was not fully oxidized by a saturating light pulse, suggesting the presence of a population of PSI centers with reduced P700 that remains thermodynamically stable during the application of the saturating light pulse (i.e., reduced-inactive P700). To substantiate this, the effects of methyl viologen (MV) and far-red light on P700 oxidation by the saturating light pulse were analyzed, and the cumulative effects of repetitive application of the saturating light pulse on photosynthesis were analyzed using a mutant crr2-2 with impaired PSI cyclic electron flow. We concluded that the reduced-inactive P700 in low-light as revealed by saturating light pulse indicates limitations of electron flow at the PSI acceptor side.
Collapse
Affiliation(s)
- Michito Tsuyama
- Department of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan.
| | | |
Collapse
|
32
|
Lazár D, Schansker G. Models of Chlorophyll a Fluorescence Transients. PHOTOSYNTHESIS IN SILICO 2009. [DOI: 10.1007/978-1-4020-9237-4_5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
A Model of the Generalized Stoichiometry of Electron Transport Limited C3 Photosynthesis: Development and Applications. PHOTOSYNTHESIS IN SILICO 2009. [DOI: 10.1007/978-1-4020-9237-4_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Zurbriggen MD, Tognetti VB, Fillat MF, Hajirezaei MR, Valle EM, Carrillo N. Combating stress with flavodoxin: a promising route for crop improvement. Trends Biotechnol 2008; 26:531-7. [PMID: 18706721 DOI: 10.1016/j.tibtech.2008.07.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/23/2008] [Accepted: 07/01/2008] [Indexed: 11/22/2022]
Abstract
Environmental stresses and iron limitation are the primary causes of crop losses worldwide. Engineering strategies aimed at gaining stress tolerance have focused on overexpression of endogenous genes belonging to molecular networks for stress perception or responses. Based on the typical response of photosynthetic microorganisms to stress, an alternative approach has been recently applied with considerable success. Ferredoxin, a stress-sensitive target, was replaced in tobacco chloroplasts by an isofunctional protein, a cyanobacterial flavodoxin, which is absent in plants. Resulting transgenic lines showed wide-range tolerance to drought, chilling, oxidants, heat and iron starvation. The survival of plants under such adverse conditions would be an enormous agricultural advantage and makes this novel strategy a potentially powerful biotechnological tool for the generation of multiple-tolerant crops in the near future.
Collapse
Affiliation(s)
- Matias D Zurbriggen
- Instituto de Biología Molecular y Celular de Rosario, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
35
|
Cheng YQ, Liu ZM, Xu J, Zhou T, Wang M, Chen YT, Li HF, Fan ZF. HC-Pro protein of sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta. J Gen Virol 2008; 89:2046-2054. [PMID: 18632977 DOI: 10.1099/vir.0.2008/001271-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Symptom development of a plant viral disease is a result of molecular interactions between the virus and its host plant; thus, the elucidation of specific interactions is a prerequisite to reveal the mechanism of viral pathogenesis. Here, we show that the chloroplast precursor of ferredoxin-5 (Fd V) from maize (Zea mays) interacts with the multifunctional HC-Pro protein of sugar cane mosaic virus (SCMV) in yeast, Nicotiana benthamiana cells and maize protoplasts. Our results demonstrate that the transit peptide rather than the mature protein of Fd V precursor could interact with both N-terminal (residues 1-100) and C-terminal (residues 301-460) fragments, but not the middle part (residues 101-300), of HC-Pro. In addition, SCMV HC-Pro interacted only with Fd V, and not with the other two photosynthetic ferredoxin isoproteins (Fd I and Fd II) from maize plants. SCMV infection significantly downregulated the level of Fd V mRNA in maize plants; however, no obvious changes were observed in levels of Fd I and Fd II mRNA. These results suggest that SCMV HC-Pro interacts specifically with maize Fd V and that this interaction may disturb the post-translational import of Fd V into maize bundle-sheath cell chloroplasts, which could lead to the perturbation of chloroplast structure and function.
Collapse
Affiliation(s)
- Yu-Qin Cheng
- Department of Pomology, China Agricultural University, Beijing 100094, PR China
- Department of Plant Pathology and State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, PR China
| | - Zhong-Mei Liu
- Department of Plant Pathology and State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, PR China
| | - Jian Xu
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, PR China
| | - Tao Zhou
- Department of Plant Pathology and State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, PR China
| | - Meng Wang
- Department of Pomology, China Agricultural University, Beijing 100094, PR China
- Department of Plant Pathology and State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, PR China
| | - Yu-Ting Chen
- Department of Plant Pathology and State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, PR China
| | - Huai-Fang Li
- Department of Plant Pathology and State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, PR China
| | - Zai-Feng Fan
- Department of Plant Pathology and State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, PR China
| |
Collapse
|
36
|
Hanke GT, Hase T. Variable photosynthetic roles of two leaf-type ferredoxins in arabidopsis, as revealed by RNA interference. Photochem Photobiol 2008; 84:1302-9. [PMID: 18673322 DOI: 10.1111/j.1751-1097.2008.00411.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ferredoxin (Fd) is the soluble protein that accepts electrons from photosystem I (PSI) and makes them available to stromal enzymes in higher plant chloroplasts. In linear electron flow, Fd mainly donates electrons to Fd:NADPH reductase (FNR) which generates NADPH for use in the Calvin cycle, but Fd may also return electrons to the thylakoid plastoquinone pool, forming a cyclic electron flow. Many higher plants contain two different photosynthetic Fd proteins, but there are no conserved sequence differences that allow their division into evolutionary groups. In the model C3 photosynthesizing dicot, Arabidopsis thaliana, there are two such photosynthetic Fds, and we have exploited RNA interference (RNAi) techniques to specifically decrease transcript abundance of different Fds in this plant. Surprisingly, the perturbation of photosynthesis, as measured by cholorophyll fluorescence, in RNAi lines of the two different photosynthetic Fds shows opposite trends. Linear electron flow is retarded in lines with lower Fd2 (the most abundant Fd species) levels and under certain circumstances enhanced in lines with lower Fd1 (the minor isoprotein) levels. These data are evidences for at least partially differentiated roles of Fd1 and Fd2 in photosynthetic electron transfer, possibly in the partition of electrons into linear and cyclic electron flow.
Collapse
Affiliation(s)
- Guy Thomas Hanke
- Laboratory of Protein Profiling Function Proteomics, Institute for Protein Research, Osaka University, Osaka, Japan.
| | | |
Collapse
|
37
|
Voss I, Koelmann M, Wojtera J, Holtgrefe S, Kitzmann C, Backhausen JE, Scheibe R. Knockout of major leaf ferredoxin reveals new redox-regulatory adaptations in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2008; 133:584-98. [PMID: 18494733 DOI: 10.1111/j.1399-3054.2008.01112.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ferredoxins are the major distributors for electrons to the various acceptor systems in plastids. In green tissues, ferredoxins are reduced by photosynthetic electron flow in the light, while in heterotrophic tissues, nicotinamide adenine dinucleotide (reduced) (NADPH) generated in the oxidative pentose-phosphate pathway (OPP) is the reductant. We have used a Ds-T-DNA insertion line of Arabidopsis thaliana for the gene encoding the major leaf ferredoxin (Fd2, At1g60950) to create a situation of high electron pressure in the thylakoids. Although these plants (Fd2-KO) possess only the minor fraction of leaf Fd1 (At1g10960), they grow photoautotrophically on soil, but with a lower growth rate and less chlorophyll. The more oxidized conditions in the stroma due to the formation of reactive oxygen species are causing a re-adjustment of the redox state in these plants that helps them to survive even under high light. Redox homeostasis is achieved by regulation at both, the post-translational and the transcriptional level. Over-reduction of the electron transport chain leads to increased transcription of the malate-valve enzyme NADP-malate dehydrogenase (MDH), and the oxidized stroma leads to an increased transcription of the OPP enzyme glucose-6-P dehydrogenase. In isolated spinach chloroplasts, oxidized conditions give rise to a decreased activation state of NADP-MDH and an activation of glucose-6-P dehydrogenase even in the light. In Fd2-KO plants, NADPH-requiring antioxidant systems are upregulated. These adjustments must be caused by plastid signals, and they prevent oxidative damage under rather severe conditions.
Collapse
Affiliation(s)
- Ingo Voss
- Department of Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrueck, D-49069 Osnabrueck, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Recent research has established redox-dependent thiol modification of proteins as a major regulatory layer superimposed on most cell functional categories in plants. Modern proteomics and forward as well as reverse genetics approaches have enabled the identification of a high number of novel targets of redox regulation. Redox-controlled processes range from metabolism to transport, transcription and translation. Gene activity regulation by transcription factors such as TGA, Athb-9 and RAP2 directly or indirectly is controlled by the redox state. Knowledge on putative redox sensors such as the peroxiredoxins, on redox transmitters including thioredoxins and glutaredoxins and biochemical mechanisms of their linkage to the metabolic redox environment has emerged as the framework of a functional redox regulatory network. Its basic principle is similar in eukaryotic cells and particularly complex in the photosynthesizing chloroplast. Methods and knowledge are now at hand to develop a quantitative understanding of redox signalling and the redox regulatory network in the eukaryotic cell.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Biochemistry and Physiology of Plants, W5-134, Bielefeld University, D-33501 Bielefeld, Germany.
| |
Collapse
|
39
|
Schöttler MA, Bock R. Extranuclear Inheritance: Plastid—Nuclear Cooperation in Photosystem I Assembly in Photosynthetic Eukaryotes. PROGRESS IN BOTANY 2008. [DOI: 10.1007/978-3-540-72954-9_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
40
|
Baker NR, Harbinson J, Kramer DM. Determining the limitations and regulation of photosynthetic energy transduction in leaves. PLANT, CELL & ENVIRONMENT 2007; 30:1107-25. [PMID: 17661750 DOI: 10.1111/j.1365-3040.2007.01680.x] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The light-dependent production of ATP and reductants by the photosynthetic apparatus in vivo involves a series of electron and proton transfers. Consideration is given as to how electron fluxes through photosystem I (PSI), using absorption spectroscopy, and through photosystem II (PSII), using chlorophyll fluorescence analyses, can be estimated in vivo. Measurements of light-induced electrochromic shifts using absorption spectroscopy provide a means of analyzing the proton fluxes across the thylakoid membranes in vivo. Regulation of these electron and proton fluxes is required for the thylakoids to meet the fluctuating metabolic demands of the cell. Chloroplasts exhibit a wide and flexible range of mechanisms to regulate electron and proton fluxes that enable chloroplasts to match light use for ATP and reductant production with the prevailing metabolic requirements. Non-invasive probing of electron fluxes through PSI and PSII, and proton fluxes across the thylakoid membranes can provide insights into the operation of such regulatory processes in vivo.
Collapse
Affiliation(s)
- Neil R Baker
- Department of Biological Sciences, University of Essex, Colchester, CO4 3SQ, Essex, UK.
| | | | | |
Collapse
|
41
|
Huang HE, Liu CA, Lee MJ, Kuo CG, Chen HM, Ger MJ, Tsai YC, Chen YR, Lin MK, Feng TY. Resistance enhancement of transgenic tomato to bacterial pathogens by the heterologous expression of sweet pepper ferredoxin-I protein. PHYTOPATHOLOGY 2007; 97:900-906. [PMID: 18943629 DOI: 10.1094/phyto-97-8-0900] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Expression of a foreign gene to enhance plant disease resistance to bacterial pathogens is a favorable strategy. It has been demonstrated that expressing sweet pepper ferredoxin-I protein (PFLP) in transgenic plants can enhance disease resistance to bacterial pathogens that infect leaf tissue. In this study, PFLP was applied to protect tomato (Lycopersicon esculentum cv. cherry Cln1558a) from the root-infecting pathogen, Ralstonia solanacearum. Independent R. solanacearum resistant T(1) lines were selected and bred to produce homozygous T(2) generations. Selected T(2) transgenic lines 24-18-7 and 26-2-1a, which showed high expression levels of PFLP in root tissue, were resistant to disease caused by R. solanacearum. In contrast, the transgenic line 23-17-1b and nontransgenic tomato, which showed low expression levels of PFLP in root tissue, were not resistant to R. solanacearum infection. The expansion of R. solanacearum populations in stem tissue of transgenic tomato line 24-18-7 was limited compared with the nontransgenic tomato Cln1558a. Using a detached leaf assay, transgenic line 24-18-7 was also resistant to maceration caused by E. carotovora subsp. carotovora; however, resistance to E. carotovora subsp. carotovora was less apparent in transgenic lines 26-2-1a and 23-17-1b. These results demonstrate that PFLP is able to enhance disease resistance at different levels to bacterial pathogens in individual tissue of transgenic tomato.
Collapse
|
42
|
Tognetti VB, Zurbriggen MD, Morandi EN, Fillat MF, Valle EM, Hajirezaei MR, Carrillo N. Enhanced plant tolerance to iron starvation by functional substitution of chloroplast ferredoxin with a bacterial flavodoxin. Proc Natl Acad Sci U S A 2007; 104:11495-500. [PMID: 17592141 PMCID: PMC2040926 DOI: 10.1073/pnas.0704553104] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Indexed: 11/18/2022] Open
Abstract
Iron limitation affects one-third of the cultivable land on Earth and represents a major concern for agriculture. It causes decline of many photosynthetic components, including the Fe-S protein ferredoxin (Fd), involved in essential oxidoreductive pathways of chloroplasts. In cyanobacteria and some algae, Fd down-regulation under Fe deficit is compensated by induction of an isofunctional electron carrier, flavodoxin (Fld), a flavin mononucleotide-containing protein not found in plants. Transgenic tobacco lines expressing a cyanobacterial Fld in chloroplasts were able to grow in Fe-deficient media that severely compromised survival of WT plants. Fld expression did not improve Fe uptake or mobilization, and stressed transformants elicited a normal deficit response, including induction of ferric-chelate reductase and metal transporters. However, the presence of Fld did prevent decrease of several photosynthetic proteins (but not Fd) and partially protected photosynthesis from inactivation. It also preserved the activation state of enzymes depending on the Fd-thioredoxin pathway, which correlated with higher levels of intermediates of carbohydrate metabolism and the Calvin cycle, as well as increased contents of sucrose, glutamate, and other amino acids. These metabolic routes depend, directly or indirectly, on the provision of reduced Fd. The results indicate that Fld could compensate Fd decline during episodes of Fe deficiency by productively interacting with Fd-dependent pathways of the host, providing fresh genetic resources for the design of plants able to survive in Fe-poor lands.
Collapse
Affiliation(s)
- Vanesa B. Tognetti
- *Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, and
| | - Matias D. Zurbriggen
- *Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, and
| | - Eligio N. Morandi
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Suipacha, 531, S2002LRK Rosario, Argentina
| | - María F. Fillat
- Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Pedro Cerbuna, 12, E-50009 Zaragoza, Spain; and
| | - Estela M. Valle
- *Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, and
| | - Mohammad-Reza Hajirezaei
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Néstor Carrillo
- *Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, and
| |
Collapse
|
43
|
Tóth SZ, Schansker G, Strasser RJ. A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. PHOTOSYNTHESIS RESEARCH 2007; 93:193-203. [PMID: 17487568 DOI: 10.1007/s11120-007-9179-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 04/16/2007] [Indexed: 05/02/2023]
Abstract
The plastoquinone (PQ) pool of the photosynthetic electron transport chain becomes reduced under anaerobic conditions. Here, anaerobiosis was used as a tool to manipulate the PQ-pool redox state in darkness and to study the effects of the PQ-redox state on the Chl-a fluorescence (OJIP) kinetics in pea leaves (Pisum sativum L.). It is shown that the F(J) (fluorescence intensity at 3 ms) is linearly related to the area above the OJ-phase (first 3 ms) representing the reduction of the acceptor side of photosystem II (PSII) and F(J) is also linearly related to the area above the JI-phase (3-30 ms) that parallels the reduction of the PQ-pool. This means that F(J) depends on the availability of oxidized PQ-molecules bound to the Q(B)-site. The linear relationships between F(J) and the two areas indicate that F(J) is not sensitive to energy transfer between PSII-antennae (connectivity). It is further shown that a approximately 94% reduced PQ-pool is in equilibrium with a approximately 19% reduction of Q(A) (primary quinone acceptor of PSII). The non-linear relationship between the initial fluorescence value (F(20 micros)) and the area above the OJ-phase supports the idea that F(20 mus )is sensitive to connectivity. This is reinforced by the observation that this non-linearity can be overcome by transforming the F(20 micros)-values into [Q(A) (-)]-values. Based on the F(J)-value of the OJIP-transient, a simple method for the quantification of the redox state of the PQ-pool is proposed.
Collapse
Affiliation(s)
- Szilvia Z Tóth
- Laboratory of Bioenergetics, University of Geneva, Chemin des Embrouchis 10, CH-1254, Jussy, Geneva, Switzerland
| | | | | |
Collapse
|
44
|
Yip MK, Huang HE, Ger MJ, Chiu SH, Tsai YC, Lin CI, Feng TY. Production of soft rot resistant calla lily by expressing a ferredoxin-like protein gene (pflp) in transgenic plants. PLANT CELL REPORTS 2007; 26:449-57. [PMID: 17033825 DOI: 10.1007/s00299-006-0246-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 08/30/2006] [Accepted: 09/04/2006] [Indexed: 05/12/2023]
Abstract
An efficient protocol for the Agrobacterium tumefaciens-mediated transformation of calla lily (Zantedeschia elliottiana (W. Wats.) Engl. cultivar 'Florex Gold') is described. Shoot basal discs were co-cultivated with A. tumefaciens C58C1 carrying a plasmid containing neomycin phosphotransferase (nptII) and plant ferredoxin-like protein (pflp) genes. After Agrobacterium co-cultivation, the shoot basal discs were exposed to 100 mg l(-1) kanamycin for selection. Twenty-eight out of 260 discs (10.8%) were found to have survived and produced shoot clusters. Twenty-six of these were confirmed to contain the pflp transgene by PCR, ending up in 10% transformation efficiency. The disease resistance investigation revealed that 18 transgenic plants exhibited resistance to soft rot disease caused by Erwinia carotovora subsp. carotovora. The presence of pflp gene was demonstrated by PCR, and its accumulation and activity was confirmed by Western blot and disease resistance assay. This was the first report to show the successful transformation and resistance to a bacterial pathogen in Zantedeschia. The protocol is useful for the quality improvement of calla lily through genetic transformation.
Collapse
Affiliation(s)
- Mei-Kuen Yip
- Institute of Plant and Microbial Biology, Academic Sinica, Nankang, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
45
|
Rodriguez RE, Lodeyro A, Poli HO, Zurbriggen M, Peisker M, Palatnik JF, Tognetti VB, Tschiersch H, Hajirezaei MR, Valle EM, Carrillo N. Transgenic tobacco plants overexpressing chloroplastic ferredoxin-NADP(H) reductase display normal rates of photosynthesis and increased tolerance to oxidative stress. PLANT PHYSIOLOGY 2007; 143:639-49. [PMID: 17189326 PMCID: PMC1803747 DOI: 10.1104/pp.106.090449] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 12/13/2006] [Indexed: 05/13/2023]
Abstract
Ferredoxin-NADP(H) reductase (FNR) catalyzes the last step of photosynthetic electron transport in chloroplasts, driving electrons from reduced ferredoxin to NADP+. This reaction is rate limiting for photosynthesis under a wide range of illumination conditions, as revealed by analysis of plants transformed with an antisense version of the FNR gene. To investigate whether accumulation of this flavoprotein over wild-type levels could improve photosynthetic efficiency and growth, we generated transgenic tobacco (Nicotiana tabacum) plants expressing a pea (Pisum sativum) FNR targeted to chloroplasts. The alien product distributed between the thylakoid membranes and the chloroplast stroma. Transformants grown at 150 or 700 micromol quanta m(-2) s(-1) displayed wild-type phenotypes regardless of FNR content. Thylakoids isolated from plants with a 5-fold FNR increase over the wild type displayed only moderate stimulation (approximately 20%) in the rates of electron transport from water to NADP+. In contrast, when donors of photosystem I were used to drive NADP+ photoreduction, the activity was 3- to 4-fold higher than the wild-type controls. Plants expressing various levels of FNR (from 1- to 3.6-fold over the wild type) failed to show significant differences in CO2 assimilation rates when assayed over a range of light intensities and CO2 concentrations. Transgenic lines exhibited enhanced tolerance to photooxidative damage and redox-cycling herbicides that propagate reactive oxygen species. The results suggest that photosynthetic electron transport has several rate-limiting steps, with FNR catalyzing just one of them.
Collapse
Affiliation(s)
- Ramiro E Rodriguez
- Instituto de Biología Molecular y Celular de Rosario, División Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Huang HE, Ger MJ, Chen CY, Pandey AK, Yip MK, Chou HW, Feng TY. Disease resistance to bacterial pathogens affected by the amount of ferredoxin-I protein in plants. MOLECULAR PLANT PATHOLOGY 2007; 8:129-37. [PMID: 20507485 DOI: 10.1111/j.1364-3703.2006.00378.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
SUMMARY Ferredoxin-I (Fd-I) is a fundamental protein that is involved in several metabolic pathways. The amount of Fd-I found in plants is generally regulated by environmental stress, including biotic and abiotic events. In this study, the correlation between quantity of Fd-I and plant disease resistance was investigated. Fd-I levels were increased by inoculation with Pseudomonas syringae pv. syringae but were reduced by Erwinia carotovora ssp. carotovora. Transgenic tobacco over-expressing Fd-I with the sense sweet pepper Fd-I gene (pflp) was resistant to E. carotovora ssp. carotovora and the saprophytic bacterium P. fluorescens. By contrast, transgenic tobacco with reduced total Fd-I and the antisense pflp gene was susceptible to E. carotovora ssp. carotovora and P. fluorescens. Both of these transgenic tobaccos were resistant to P. syringae pv. syringae. By contrast, the mutated E. carotovora ssp. carotovora, with a defective harpin protein, was able to invade the sense-pflp transgenic tobacco as well as the non-transgenic tobacco. An in vitro kinase assay revealed that harpin could activate unidentified kinases to phosphorylate PFLP. These results demonstrate that Fd-I plays an important role in the disease defence mechanism.
Collapse
Affiliation(s)
- Hsiang-En Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
With 8 to 10 members, the peroxiredoxin gene family of each higher plant with known genome sequence is larger than in other eukaryotes. Likewise, the complexity of reductive regenerants is very high, e.g. the chloroplast 2-Cys Prx is reduced by various thioredoxins, cyclophilin Cyp20-3, the drought induced CDSP32 and the NADPH-dependent reductant NTRC. In the light of the apparent versatility of the peroxiredoxin system in plants, its specific and important functions in antioxidant defence, photosynthesis and stress adaptation, the review attempts a survey of present day knowledge on plant peroxiredoxins, their biochemical features and transcript regulation, as well as their function in photosynthesis, development, stress response and pathogenesis. The emerging evidence for plant Prx function in cell signaling is summarized.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology W5-134, University of Bielefeld, Germany
| |
Collapse
|
48
|
Yamamoto H, Kato H, Shinzaki Y, Horiguchi S, Shikanai T, Hase T, Endo T, Nishioka M, Makino A, Tomizawa KI, Miyake C. Ferredoxin limits cyclic electron flow around PSI (CEF-PSI) in higher plants--stimulation of CEF-PSI enhances non-photochemical quenching of Chl fluorescence in transplastomic tobacco. PLANT & CELL PHYSIOLOGY 2006; 47:1355-71. [PMID: 16956929 DOI: 10.1093/pcp/pcl005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We tested the hypothesis that ferredoxin (Fd) limits the activity of cyclic electron flow around PSI (CEF-PSI) in vivo and that the relief of this limitation promotes the non-photochemical quenching (NPQ) of Chl fluorescence. In transplastomic tobacco (Nicotiana tabacum cv Xanthi) expressing Fd from Arabidopsis (Arabidopsis thaliana) in its chloroplasts, the minimum yield (F(o)) of Chl fluorescence was higher than in the wild type. F(o) was suppressed to the wild-type level upon illumination with far-red light, implying that the transfer of electrons by Fd-quinone oxidoreductase (FQR) from the chloroplast stroma to plastoquinone was enhanced in transplastomic plants. The activity of CEF-PSI became higher in transplastomic than in wild-type plants under conditions limiting photosynthetic linear electron flow. Similarly, the NPQ of Chl fluorescence was enhanced in transplastomic plants. On the other hand, pool sizes of the pigments of the xanthophyll cycle and the amounts of PsbS protein were the same in all plants. All these results supported the hypothesis strongly. We conclude that breeding plants with an NPQ of Chl fluorescence increased by an enhancement of CEF-PSI activity might lead to improved tolerance for abiotic stresses, particularly under conditions of low light use efficiency.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizu-cho, Soraku-gun, Kyoto, 619-0292 Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yin X, Harbinson J, Struik PC. Mathematical review of literature to assess alternative electron transports and interphotosystem excitation partitioning of steady-state C3 photosynthesis under limiting light. PLANT, CELL & ENVIRONMENT 2006; 29:1771-82. [PMID: 16913866 DOI: 10.1111/j.1365-3040.2006.01554.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Linear whole-chain electron (e(-)) transport plays a dominant role in generating NADPH and ATP required for carbon fixation in chloroplasts. However, other e(-) pathways may be present to contribute to the flexibility of e(-) transport in meeting demands by various downstream metabolic processes. The estimation of the fluxes of these alternative pathways in vivo is difficult, as they are not amenable to direct experimental measurement. A recently developed model based on the generalized stoichiometry for the chloroplast e(-) transport pathways makes it possible to indirectly but quantitatively assess the fractions of e(-) that follow the alternative pathways. This model approach is used to review data from the literature on concurrent measurements of gas exchange and chlorophyll (Chl) fluorescence under steady-state, limiting light, non-photorespiratory conditions. The review suggests possible in vivo occurrence of cyclic e(-) transport (CET) under such conditions. About 10% of e(-) from the reduced ferredoxin follow the pseudocyclic mode, notably in support of nitrate reduction. The estimated fraction of e(-) from the reduced plastoquinone that follows the Q-cycle ( f(Q)) depends on the number of protons required per ATP synthesis. Our model approach also allows the excitation partitioning to photosystem II (PSII) to be assessed quantitatively. Most important, the model helps assess the limit value to uncertain physiological parameters and answer the 'what-if' question with regard to the effect of non-measured processes or measurement uncertainties on the estimations of alternative e(-) transports.
Collapse
Affiliation(s)
- Xinyou Yin
- Crop and Weed Ecology Group, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands.
| | | | | |
Collapse
|
50
|
Tognetti VB, Palatnik JF, Fillat MF, Melzer M, Hajirezaei MR, Valle EM, Carrillo N. Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance. THE PLANT CELL 2006; 18:2035-50. [PMID: 16829589 PMCID: PMC1533984 DOI: 10.1105/tpc.106.042424] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/15/2006] [Accepted: 06/08/2006] [Indexed: 05/10/2023]
Abstract
Chloroplast ferredoxin (Fd) plays a pivotal role in plant cell metabolism by delivering reducing equivalents to various essential oxidoreductive pathways. Fd levels decrease under adverse environmental conditions in many microorganisms, including cyanobacteria, which share a common ancestor with chloroplasts. Conversely, stress situations induce the synthesis of flavodoxin (Fld), an electron carrier flavoprotein not found in plants, which can efficiently replace Fd in most electron transfer processes. We report here that chloroplast Fd also declined in plants exposed to oxidants or stress conditions. A purified cyanobacterial Fld was able to mediate plant Fd-dependent reactions in vitro, including NADP+ and thioredoxin reduction. Tobacco (Nicotiana tabacum) plants expressing Fld in chloroplasts displayed increased tolerance to multiple sources of stress, including redox-cycling herbicides, extreme temperatures, high irradiation, water deficit, and UV radiation. Oxidant buildup and oxidative inactivation of thioredoxin-dependent plastidic enzymes were decreased in stressed plants expressing plastid-targeted Fld, suggesting that development of the tolerant phenotype relied on productive interaction of this flavoprotein with Fd-dependent oxidoreductive pathways of the host, most remarkably, thioredoxin reduction. The use of Fld provides new tools to investigate the requirements of photosynthesis in planta and to increase plant stress tolerance based on the introduction of a cyanobacterial product that is free from endogenous regulation in higher plants.
Collapse
Affiliation(s)
- Vanesa B Tognetti
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, División Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | | | | | | | | | | | | |
Collapse
|