1
|
Parra S, Stange Klein C. Preparation of Chemocompetent Agrobacterium tumefaciens Cells. Methods Mol Biol 2025; 2911:1-4. [PMID: 40146504 DOI: 10.1007/978-1-0716-4450-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Agrobacterium tumefaciens, a soilborne bacterium known for its natural ability to transfer genetic material into plant cells, revolutionized molecular biology and plant genetic engineering. To harness this transformative potential, researchers require competent Agrobacterium cells capable of efficiently delivering desired genetic constructs into plant hosts. Here, we describe a comprehensive and inexpensive method for obtaining Agrobacterium chemocompetent cells, focusing on key aspects such as cell preparation, transformation efficiency, and optimization.
Collapse
Affiliation(s)
- Samuel Parra
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
2
|
Dunaliella salina as a Potential Biofactory for Antigens and Vehicle for Mucosal Application. Processes (Basel) 2022. [DOI: 10.3390/pr10091776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The demand for effective, low-cost vaccines increases research in next-generation biomanufacturing platforms and the study of new vaccine delivery systems (e.g., mucosal vaccines). Applied biotechnology in antigen production guides research toward developing genetic modification techniques in different biological models to achieve the expression of heterologous proteins. These studies are based on various transformation protocols, applied in prokaryotic systems such as Escherichia coli to eukaryotic models such as yeasts, insect cell cultures, animals, and plants, including a particular type of photosynthetic organisms: microalgae, demonstrating the feasibility of recombinant protein expression in these biological models. Microalgae are one of the recombinant protein expression models with the most significant potential and studies in the last decade. Unicellular photosynthetic organisms are widely diverse with biological and growth-specific characteristics. Some examples of the species with commercial interest are Chlamydomonas, Botryococcus, Chlorella, Dunaliella, Haematococcus, and Spirulina. The production of microalgae species at an industrial level through specialized equipment for this purpose allows for proposing microalgae as a basis for producing recombinant proteins at a commercial level. A specie with a particular interest in biotechnology application due to growth characteristics, composition, and protein production capacity is D. salina, which can be cultivated under industrial standards to obtain βcarotene of high interest to humans. D saline currently has advantages over other microalgae species, such as its growth in culture media with a high salt concentration which reduces the risk of contamination, rapid growth, generally considered safe (GRAS), recombinant protein biofactory, and a possible delivery vehicle for mucosal application. This review discusses the status of microalgae D. salina as a platform of expression of recombinant production for its potential mucosal application as a vaccine delivery system, taking an advance on the technology for its production and cultivation at an industrial level.
Collapse
|
3
|
Induction of AmpC-Mediated β-Lactam Resistance Requires a Single Lytic Transglycosylase in Agrobacterium tumefaciens. Appl Environ Microbiol 2022; 88:e0033322. [PMID: 35638841 PMCID: PMC9238390 DOI: 10.1128/aem.00333-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The remarkable ability of Agrobacterium tumefaciens to transfer DNA to plant cells has allowed the generation of important transgenic crops. One challenge of A. tumefaciens-mediated transformation is eliminating the bacteria after plant transformation to prevent detrimental effects to plants and the release of engineered bacteria to the environment. Here, we use a reverse-genetics approach to identify genes involved in ampicillin resistance, with the goal of utilizing these antibiotic-sensitive strains for plant transformations. We show that treating A. tumefaciens C58 with ampicillin led to increased β-lactamase production, a response dependent on the broad-spectrum β-lactamase AmpC and its transcription factor, AmpR. Loss of the putative ampD orthologue atu2113 led to constitutive production of AmpC-dependent β-lactamase activity and ampicillin resistance. Finally, one cell wall remodeling enzyme, MltB3, was necessary for the AmpC-dependent β-lactamase activity, and its loss elicited ampicillin and carbenicillin sensitivity in the A. tumefaciens C58 and GV3101 strains. Furthermore, GV3101 ΔmltB3 transforms plants with efficiency comparable to that of the wild type but can be cleared with sublethal concentrations of ampicillin. The functional characterization of the genes involved in the inducible ampicillin resistance pathway of A. tumefaciens constitutes a major step forward in efforts to reduce the intrinsic antibiotic resistance of this bacterium. IMPORTANCE Agrobacterium tumefaciens, a significant biotechnological tool for production of transgenic plant lines, is highly resistant to a wide variety of antibiotics, posing challenges for various applications. One challenge is the efficient elimination of A. tumefaciens from transformed plant tissue without using levels of antibiotics that are toxic to the plants. Here, we present the functional characterization of genes involved in β-lactam resistance in A. tumefaciens. Knowledge about proteins that promote or inhibit β-lactam resistance will enable the development of strains to improve the efficiency of Agrobacterium-mediated plant genetic transformations. Effective removal of Agrobacterium from transformed plant tissue has the potential to maximize crop yield and food production, improving the outlook for global food security.
Collapse
|
4
|
Tiwari M, Gautam N, Indoliya Y, Kidwai M, Mishra AK, Chakrabarty D. A tau class GST, OsGSTU5, interacts with VirE2 and modulates the Agrobacterium-mediated transformation in rice. PLANT CELL REPORTS 2022; 41:873-891. [PMID: 35067774 DOI: 10.1007/s00299-021-02824-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/08/2021] [Indexed: 05/27/2023]
Abstract
OsGSTU5 interacts and glutathionylates the VirE2 protein of Agrobacterium and its (OsGSTU5) overexpression and downregulation showed a low and high AMT efficiency in rice, respectively. During Agrobacterium-mediated transformation (AMT), T-DNA along with several virulence proteins such as VirD2, VirE2, VirE3, VirD5, and VirF enter the plant cytoplasm. VirE2 serves as a single-stranded DNA binding (SSB) protein that assists the cytoplasmic trafficking of T-DNA inside the host cell. Though the regulatory roles of VirE2 have been established, the cellular reaction of their host, especially in monocots, has not been characterized in detail. This study identified a cellular interactor of VirE2 from the cDNA library of rice. The identified plant protein encoded by the gene cloned from rice was designated OsGSTU5, it interacted specifically with VirE2 in the host cytoplasm. OsGSTU5 was upregulated during Agrobacterium infection and involved in the post-translational glutathionylation of VirE2 (gVirE2). Interestingly, the in silico analysis showed that the 'gVirE2 + ssDNA' complex was structurally less stable than the 'VirE2 + ssDNA' complex. The gel shift assay also confirmed the attenuated SSB property of gVirE2 over VirE2. Moreover, knock-down and overexpression of OsGSTU5 in rice showed increased and decreased T-DNA expression, respectively after Agrobacterium infection. The present finding establishes the role of OsGSTU5 as an important target for modulation of AMT efficiency in rice.
Collapse
Affiliation(s)
- Madhu Tiwari
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Neelam Gautam
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yuvraj Indoliya
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Maria Kidwai
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Debasis Chakrabarty
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
A simplified and efficient Agrobacterium tumefaciens electroporation method. 3 Biotech 2018; 8:148. [PMID: 29487777 DOI: 10.1007/s13205-018-1171-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/14/2018] [Indexed: 10/18/2022] Open
Abstract
Agrobacterium tumefaciens is a widely used microbial tool in plant molecular biology to transfer DNA into plant cells and produce, e.g., stable or transient transformants or induce gene silencing. In our study, we present a simplified version of electrocompetent cell preparation that is not only time and cost efficient, but it requires minimal handling of bacterial cells. Liquid cultures are normally used to prepare competent Agrobacterium cells. To overcome the difficulties of working with liquid cultures, we propose suspending bacterial cells directly from overnight agar plate cultures. In addition, we optimized several parameters to simplify the procedure and maximize the number of transformants (e.g., Agrobacterium strains, number of washing steps, amount of required plasmid DNA, electroporation parameters, type of incubation media, or incubation time). This optimized, simple, and fast protocol has proved to be efficient enough to obtain transformed colonies with low amounts (as little as 1 ng) of plasmid DNA. In addition, it also enabled us to introduce ligated plasmids directly into Agrobacterium omitting the E. coli transformation step and accelerating the cloning procedure further.
Collapse
|
6
|
Plants as sources of natural and recombinant anti-cancer agents. Biotechnol Adv 2018; 36:506-520. [DOI: 10.1016/j.biotechadv.2018.02.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
|
7
|
Khan S, ur Rahman L. Pathway Modulation of Medicinal and Aromatic Plants Through Metabolic Engineering Using Agrobacterium tumefaciens. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-28669-3_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Siruguri V, Bharatraj DK, Vankudavath RN, Rao Mendu VV, Gupta V, Goodman RE. Evaluation of Bar, Barnase, and Barstar recombinant proteins expressed in genetically engineered Brassica juncea (Indian mustard) for potential risks of food allergy using bioinformatics and literature searches. Food Chem Toxicol 2015; 83:93-102. [DOI: 10.1016/j.fct.2015.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 11/26/2022]
|
9
|
Rosen R, Ron EZ. Proteomics of a plant pathogen: Agrobacterium tumefaciens. Proteomics 2011; 11:3134-42. [DOI: 10.1002/pmic.201100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/13/2011] [Accepted: 03/14/2011] [Indexed: 12/31/2022]
|
10
|
Van Gerven N, Waksman G, Remaut H. Pili and flagella biology, structure, and biotechnological applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:21-72. [PMID: 21999994 DOI: 10.1016/b978-0-12-415906-8.00005-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria and Archaea expose on their outer surfaces a variety of thread-like proteinaceous organelles with which they interact with their environments. These structures are repetitive assemblies of covalently or non-covalently linked protein subunits, organized into filamentous polymers known as pili ("hair"), flagella ("whips") or injectisomes ("needles"). They serve different roles in cell motility, adhesion and host invasion, protein and DNA secretion and uptake, conductance, or cellular encapsulation. Here we describe the functional, morphological and genetic diversity of these bacterial filamentous protein structures. The organized, multi-copy build-up and/or the natural function of pili and flagella have lead to their biotechnological application as display and secretion tools, as therapeutic targets or as molecular motors. We review the documented and potential technological exploitation of bacterial surface filaments in light of their structural and functional traits.
Collapse
Affiliation(s)
- Nani Van Gerven
- Structural & Molecular Microbiology, VIB/Vrije Universiteit Brussel, Brussels, Belgium
| | | | | |
Collapse
|
11
|
García-Vázquez FA, Ruiz S, Matás C, Izquierdo-Rico MJ, Grullón LA, De Ondiz A, Vieira L, Avilés-López K, Gutiérrez-Adán A, Gadea J. Production of transgenic piglets using ICSI-sperm-mediated gene transfer in combination with recombinase RecA. Reproduction 2010; 140:259-72. [PMID: 20501790 DOI: 10.1530/rep-10-0129] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sperm-mediated gene transfer (SMGT) is a method for the production of transgenic animals based on the intrinsic ability of sperm cells to bind and internalize exogenous DNA molecules and to transfer them into the oocyte at fertilization. Recombinase-A (RecA) protein-coated exogenous DNA has been used previously in pronuclear injection systems increasing integration into goat and pig genomes. However, there are no data regarding transgene expression after ICSI. Here, we set out to investigate whether the expression of transgenic DNA in porcine embryos is improved by recombinase-mediated DNA transfer and if it is possible to generate transgenic animals using this methodology. Different factors which could affect the performance of this transgenic methodology were analyzed by studying 1) the effect of the presence of exogenous DNA and RecA protein on boar sperm functionality; 2) the effect of recombinase RecA on in vitro enhanced green fluorescent protein (EGFP)-expressing embryos produced by ICSI or IVF; and 3) the efficiency of generation of transgenic piglets by RecA-mediated ICSI. Our results suggested that 1) the presence of exogenous DNA and RecA-DNA complexes at 5 microg/ml did not affect sperm functionality in terms of motility, viability, membrane lipid disorder, or reactive oxygen species generation; 2) EGFP-expressing embryos were obtained with a high efficiency using the SMGT-ICSI technique in combination with recombinase; however, the use of IVF system did not result in any fluorescent embryos; and 3) transgenic piglets were produced by this methodology. To our knowledge, this is the first time that transgenic pigs have been produced by ICSI-SGMT and a recombinase.
Collapse
Affiliation(s)
- Francisco A García-Vázquez
- Departamento de Fisiología, Facultad de Veterinaria Departmento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Ever since the first developments in plant transformation technology using model plant species in the early 1980s, there has been a body of plant science research devoted to adapting these techniques to the transformation of crop plants. For some crop species progress was relatively rapid, but in other crop groups such as the small grain cereals, which were not readily amenable to culture in vitro and were not natural hosts to Agrobacterium, it has taken nearly two decades to develop reliable and robust transformation methods.In the following chapters of this book, transformation procedures for small grain cereals are presented, together with methods for gene and protein expression and the characterization of transgenic plants. In this introductory chapter we try to put these later chapters into context, giving an overview of the development of transformation technology for small grain cereals, discussing some of the pros and cons of the techniques and what limitations still exist.
Collapse
|
13
|
Shrawat AK, Lörz H. Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:575-603. [PMID: 17309731 DOI: 10.1111/j.1467-7652.2006.00209.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cereal crops have been the primary targets for improvement by genetic transformation because of their worldwide importance for human consumption. For a long time, many of these important cereals were difficult to genetically engineer, mainly as a result of their inherent limitations associated with the resistance to Agrobacterium infection and their recalcitrance to in vitro regeneration. The delivery of foreign genes to rice plants via Agrobacterium tumefaciens has now become a routine technique. However, there are still serious handicaps with Agrobacterium-mediated transformation of other major cereals. In this paper, we review the pioneering efforts, existing problems and future prospects of Agrobacterium-mediated genetic transformation of major cereal crops, such as rice, maize, wheat, barley, sorghum and sugarcane.
Collapse
Affiliation(s)
- Ashok Kumar Shrawat
- Centre for Applied Plant Molecular Biology (AMP II), University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany.
| | | |
Collapse
|
14
|
Kaneko T, Moisyadi S, Suganuma R, Hohn B, Yanagimachi R, Pelczar P. Recombinase-mediated mouse transgenesis by intracytoplasmic sperm injection. Theriogenology 2005; 64:1704-15. [PMID: 15950270 DOI: 10.1016/j.theriogenology.2005.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 04/05/2005] [Accepted: 04/08/2005] [Indexed: 01/27/2023]
Abstract
The low efficiency of current microinjection-based animal transgenesis techniques is largely the result of poor embryo survival. We have developed a new, bacterial recombinase-based transgenesis method. Intracytoplasmic sperm injection (ICSI) of single stranded DNA (ssDNA) complexed with E. coli recombinase RecA into mouse metaphaseII (MII) arrested oocytes resulted in RecA-dependent transgenesis. This approach offers significant advantages over pronuclear microinjection and previous ICSI-based transgenesis approaches in terms of improved embryo survival, which translates into greater transgenesis efficiency. It also opens the possibility to attempt experiments, which may affect gene targeting by homologous recombination into DNA of mammalian single celled pre-implantation embryos.
Collapse
Affiliation(s)
- Takehito Kaneko
- Department of Anatomy and Reproductive Biology, University of Hawaii School of Medicine, HI 96822, USA
| | | | | | | | | | | |
Collapse
|
15
|
Karim S, Lundh D, Holmström KO, Mandal A, Pirhonen M. Structural and functional characterization of AtPTR3, a stress-induced peptide transporter of Arabidopsis. J Mol Model 2005; 11:226-36. [PMID: 15889294 DOI: 10.1007/s00894-005-0257-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 01/27/2005] [Indexed: 10/25/2022]
Abstract
A T-DNA tagged mutant line of Arabidopsis thaliana, produced with a promoter trap vector carrying a promoterless gus (uidA) as a reporter gene, showed GUS induction in response to mechanical wounding. Cloning of the chromosomal DNA flanking the T-DNA revealed that the insert had caused a knockout mutation in a PTR-type peptide transporter gene named At5g46050 in GenBank, here renamed AtPTR3. The gene and the deduced protein were characterized by molecular modelling and bioinformatics. Molecular modelling of the protein with fold recognition identified 12 transmembrane spanning regions and a large loop between the sixth and seventh helices. The structure of AtPTR3 resembled the other PTR-type transporters of plants and transporters in the major facilitator superfamily. Computer analysis of the AtPTR3 promoter suggested its expression in roots, leaves and seeds, complex hormonal regulation and induction by abiotic and biotic stresses. The computer-based hypotheses were tested experimentally by exposing the mutant plants to amino acids and several stress treatments. The AtPTR3 gene was induced by the amino acids histidine, leucine and phenylalanine in cotyledons and lower leaves, whereas a strong induction was obtained in the whole plant upon exposure to salt. Furthermore, the germination frequency of the mutant line was reduced on salt-containing media, suggesting that the AtPTR3 protein is involved in stress tolerance in seeds during germination.
Collapse
Affiliation(s)
- Sazzad Karim
- School of Life Sciences, University of Skövde, 541 28 Skövde, Sweden
| | | | | | | | | |
Collapse
|
16
|
Davey MR, Anthony P, Power JB, Lowe KC. Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 2004; 23:131-71. [PMID: 15694124 DOI: 10.1016/j.biotechadv.2004.09.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2004] [Revised: 09/13/2004] [Accepted: 09/23/2004] [Indexed: 11/27/2022]
Abstract
Plant protoplasts ("naked" cells) provide a unique single cell system to underpin several aspects of modern biotechnology. Major advances in genomics, proteomics, and metabolomics have stimulated renewed interest in these osmotically fragile wall-less cells. Reliable procedures are available to isolate and culture protoplasts from a range of plants, including both monocotyledonous and dicotyledonous crops. Several parameters, particularly the source tissue, culture medium, and environmental factors, influence the ability of protoplasts and protoplast-derived cells to express their totipotency and to develop into fertile plants. Importantly, novel approaches to maximise the efficiency of protoplast-to-plant systems include techniques already well established for animal and microbial cells, such as electrostimulation and exposure of protoplasts to surfactants and respiratory gas carriers, especially perfluorochemicals and hemoglobin. However, despite at least four decades of concerted effort and technology transfer between laboratories worldwide, many species still remain recalcitrant in culture. Nevertheless, isolated protoplasts are unique to a range of experimental procedures. In the context of plant genetic manipulation, somatic hybridisation by protoplast fusion enables nuclear and cytoplasmic genomes to be combined, fully or partially, at the interspecific and intergeneric levels to circumvent naturally occurring sexual incompatibility barriers. Uptake of isolated DNA into protoplasts provides the basis for transient and stable nuclear transformation, and also organelle transformation to generate transplastomic plants. Isolated protoplasts are also exploited in numerous miscellaneous studies involving membrane function, cell structure, synthesis of pharmaceutical products, and toxicological assessments. This review focuses upon the most recent developments in protoplast-based technologies.
Collapse
Affiliation(s)
- Michael R Davey
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | | | | | | |
Collapse
|
17
|
Iida S, Terada R. A tale of two integrations, transgene and T-DNA: gene targeting by homologous recombination in rice. Curr Opin Biotechnol 2004; 15:132-8. [PMID: 15081051 DOI: 10.1016/j.copbio.2004.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The first successful and reproducible gene targeting by homologous recombination, without the concomitant occurrence of ectopic events, has been reported. This will be a powerful approach for the characterization of gene function in rice, an important crop and a model for other cereal species. Models have been proposed to explain gene replacement by homologous recombination, including a possible model for Agrobacterium-mediated gene targeting using a strong positive-negative selection.
Collapse
Affiliation(s)
- Shigeru Iida
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | |
Collapse
|
18
|
Affiliation(s)
- Suzanne R Lybarger
- American Red Cross, Holland Laboratory, Department of Biochemistry, Rockville, MD 20855, USA
| | | |
Collapse
|
19
|
Abu-Arish A, Frenkiel-Krispin D, Fricke T, Tzfira T, Citovsky V, Wolf SG, Elbaum M. Three-dimensional reconstruction of Agrobacterium VirE2 protein with single-stranded DNA. J Biol Chem 2004; 279:25359-63. [PMID: 15054095 DOI: 10.1074/jbc.m401804200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agrobacterium tumefaciens infects plant cells by a unique mechanism involving an interkingdom genetic transfer. A single-stranded DNA substrate is transported across the two cell walls along with the bacterial virulence proteins VirD2 and VirE2. A single VirD2 molecule covalently binds to the 5'-end of the single-stranded DNA, while the VirE2 protein binds stoichiometrically along the length of the DNA, without sequence specificity. An earlier transmission/scanning transmission electron microscopy study indicated a solenoidal ("telephone coil") organization of the VirE2-DNA complex. Here we report a three-dimensional reconstruction of this complex using electron microscopy and single-particle image-processing methods. We find a hollow helical structure of 15.7-nm outer diameter, with a helical rise of 51.5 nm and 4.25 VirE2 proteins/turn. The inner face of the protein units contains a continuous wall and an inward protruding shelf. These structures appear to accommodate the DNA binding. Such a quaternary arrangement naturally sequesters the DNA from cytoplasmic nucleases and suggests a mechanism for its nuclear import by decoration with host cell factors. Coexisting with the helices, we also found VirE2 tetrameric ring structures. A two-dimensional average of the latter confirms the major features of the three-dimensional reconstruction.
Collapse
Affiliation(s)
- Asmahan Abu-Arish
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
20
|
Tzfira T, Citovsky V. The Agrobacterium-plant cell interaction. Taking biology lessons from a bug. PLANT PHYSIOLOGY 2003; 133:943-7. [PMID: 14612580 PMCID: PMC1540338 DOI: 10.1104/pp.103.032821] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
|