1
|
Sakakibara H. Five unaddressed questions about cytokinin biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1941-1949. [PMID: 39133104 PMCID: PMC12066119 DOI: 10.1093/jxb/erae348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/10/2024] [Indexed: 08/13/2024]
Abstract
Cytokinins, a class of phytohormones, play crucial roles in regulating plant growth and stress responses through finely tuned feedback loops involving metabolic and signaling cascades. Over the past 25 years, studies have identified key genes involved in cytokinin biosynthesis and inactivation pathways. Nevertheless, several gaps remain in our understanding, particularly regarding the movement of intermediate metabolites between subcellular compartments and the discrepancy between the products of adenosine phosphate-isopentenyltransferase (IPT) and the substrate preferences of subsequent reactions. Recent gene discoveries related to lonely guy (LOG)-independent pathways suggest a spatial extension of cytokinin biosynthesis into the apoplast. Other intriguing issues remain to be addressed, such as elucidating the synthetic pathway for cis-zeatin and unraveling the molecular mechanisms governing selective substrate use by the cytokinin biosynthetic enzyme Tumor morphology root (Tmr) from the phytopathogen Agrobacterium tumefaciens. Further studies are needed to reveal a fully comprehensive picture of cytokinin metabolism.
Collapse
Affiliation(s)
- Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Japan
| |
Collapse
|
2
|
Cheng J, Arystanbek Kyzy M, Heide A, Khan A, Lehmann M, Schröder L, Nägele T, Pommerrenig B, Keller I, Neuhaus HE. Senescence-Associated Sugar Transporter1 affects developmental master regulators and controls senescence in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:2749-2767. [PMID: 39158083 DOI: 10.1093/plphys/kiae430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
Sugar transport across membranes is critical for plant development and yield. However, an analysis of the role of intracellular sugar transporters in senescence is lacking. Here, we characterized the role of Senescence-Associated Sugar Transporter1 (SAST1) during senescence in Arabidopsis (Arabidopsis thaliana). SAST1 expression was induced in leaves during senescence and after the application of abscisic acid (ABA). SAST1 is a vacuolar protein that pumps glucose out of the cytosol. sast1 mutants exhibited a stay-green phenotype during developmental senescence, after the darkening of single leaves, and after ABA feeding. To explain the stay-green phenotype of sast1 mutants, we analyzed the activity of the glucose-induced master regulator TOR (target of rapamycin), which is responsible for maintaining a high anabolic state. TOR activity was higher in sast1 mutants during senescence compared to wild types, whereas the activity of its antagonist, SNF1-related protein kinase 1 (SnRK1), was reduced in sast1 mutants under senescent conditions. This deregulation of TOR and SnRK1 activities correlated with high cytosolic glucose levels under senescent conditions in sast1 mutants. Although sast1 mutants displayed a functional stay-green phenotype, their seed yield was reduced. These analyses place the activity of SAST1 in the last phase of a leaf's existence in the molecular program required to complete its life cycle.
Collapse
Affiliation(s)
- Jintao Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Meerim Arystanbek Kyzy
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| | - Adrian Heide
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| | - Azkia Khan
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| | - Martin Lehmann
- Plant Biochemistry, Faculty of Biology, Ludwig Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Laura Schröder
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Benjamin Pommerrenig
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Quedlinburg D-06484, Germany
| | - Isabel Keller
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| |
Collapse
|
3
|
Rüscher D, Vasina VV, Knoblauch J, Bellin L, Pommerrenig B, Alseekh S, Fernie AR, Neuhaus HE, Knoblauch M, Sonnewald U, Zierer W. Symplasmic phloem loading and subcellular transport in storage roots are key factors for carbon allocation in cassava. PLANT PHYSIOLOGY 2024; 196:1322-1339. [PMID: 38775728 PMCID: PMC11483629 DOI: 10.1093/plphys/kiae298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/05/2024] [Indexed: 10/03/2024]
Abstract
Cassava (Manihot esculenta) is a deciduous woody perennial shrub that stores large amounts of carbon and water in its storage roots. Previous studies have shown that assimilating unloading into storage roots happens symplasmically once secondary anatomy is established. However, mechanisms controlling phloem loading and overall carbon partitioning to different cassava tissues remain unclear. Here, we used a combination of histological, transcriptional, and biochemical analyses on different cassava tissues and at different timepoints to better understand source-sink carbon allocation. We found that cassava likely utilizes a predominantly passive symplasmic phloem loading strategy, indicated by the lack of expression of genes coding for key players of sucrose transport, the existence of branched plasmodesmata in the companion cell/bundle sheath interface of minor leaf veins, and very high leaf sucrose concentrations. Furthermore, we showed that tissue-specific changes in anatomy and non-structural carbohydrate contents are associated with tissue-specific modification in gene expression for sucrose cleavage/synthesis, as well as subcellular compartmentalization of sugars. Overall, our data suggest that carbon allocation during storage root filling is mostly facilitated symplasmically and is likely mostly regulated by local tissue demand and subcellular compartmentalization.
Collapse
Affiliation(s)
- David Rüscher
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Viktoriya V Vasina
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Jan Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Leo Bellin
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Saleh Alseekh
- Division of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Alisdair R Fernie
- Division of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - H Ekkehard Neuhaus
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Wolfgang Zierer
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| |
Collapse
|
4
|
Kasai Y, Takagi S, Ota S, Ishii K, Takeshita T, Kawano S, Harayama S. Development of a CRISPR/Cas9-mediated gene-editing method to isolate a mutant of the unicellular green alga Parachlorella kessleri strain NIES-2152 with improved lipid productivity. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:36. [PMID: 38443960 PMCID: PMC10916037 DOI: 10.1186/s13068-024-02484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Previously, we isolated a mutant of Parachlorella kessleri named strain PK4 that accumulated higher concentrations of lipids than the wild-type strain. Resequencing of the PK4 genome identified mutations in three genes which may be associated with the high-lipid phenotype. The first gene, named CDMT1, encodes a protein with a calcium-dependent membrane association domain; the second gene, named DMAN1, encodes endo-1,4-β-mannanase, while the third gene, named AATPL1, encodes a plastidic ATP/ADP antiporter-like protein. RESULTS To determine which of these mutant genes are directly responsible for the phenotype of strain PK4, we delivered Cas9-gRNA ribonucleoproteins targeting each of the three genes into the wild-type cells by electroporation and successfully disrupted these three genes separately. The lipid productivity in the disruptants of CDMT1 and DMAN1 was similar to and lower than that in the wild-type strain, while the disruptants of AATPL1 exhibited > 30% higher lipid productivity than the wild-type strain under diurnal conditions. CONCLUSIONS We succeeded in improving the lipid productivity of P. kessleri by CRISPR/Cas9-mediated gene disruption of AATPL1. The effective gene-editing method established in this study will be useful to improve Parachlorella strains for industrial applications.
Collapse
Affiliation(s)
- Yuki Kasai
- Research and Development Initiative, Chuo University, Bunkyo-Ku, Tokyo, 112-8551, Japan.
- Department of Biological Science, Chuo University, Kasuga 1-13-27, Bunkyo-Ku, Tokyo, 112-8551, Japan.
| | - Satsuki Takagi
- Research and Development Initiative, Chuo University, Bunkyo-Ku, Tokyo, 112-8551, Japan
| | - Shuhei Ota
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Kotaro Ishii
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
- Department of Radiation Measurement and Dose Assessment, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku,, Chiba-Shi, 263-8555, Japan
| | - Tsuyoshi Takeshita
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Shigeaki Harayama
- Research and Development Initiative, Chuo University, Bunkyo-Ku, Tokyo, 112-8551, Japan
| |
Collapse
|
5
|
Khan A, Cheng J, Kitashova A, Fürtauer L, Nägele T, Picco C, Scholz-Starke J, Keller I, Neuhaus HE, Pommerrenig B. Vacuolar sugar transporter EARLY RESPONSE TO DEHYDRATION6-LIKE4 affects fructose signaling and plant growth. PLANT PHYSIOLOGY 2023; 193:2141-2163. [PMID: 37427783 DOI: 10.1093/plphys/kiad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023]
Abstract
Regulation of intracellular sugar homeostasis is maintained by regulation of activities of sugar import and export proteins residing at the tonoplast. We show here that the EARLY RESPONSE TO DEHYDRATION6-LIKE4 (ERDL4) protein, a member of the monosaccharide transporter family, resides in the vacuolar membrane in Arabidopsis (Arabidopsis thaliana). Gene expression and subcellular fractionation studies indicated that ERDL4 participates in fructose allocation across the tonoplast. Overexpression of ERDL4 increased total sugar levels in leaves due to a concomitantly induced stimulation of TONOPLAST SUGAR TRANSPORTER 2 (TST2) expression, coding for the major vacuolar sugar loader. This conclusion is supported by the finding that tst1-2 knockout lines overexpressing ERDL4 lack increased cellular sugar levels. ERDL4 activity contributing to the coordination of cellular sugar homeostasis is also indicated by 2 further observations. First, ERDL4 and TST genes exhibit an opposite regulation during a diurnal rhythm, and second, the ERDL4 gene is markedly expressed during cold acclimation, representing a situation in which TST activity needs to be upregulated. Moreover, ERDL4-overexpressing plants show larger rosettes and roots, a delayed flowering time, and increased total seed yield. Consistently, erdl4 knockout plants show impaired cold acclimation and freezing tolerance along with reduced plant biomass. In summary, we show that modification of cytosolic fructose levels influences plant organ development and stress tolerance.
Collapse
Affiliation(s)
- Azkia Khan
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - Jintao Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China
| | - Anastasia Kitashova
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians- Universität München, D-82152 Planegg-Martinsried, Germany
| | - Lisa Fürtauer
- Institute for Biology III, Unit of Plant Molecular Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians- Universität München, D-82152 Planegg-Martinsried, Germany
| | - Cristiana Picco
- Institute of Biophysics, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, I-16149 Genova, Italy
| | - Joachim Scholz-Starke
- Institute of Biophysics, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, I-16149 Genova, Italy
| | - Isabel Keller
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| |
Collapse
|
6
|
Liu J, Lim SL, Zhong JY, Lim BL. Bioenergetics of pollen tube growth in Arabidopsis thaliana revealed by ratiometric genetically encoded biosensors. Nat Commun 2022; 13:7822. [PMID: 36535933 PMCID: PMC9763403 DOI: 10.1038/s41467-022-35486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Pollen tube is the fastest-growing plant cell. Its polarized growth process consumes a tremendous amount of energy, which involves coordinated energy fluxes between plastids, the cytosol, and mitochondria. However, how the pollen tube obtains energy and what the biological roles of pollen plastids are in this process remain obscure. To investigate this energy-demanding process, we developed second-generation ratiometric biosensors for pyridine nucleotides which are pH insensitive between pH 7.0 to pH 8.5. By monitoring dynamic changes in ATP and NADPH concentrations and the NADH/NAD+ ratio at the subcellular level in Arabidopsis (Arabidopsis thaliana) pollen tubes, we delineate the energy metabolism that underpins pollen tube growth and illustrate how pollen plastids obtain ATP, NADPH, NADH, and acetyl-CoA for fatty acid biosynthesis. We also show that fermentation and pyruvate dehydrogenase bypass are not essential for pollen tube growth in Arabidopsis, in contrast to other plant species like tobacco and lily.
Collapse
Affiliation(s)
- Jinhong Liu
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Shey-Li Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Jia Yi Zhong
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China.
- HKU Shenzhen Institute of Research and Innovation, Shenzhen, China.
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Li L, Zang X, Liu J, Ren J, Wang Z, Yang D. Integrated physiological and weighted gene co-expression network analysis reveals the hub genes engaged in nitrate-regulated alleviation of ammonium toxicity at the seedling stage in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1012966. [PMID: 36466221 PMCID: PMC9713819 DOI: 10.3389/fpls.2022.1012966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Wheat has a specific preference for NO3 - and shows toxicity symptoms under high NH4 + concentrations. Increasing the nitrate supply may alleviate ammonium stress. Nevertheless, the mechanisms underlying the nitrate regulation of wheat root growth to alleviate ammonium toxicity remain unclear. In this study, we integrated physiological and weighted gene co-expression network analysis (WGCNA) to identify the hub genes involved in nitrate alleviation of ammonium toxicity at the wheat seedling stage. Five NH4 +/NO3 - ratio treatments, including 100/0 (Na), 75/25 (Nr1), 50/50 (Nr2), 25/75 (Nr3), and 0/100 (Nn) were tested in this study. The results showed that sole ammonium treatment (Na) increased the lateral root number but reduced root biomass. Increasing the nitrate supply significantly increased the root biomass. Increasing nitrate levels decreased abscisic acid (ABA) content and increased auxin (IAA) content. Furthermore, we identified two modules (blue and turquoise) using transcriptome data that were significantly related to root physiological growth indicators. TraesCS6A02G178000 and TraesCS2B02G056300 were identified as hub genes in the two modules which coded for plastidic ATP/ADP-transporter and WRKY62 transcription factors, respectively. Additionally, network analysis showed that in the blue module, TraesCS6A02G178000 interacts with downregulated genes that coded for indolin-2-one monooxygenase, SRG1, DETOXIFICATION, and wall-associated receptor kinase. In the turquoise module, TraesCS2B02G056300 was highly related to the genes that encoded ERD4, ERF109, CIGR2, and WD40 proteins, and transcription factors including WRKY24, WRKY22, MYB30, and JAMYB, which were all upregulated by increasing nitrate supply. These studies suggest that increasing the nitrate supply could improve root growth and alleviate ammonium toxicity through physiological and molecular regulation networks, including ROS, hormonal crosstalk, and transcription factors.
Collapse
|
8
|
Rowland E, Kim J, Friso G, Poliakov A, Ponnala L, Sun Q, van Wijk KJ. The CLP and PREP protease systems coordinate maturation and degradation of the chloroplast proteome in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2022; 236:1339-1357. [PMID: 35946374 DOI: 10.1111/nph.18426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
A network of peptidases governs proteostasis in plant chloroplasts and mitochondria. This study reveals strong genetic and functional interactions in Arabidopsis between the chloroplast stromal CLP chaperone-protease system and the PREP1,2 peptidases, which are dually localized to chloroplast stroma and the mitochondrial matrix. Higher order mutants defective in CLP or PREP proteins were generated and analyzed by quantitative proteomics and N-terminal proteomics (terminal amine isotopic labeling of substrates (TAILS)). Strong synergistic interactions were observed between the CLP protease system (clpr1-2, clpr2-1, clpc1-1, clpt1, clpt2) and both PREP homologs (prep1, prep2) resulting in embryo lethality or growth and developmental phenotypes. Synergistic interactions were observed even when only one of the PREP proteins was lacking, suggesting that PREP1 and PREP2 have divergent substrates. Proteome phenotypes were driven by the loss of CLP protease capacity, with little impact from the PREP peptidases. Chloroplast N-terminal proteomes showed that many nuclear encoded chloroplast proteins have alternatively processed N-termini in prep1prep2, clpt1clpt2 and prep1prep2clpt1clpt2. Loss of chloroplast protease capacity interferes with stromal processing peptidase (SPP) activity due to folding stress and low levels of accumulated cleaved cTP fragments. PREP1,2 proteolysis of cleaved cTPs is complemented by unknown proteases. A model for CLP and PREP activity within a hierarchical chloroplast proteolysis network is proposed.
Collapse
Affiliation(s)
- Elden Rowland
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Jitae Kim
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
- S-Korea Bioenergy Research Center, Chonnam National University, Gwangju, 61186, South Korea
| | - Giulia Friso
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Anton Poliakov
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | | | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, NY, 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
9
|
Xia H, Hong Y, Li X, Fan R, Li Q, Ouyang Z, Yao X, Lu S, Guo L, Tang S. BnaNTT2 regulates ATP homeostasis in plastid to sustain lipid metabolism and plant growth in Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:54. [PMID: 37313423 PMCID: PMC10248631 DOI: 10.1007/s11032-022-01322-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The plastid inner envelope membrane-bond nucleotide triphosphate transporter (NTT) transports cytosolic adenosine triphosphate (ATP) into plastid, which is necessary for the biochemical activities in plastid. We identified a chloroplast-localized BnaC08.NTT2 and obtained the overexpressed lines of BnaC08.NTT2 and CRISPR/Cas9 edited double mutant lines of BnaC08.NTT2 and BnaA08.NTT2 in B. napus. Further studies certified that overexpression (OE) of BnaC08.NTT2 could help transport ATP into chloroplast and exchange adenosine diphosphate (ADP) and this process was inhibited in BnaNTT2 mutants. Additional results showed that the thylakoid was abnormal in a8 c8 double mutants, which also had lower photosynthetic efficiency, leading to retarded plant growth. The BnaC08.NTT2 OE plants had higher photosynthetic efficiency and better growth compared to WT. OE of BnaC08.NTT2 could improve carbon flowing into protein and oil synthesis from glycolysis both in leaves and seeds. Lipid profile analysis showed that the contents of main chloroplast membrane lipids, including monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylglycerol (PG), were significantly reduced in mutants, while there were no differences in OE lines compared to WT. These results suggest that BnaNTT2 is involved in the regulation of ATP/ADP homeostasis in plastid to impact plant growth and seed oil accumulation in B. napus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01322-8.
Collapse
Affiliation(s)
- Hui Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Yue Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Xiao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Ruyi Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Zhewen Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
10
|
Hong Y, Xia H, Li X, Fan R, Li Q, Ouyang Z, Tang S, Guo L. Brassica napus BnaNTT1 modulates ATP homeostasis in plastids to sustain metabolism and growth. Cell Rep 2022; 40:111060. [PMID: 35830794 DOI: 10.1016/j.celrep.2022.111060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/12/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
The plastid-localized nucleotide triphosphate transporter (NTT) transports cytosolic adenosine triphosphate (ATP) into plastid to satisfy the needs of biochemistry activities in plastid. Here, we investigate the key functions of two conserved BnaNTT1 genes, BnaC06.NTT1b and BnaA07.NTT1a, in Brassica napus. Binding assays and metabolic analysis indicate that BnaNTT1 binds ATP/adenosine diphosphate (ADP), transports cytosolic ATP into chloroplast, and exchanges ADP into cytoplasm. Thylakoid structures are abnormal and plant growth is retarded in CRISPR mutants of BnaC06.NTT1b and BnaA07.NTT1a. Both BnaC06.NTT1b and BnaA07.NTT1a play important roles in the regulation of ATP/ADP homeostasis in plastid. Manipulation of BnaC06.NTT1b and BnaA07.NTT1a causes significant changes in glycolysis and membrane lipid composition, suggesting that increased ATP in plastid fuels more seed-oil accumulation. Together, this study implicates the vital role of BnaC06.NTT1b and BnaA07.NTT1a in plant metabolism and growth in B. napus.
Collapse
Affiliation(s)
- Yue Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hui Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruyi Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhewen Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
11
|
Altensell J, Wartenberg R, Haferkamp I, Hassler S, Scherer V, Steensma P, Fitzpatrick TB, Sharma A, Sandoval-Ibañez O, Pribil M, Lehmann M, Leister D, Kleine T, Neuhaus HE. Loss of a pyridoxal-phosphate phosphatase rescues Arabidopsis lacking an endoplasmic reticulum ATP carrier. PLANT PHYSIOLOGY 2022; 189:49-65. [PMID: 35139220 PMCID: PMC9070803 DOI: 10.1093/plphys/kiac048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/12/2022] [Indexed: 05/31/2023]
Abstract
The endoplasmic reticulum (ER)-located ATP/ADP-antiporter (ER-ANT1) occurs specifically in vascular plants. Structurally different transporters mediate energy provision to the ER, but the cellular function of ER-ANT1 is still unknown. Arabidopsis (Arabidopsis thaliana) mutants lacking ER-ANT1 (er-ant1 plants) exhibit a photorespiratory phenotype accompanied by high glycine levels and stunted growth, pointing to an inhibition of glycine decarboxylase (GDC). To reveal whether it is possible to suppress this marked phenotype, we exploited the power of a forward genetic screen. Absence of a so far uncharacterized member of the HaloAcid Dehalogenase (HAD)-like hydrolase family strongly suppressed the dwarf phenotype of er-ant1 plants. Localization studies suggested that the corresponding protein locates to chloroplasts, and activity assays showed that the enzyme dephosphorylates, with high substrate affinity, the B6 vitamer pyridoxal 5'-phosphate (PLP). Additional physiological experiments identified imbalances in vitamin B6 homeostasis in er-ant1 mutants. Our data suggest that impaired chloroplast metabolism, but not decreased GDC activity, causes the er-ant1 mutant dwarf phenotype. We present a hypothesis, setting transport of PLP by ER-ANT1 and chloroplastic PLP dephosphorylation in the cellular context. With the identification of this HAD-type PLP phosphatase, we also provide insight into B6 vitamer homeostasis.
Collapse
Affiliation(s)
- Jacqueline Altensell
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| | - Ruth Wartenberg
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| | - Ilka Haferkamp
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| | - Sebastian Hassler
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| | - Vanessa Scherer
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| | - Priscille Steensma
- Department of Botany and Plant Biology, University of Geneva, Geneva 1211, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Geneva 1211, Switzerland
| | - Anurag Sharma
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Omar Sandoval-Ibañez
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Martin Lehmann
- Department of Biology I, Ludwig-Maximilians University of Munich, Planegg-Martinsried 82152, Germany
| | - Dario Leister
- Department of Biology I, Ludwig-Maximilians University of Munich, Planegg-Martinsried 82152, Germany
| | - Tatjana Kleine
- Department of Biology I, Ludwig-Maximilians University of Munich, Planegg-Martinsried 82152, Germany
| | - H Ekkehard Neuhaus
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| |
Collapse
|
12
|
Lim SL, Flütsch S, Liu J, Distefano L, Santelia D, Lim BL. Arabidopsis guard cell chloroplasts import cytosolic ATP for starch turnover and stomatal opening. Nat Commun 2022; 13:652. [PMID: 35115512 PMCID: PMC8814037 DOI: 10.1038/s41467-022-28263-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 01/12/2022] [Indexed: 01/28/2023] Open
Abstract
Stomatal opening requires the provision of energy in the form of ATP for proton pumping across the guard cell (GC) plasma membrane and for associated metabolic rearrangements. The source of ATP for GCs is a matter of ongoing debate that is mainly fuelled by controversies around the ability of GC chloroplasts (GCCs) to perform photosynthesis. By imaging compartment-specific fluorescent ATP and NADPH sensor proteins in Arabidopsis, we show that GC photosynthesis is limited and mitochondria are the main source of ATP. Unlike mature mesophyll cell (MC) chloroplasts, which are impermeable to cytosolic ATP, GCCs import cytosolic ATP through NUCLEOTIDE TRANSPORTER (NTT) proteins. GCs from ntt mutants exhibit impaired abilities for starch biosynthesis and stomatal opening. Our work shows that GCs obtain ATP and carbohydrates via different routes from MCs, likely to compensate for the lower chlorophyll contents and limited photosynthesis of GCCs. Stomatal guard cells require ATP in order to fuel stomatal movements. Here the authors show that guard cell photosynthesis is limited, mitochondria are the main source of ATP and that guard cell chloroplasts import ATP via nucleotide transporters.
Collapse
Affiliation(s)
- Shey-Li Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Sabrina Flütsch
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Jinhong Liu
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Luca Distefano
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Diana Santelia
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China. .,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China. .,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Kloehn J, Lacour CE, Soldati-Favre D. The metabolic pathways and transporters of the plastid organelle in Apicomplexa. Curr Opin Microbiol 2021; 63:250-258. [PMID: 34455306 DOI: 10.1016/j.mib.2021.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 11/26/2022]
Abstract
The apicoplast is the relict of a plastid organelle found in several disease-causing apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii. In these organisms, the organelle has lost its photosynthetic capability but harbours several fitness-conferring or essential metabolic pathways. Although maintaining the apicoplast and fuelling the metabolic pathways within requires the challenging constant import and export of numerous metabolites across its four membranes, only few apicoplast transporters have been identified to date, most of which are orphan transporters. Here we review the roles of metabolic pathways within the apicoplast and what is currently known about the few identified apicoplast metabolite transporters. We discuss what metabolites must get in and out of the apicoplast, the many transporters that are yet to be discovered, and what role these might play in parasite metabolism and as putative drug targets.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| | - Clément Em Lacour
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| |
Collapse
|
14
|
Alber NA, Vanlerberghe GC. The flexibility of metabolic interactions between chloroplasts and mitochondria in Nicotiana tabacum leaf. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1625-1646. [PMID: 33811402 DOI: 10.1111/tpj.15259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 05/02/2023]
Abstract
To examine the effect of mitochondrial function on photosynthesis, wild-type and transgenic Nicotiana tabacum with varying amounts of alternative oxidase (AOX) were treated with different respiratory inhibitors. Initially, each inhibitor increased the reduction state of the chloroplast electron transport chain, most severely in AOX knockdowns and least severely in AOX overexpressors. This indicated that the mitochondrion was a necessary sink for photo-generated reductant, contributing to the 'P700 oxidation capacity' of photosystem I. Initially, the Complex III inhibitor myxothiazol and the mitochondrial ATP synthase inhibitor oligomycin caused an increase in photosystem II regulated non-photochemical quenching not evident with the Complex III inhibitor antimycin A (AA). This indicated that the increased quenching depended upon AA-sensitive cyclic electron transport (CET). Following 12 h with oligomycin, the reduction state of the chloroplast electron transport chain recovered in all plant lines. Recovery was associated with large increases in the protein amount of chloroplast ATP synthase and mitochondrial uncoupling protein. This increased the capacity for photophosphorylation in the absence of oxidative phosphorylation and enabled the mitochondrion to act again as a sink for photo-generated reductant. Comparing the AA and myxothiazol treatments at 12 h showed that CET optimized photosystem I quantum yield, depending upon the P700 oxidation capacity. When this capacity was too high, CET drew electrons away from other sinks, moderating the P700+ amount. When P700 oxidation capacity was too low, CET acted as an electron overflow, moderating the amount of reduced P700. This study reveals flexible chloroplast-mitochondrion interactions able to overcome lesions in energy metabolism.
Collapse
Affiliation(s)
- Nicole A Alber
- Department of Biological Sciences, Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada
| | - Greg C Vanlerberghe
- Department of Biological Sciences, Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada
| |
Collapse
|
15
|
Cvetkovic J, Haferkamp I, Rode R, Keller I, Pommerrenig B, Trentmann O, Altensell J, Fischer-Stettler M, Eicke S, Zeeman SC, Neuhaus HE. Ectopic maltase alleviates dwarf phenotype and improves plant frost tolerance of maltose transporter mutants. PLANT PHYSIOLOGY 2021; 186:315-329. [PMID: 33650638 PMCID: PMC8154053 DOI: 10.1093/plphys/kiab082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/25/2021] [Indexed: 05/06/2023]
Abstract
Maltose, the major product of starch breakdown in Arabidopsis (Arabidopsis thaliana) leaves, exits the chloroplast via the maltose exporter1 MEX1. Consequently, mex1 loss-of-function plants exhibit substantial maltose accumulation, a starch-excess phenotype and a specific chlorotic phenotype during leaf development. Here, we investigated whether the introduction of an alternative metabolic route could suppress the marked developmental defects typical for mex1 loss-of-function mutants. To this end, we ectopically expressed in mex1 chloroplasts a functional maltase (MAL) from baker's yeast (Saccharomyces cerevisiae, chloroplastidial MAL [cpMAL] mutants). Remarkably, the stromal MAL activity substantially alleviates most phenotypic peculiarities typical for mex1 plants. However, the cpMAL lines contained only slightly less maltose than parental mex1 plants and their starch levels were, surprisingly, even higher. These findings point to a threshold level of maltose responsible for the marked developmental defects in mex1. While growth and flowering time were only slightly retarded, cpMAL lines exhibited a substantially improved frost tolerance, when compared to wild-types. In summary, these results demonstrate the possibility to bypass the MEX1 transporter, allow us to differentiate between possible starch-excess and maltose-excess responses, and demonstrate that stromal maltose accumulation prevents frost defects. The latter insight may be instrumental for the development of crop plants with improved frost tolerance.
Collapse
Affiliation(s)
- Jelena Cvetkovic
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Ilka Haferkamp
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Regina Rode
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Isabel Keller
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Oliver Trentmann
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Jacqueline Altensell
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | | | - Simona Eicke
- Institute of Molecular Plant Biology, ETH Zürich, Universitätsstr. 2, 8092 Zurich, Switzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zürich, Universitätsstr. 2, 8092 Zurich, Switzerland
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
- Author for communication:
| |
Collapse
|
16
|
Buchert F, Bailleul B, Joliot P. Disentangling chloroplast ATP synthase regulation by proton motive force and thiol modulation in Arabidopsis leaves. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148434. [PMID: 33932368 DOI: 10.1016/j.bbabio.2021.148434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022]
Abstract
The chloroplast ATP synthase (CF1Fo) contains a specific feature to the green lineage: a γ-subunit redox domain that contains a cysteine couple which interacts with the torque-transmitting βDELSEED-loop. This thiol modulation equips CF1Fo with an important environmental fine-tuning mechanism. In vitro, disulfide formation in the γ-redox domain slows down the activity of the CF1Fo at low transmembrane electrochemical proton gradient ( [Formula: see text] ), which agrees with its proposed role as chock based on recently solved structure. The γ-dithiol formation at the onset of light is crucial to maximize photosynthetic efficiency since it lowers the [Formula: see text] activation level for ATP synthesis in vitro. Here, we validate these findings in vivo by utilizing absorption spectroscopy in Arabidopsis thaliana. To do so, we monitored the [Formula: see text] present in darkness and identified its mitochondrial sources. By following the fate and components of light-induced extra [Formula: see text] , we estimated the ATP lifetime that lasted up to tens of minutes after long illuminations. Based on the relationship between [Formula: see text] and CF1Fo activity, we conclude that the dithiol configuration in vivo facilitates photosynthesis by driving the same ATP synthesis rate at a significative lower [Formula: see text] than in the γ-disulfide state. The presented in vivo findings are an additional proof of the importance of CF1Fo thiol modulation, reconciling biochemical in vitro studies and structural insights.
Collapse
Affiliation(s)
- Felix Buchert
- Laboratory of Chloroplast Biology and Light-Sensing in Microalgae - UMR7141, IBPC, CNRS-Sorbonne Université, Paris, France; Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Benjamin Bailleul
- Laboratory of Chloroplast Biology and Light-Sensing in Microalgae - UMR7141, IBPC, CNRS-Sorbonne Université, Paris, France
| | - Pierre Joliot
- Laboratory of Chloroplast Biology and Light-Sensing in Microalgae - UMR7141, IBPC, CNRS-Sorbonne Université, Paris, France
| |
Collapse
|
17
|
Vu DP, Martins Rodrigues C, Jung B, Meissner G, Klemens PAW, Holtgräwe D, Fürtauer L, Nägele T, Nieberl P, Pommerrenig B, Neuhaus HE. Vacuolar sucrose homeostasis is critical for plant development, seed properties, and night-time survival in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4930-4943. [PMID: 32361766 DOI: 10.1093/jxb/eraa205] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/23/2020] [Indexed: 05/12/2023]
Abstract
Most cellular sucrose is present in the cytosol and vacuoles of plant cells; however, little is known about the effect of this sucrose compartmentation on plant properties. Here, we examined the effects of altered intracellular sucrose compartmentation in Arabidopsis thaliana leaves by heterologously expressing the sugar beet (Beta vulgaris) vacuolar sucrose loader BvTST2.1 and by generating lines with reduced vacuolar invertase activity (amiR vi1-2). Heterologous expression of BvTST2.1 led to increased monosaccharide levels in leaves, whereas sucrose levels remained constant, indicating that vacuolar invertase activity in mesophyll vacuoles exceeds sucrose uptake. This notion was supported by analysis of tobacco (Nicotiana benthamiana) leaves transiently expressing BvTST2.1 and the invertase inhibitor NbVIF. However, sucrose levels were strongly elevated in leaf extracts from amiR vi1-2 lines, and experiments confirmed that sucrose accumulated in the corresponding vacuoles. The amiR vi1-2 lines exhibited impaired early development and reduced seed weight. When germinated in the dark, amiR vi1-2 seedlings were less able to convert sucrose into monosaccharides than the wild type. Cold temperatures strongly down-regulated both VI genes, but the amiR vi1-2 lines showed normal frost tolerance. These observations indicate that increased vacuolar sucrose levels fully compensate for the effects of low monosaccharide concentrations on frost tolerance.
Collapse
Affiliation(s)
- Duc Phuong Vu
- Universität Kaiserslautern, Fachbereich Biologie, Pflanzenphysiologie, Kaiserslautern, Germany
| | | | - Benjamin Jung
- Universität Kaiserslautern, Fachbereich Biologie, Pflanzenphysiologie, Kaiserslautern, Germany
| | - Garvin Meissner
- Universität Kaiserslautern, Fachbereich Biologie, Pflanzenphysiologie, Kaiserslautern, Germany
| | - Patrick A W Klemens
- Universität Kaiserslautern, Fachbereich Biologie, Pflanzenphysiologie, Kaiserslautern, Germany
| | - Daniela Holtgräwe
- Universität Bielefeld, Fakultät für Biologie, Genetik & Genomik der Pflanzen, Bielefeld, Germany
| | - Lisa Fürtauer
- Ludwig-Maximilians-Universität München, Biologie I, Evolutionäre Zellbiologie der Pflanzen, Planegg-Martinsried, Germany
| | - Thomas Nägele
- Ludwig-Maximilians-Universität München, Biologie I, Evolutionäre Zellbiologie der Pflanzen, Planegg-Martinsried, Germany
| | - Petra Nieberl
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Fakultät für Biologie, Molekulare Pflanzenphysiologie, Erlangen, Germany
| | - Benjamin Pommerrenig
- Universität Kaiserslautern, Fachbereich Biologie, Pflanzenphysiologie, Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Universität Kaiserslautern, Fachbereich Biologie, Pflanzenphysiologie, Kaiserslautern, Germany
| |
Collapse
|
18
|
Trentmann O, Mühlhaus T, Zimmer D, Sommer F, Schroda M, Haferkamp I, Keller I, Pommerrenig B, Neuhaus HE. Identification of Chloroplast Envelope Proteins with Critical Importance for Cold Acclimation. PLANT PHYSIOLOGY 2020; 182:1239-1255. [PMID: 31932409 PMCID: PMC7054872 DOI: 10.1104/pp.19.00947] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/20/2019] [Indexed: 05/04/2023]
Abstract
The ability of plants to withstand cold temperatures relies on their photosynthetic activity. Thus, the chloroplast is of utmost importance for cold acclimation and acquisition of freezing tolerance. During cold acclimation, the properties of the chloroplast change markedly. To provide the most comprehensive view of the protein repertoire of the chloroplast envelope, we analyzed this membrane system in Arabidopsis (Arabidopsis thaliana) using mass spectrometry-based proteomics. Profiling chloroplast envelope membranes was achieved by a cross comparison of protein intensities across the plastid and the enriched membrane fraction under both normal and cold conditions. We used multivariable logistic regression to model the probabilities for the classification of an envelope localization. In total, we identified 38 envelope membrane intrinsic or associated proteins exhibiting altered abundance after cold acclimation. These proteins comprise several solute carriers, such as the ATP/ADP antiporter nucleotide transporter2 (NTT2; substantially increased abundance) or the maltose exporter MEX1 (substantially decreased abundance). Remarkably, analysis of the frost recovery of ntt loss-of-function and mex1 overexpressor mutants confirmed that the comparative proteome is well suited to identify key factors involved in cold acclimation and acquisition of freezing tolerance. Moreover, for proteins with known physiological function, we propose scenarios explaining their possible roles in cold acclimation. Furthermore, spatial proteomics introduces an additional layer of complexity and enables the identification of proteins differentially localized at the envelope membrane under the changing environmental regime.
Collapse
Affiliation(s)
- Oliver Trentmann
- Technische Universität Kaiserslautern, Department of Biology, Plant Physiology, 67653 Kaiserslautern, Germany
| | - Timo Mühlhaus
- Technische Universität Kaiserslautern, Department of Biology, Computational Systems Biology, 67653 Kaiserslautern, Germany
| | - David Zimmer
- Technische Universität Kaiserslautern, Department of Biology, Computational Systems Biology, 67653 Kaiserslautern, Germany
| | - Frederik Sommer
- Technische Universität Kaiserslautern, Department of Biology, Molecular Biotechnology and Systems Biology, 67653 Kaiserslautern, Germany
| | - Michael Schroda
- Technische Universität Kaiserslautern, Department of Biology, Molecular Biotechnology and Systems Biology, 67653 Kaiserslautern, Germany
| | - Ilka Haferkamp
- Technische Universität Kaiserslautern, Department of Biology, Plant Physiology, 67653 Kaiserslautern, Germany
| | - Isabel Keller
- Technische Universität Kaiserslautern, Department of Biology, Plant Physiology, 67653 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Technische Universität Kaiserslautern, Department of Biology, Plant Physiology, 67653 Kaiserslautern, Germany
| | - Horst Ekkehard Neuhaus
- Technische Universität Kaiserslautern, Department of Biology, Plant Physiology, 67653 Kaiserslautern, Germany
| |
Collapse
|
19
|
Blätke MA, Bräutigam A. Evolution of C4 photosynthesis predicted by constraint-based modelling. eLife 2019; 8:e49305. [PMID: 31799932 PMCID: PMC6905489 DOI: 10.7554/elife.49305] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/08/2019] [Indexed: 01/03/2023] Open
Abstract
Constraint-based modelling (CBM) is a powerful tool for the analysis of evolutionary trajectories. Evolution, especially evolution in the distant past, is not easily accessible to laboratory experimentation. Modelling can provide a window into evolutionary processes by allowing the examination of selective pressures which lead to particular optimal solutions in the model. To study the evolution of C4 photosynthesis from a ground state of C3 photosynthesis, we initially construct a C3 model. After duplication into two cells to reflect typical C4 leaf architecture, we allow the model to predict the optimal metabolic solution under various conditions. The model thus identifies resource limitation in conjunction with high photorespiratory flux as a selective pressure relevant to the evolution of C4. It also predicts that light availability and distribution play a role in guiding the evolutionary choice of possible decarboxylation enzymes. The data shows evolutionary CBM in eukaryotes predicts molecular evolution with precision.
Collapse
Affiliation(s)
- Mary-Ann Blätke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
| | - Andrea Bräutigam
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
- Computational Biology, Faculty of Biology, Bielefeld University, UniversitätsstraßeBielefeldGermany
| |
Collapse
|
20
|
Affiliation(s)
- Chia P Voon
- School of Biological Sciences, University of Hong Kong, China
| | - Boon L Lim
- School of Biological Sciences, University of Hong Kong, China
| |
Collapse
|
21
|
Selinski J, Scheibe R. Malate valves: old shuttles with new perspectives. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:21-30. [PMID: 29933514 PMCID: PMC6586076 DOI: 10.1111/plb.12869] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/18/2018] [Indexed: 05/18/2023]
Abstract
Malate valves act as powerful systems for balancing the ATP/NAD(P)H ratio required in various subcellular compartments in plant cells. As components of malate valves, isoforms of malate dehydrogenases (MDHs) and dicarboxylate translocators catalyse the reversible interconversion of malate and oxaloacetate and their transport. Depending on the co-enzyme specificity of the MDH isoforms, either NADH or NADPH can be transported indirectly. Arabidopsis thaliana possesses nine genes encoding MDH isoenzymes. Activities of NAD-dependent MDHs have been detected in mitochondria, peroxisomes, cytosol and plastids. In addition, chloroplasts possess a NADP-dependent MDH isoform. The NADP-MDH as part of the 'light malate valve' plays an important role as a poising mechanism to adjust the ATP/NADPH ratio in the stroma. Its activity is strictly regulated by post-translational redox-modification mediated via the ferredoxin-thioredoxin system and fine control via the NADP+ /NADP(H) ratio, thereby maintaining redox homeostasis under changing conditions. In contrast, the plastid NAD-MDH ('dark malate valve') is constitutively active and its lack leads to failure in early embryo development. While redox regulation of the main cytosolic MDH isoform has been shown, knowledge about regulation of the other two cytosolic MDHs as well as NAD-MDH isoforms from peroxisomes and mitochondria is still lacking. Knockout mutants lacking the isoforms from chloroplasts, mitochondria and peroxisomes have been characterised, but not much is known about cytosolic NAD-MDH isoforms and their role in planta. This review updates the current knowledge on MDH isoforms and the shuttle systems for intercompartmental dicarboxylate exchange, focusing on the various metabolic functions of these valves.
Collapse
Affiliation(s)
- J. Selinski
- Department of Animal, Plant, and Soil ScienceAustralian Research Council Centre of Excellence in Plant Energy BiologySchool of Life ScienceLa Trobe University BundooraBundooraAustralia
| | - R. Scheibe
- Division of Plant PhysiologyDepartment of Biology/ChemistryUniversity of OsnabrueckOsnabrueckGermany
| |
Collapse
|
22
|
Wang J, Lin W, Yin Z, Wang L, Dong S, An J, Lin Z, Yu H, Shi L, Lin S, Chen S. Comprehensive evaluation of fuel properties and complex regulation of intracellular transporters for high oil production in developing seeds of Prunus sibirica for woody biodiesel. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:6. [PMID: 30622648 PMCID: PMC6318995 DOI: 10.1186/s13068-018-1347-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/24/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Based on our previous studies of 17 Prunus sibirica germplasms, one plus tree with high quality and quantity of seed oils has emerged as novel potential source of biodiesel. To better develop P. sibirica seed oils as woody biodiesel, a concurrent exploration of oil content, FA composition, biodiesel yield and fuel properties as well as prediction model construction for fuel properties was conducted on developing seeds to determine the optimal seed harvest time for producing high-quality biodiesel. Oil synthesis required supply of carbon source, energy and FA, but their transport mechanisms still remains enigmatic. Our recent 454 sequencing of P. sibirica could provide long-read sequences to identify membrane transporters for a better understanding of regulatory mechanism for high oil production in developing seeds. RESULTS To better develop the seed oils of P. sibirica as woody biodiesel, we firstly focused on a temporal and comparative evaluation of growth tendency, oil content, FA composition, biodiesel yield and fuel properties as well as model construction for biodiesel property prediction in different developing seeds from P. sibirica plus tree (accession AS-80), revealing that the oils from developing seeds harvested after 60 days after flowering (DAF) could be as novel potential feedstock for producing biodiesel with ideal fuel property. To gain new insight into membrane transport mechanism for high oil yield in developing seeds of P. sibirica, we presented a global analysis of transporter based on our recent 454 sequencing data of P. sibirica. We annotated a total of 116 genes for membrane-localized transporters at different organelles (plastid, endoplasmatic reticulum, tonoplast, mitochondria and peroxisome), of which some specific transporters were identified to be involved in carbon allocation, metabolite transport and energy supply for oil synthesis by both RT-PCR and qRT-PCR. Importantly, the transporter-mediated model was well established for high oil synthesis in developing P. sibirica seeds. Our findings could help to reveal molecular mechanism of increased oil production and may also present strategies for engineering oil accumulation in oilseed plants. CONCLUSIONS This study presents a temporal and comparative evaluation of developing P. sibirica seed oils as a potential feedstock for producing high-quality biodiesel and a global identification for membrane transporters was to gain better insights into regulatory mechanism of high oil production in developing seeds of P. sibirica. Our findings may present strategies for developing woody biodiesel resources and engineering oil accumulation.
Collapse
Affiliation(s)
- Jia Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Weijun Lin
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Zhongdong Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Libing Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - ShuBin Dong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Jiyong An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Zixin Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Haiyan Yu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Lingling Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Shanzhi Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
23
|
da Fonseca-Pereira P, Neri-Silva R, Cavalcanti JHF, Brito DS, Weber APM, Araújo WL, Nunes-Nesi A. Data-Mining Bioinformatics: Connecting Adenylate Transport and Metabolic Responses to Stress. TRENDS IN PLANT SCIENCE 2018; 23:961-974. [PMID: 30287161 DOI: 10.1016/j.tplants.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Adenine nucleotides are essential in countless processes within the cellular metabolism. In plants, ATP is mainly produced in chloroplasts and mitochondria through photophosphorylation and oxidative phosphorylation, respectively. Thus, efficient adenylate transport systems are required for intracellular energy partitioning between the cell organelles. Adenylate carriers present in different subcellular compartments have been previously identified and biochemically characterized in plants. Here, by using data-mining bioinformatics tools, we propose how, and to what extent, these carriers integrate energy metabolism within a plant cell under different environmental conditions. We demonstrate that the expression pattern of the corresponding genes is variable under different environmental conditions, suggesting that specific adenylate carriers have distinct and nonredundant functions in plants.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; These authors contributed equally to this work
| | - Roberto Neri-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; These authors contributed equally to this work
| | - João Henrique F Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; Max-Panck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Danielle S Brito
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; Max-Panck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
24
|
ATP compartmentation in plastids and cytosol of Arabidopsis thaliana revealed by fluorescent protein sensing. Proc Natl Acad Sci U S A 2018; 115:E10778-E10787. [PMID: 30352850 PMCID: PMC6233094 DOI: 10.1073/pnas.1711497115] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
By studying in vivo changes of ATP levels in the plastids and cytosol of Arabidopsis thaliana using a FRET-based ATP sensor, we show that the plastidic ATP concentrations in cotyledon, hypocotyl, and root of 10-day-old seedlings are significantly lower than the cytosolic concentrations. We show that chloroplasts consume ATP rapidly and the import of ATP into mature chloroplasts is impeded by the low density of NTT transporter. Hence, unlike in diatoms, where ATP is imported into chloroplasts to support the Calvin–Benson–Bassham (CBB) cycle, mature chloroplasts of Arabidopsis do not balance the ATP:NADPH ratio by importing ATP from the cytosol. Rather, chloroplasts can export surplus reducing equivalents, which can be used by the mitochondria to supply ATP to the cytosol. Matching ATP:NADPH provision and consumption in the chloroplast is a prerequisite for efficient photosynthesis. In terms of ATP:NADPH ratio, the amount of ATP generated from the linear electron flow does not meet the demand of the Calvin–Benson–Bassham (CBB) cycle. Several different mechanisms to increase ATP availability have evolved, including cyclic electron flow in higher plants and the direct import of mitochondrial-derived ATP in diatoms. By imaging a fluorescent ATP sensor protein expressed in living Arabidopsis thaliana seedlings, we found that MgATP2− concentrations were lower in the stroma of mature chloroplasts than in the cytosol, and exogenous ATP was able to enter chloroplasts isolated from 4- and 5-day-old seedlings, but not chloroplasts isolated from 10- or 20-day-old photosynthetic tissues. This observation is in line with the previous finding that the expression of chloroplast nucleotide transporters (NTTs) in Arabidopsis mesophyll is limited to very young seedlings. Employing a combination of photosynthetic and respiratory inhibitors with compartment-specific imaging of ATP, we corroborate the dependency of stromal ATP production on mitochondrial dissipation of photosynthetic reductant. Our data suggest that, during illumination, the provision and consumption of ATP:NADPH in chloroplasts can be balanced by exporting excess reductants rather than importing ATP from the cytosol.
Collapse
|
25
|
Bahaji A, Almagro G, Ezquer I, Gámez-Arcas S, Sánchez-López ÁM, Muñoz FJ, Barrio RJ, Sampedro MC, De Diego N, Spíchal L, Doležal K, Tarkowská D, Caporali E, Mendes MA, Baroja-Fernández E, Pozueta-Romero J. Plastidial Phosphoglucose Isomerase Is an Important Determinant of Seed Yield through Its Involvement in Gibberellin-Mediated Reproductive Development and Storage Reserve Biosynthesis in Arabidopsis. THE PLANT CELL 2018; 30:2082-2098. [PMID: 30099384 PMCID: PMC6181017 DOI: 10.1105/tpc.18.00312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/18/2018] [Accepted: 08/06/2018] [Indexed: 05/04/2023]
Abstract
The plastid-localized phosphoglucose isomerase isoform PGI1 is an important determinant of growth in Arabidopsis thaliana, likely due to its involvement in the biosynthesis of plastidial isoprenoid-derived hormones. Here, we investigated whether PGI1 also influences seed yields. PGI1 is strongly expressed in maturing seed embryos and vascular tissues. PGI1-null pgi1-2 plants had ∼60% lower seed yields than wild-type plants, with reduced numbers of inflorescences and thus fewer siliques and seeds per plant. These traits were associated with low bioactive gibberellin (GA) contents. Accordingly, wild-type phenotypes were restored by exogenous GA application. pgi1-2 seeds were lighter and accumulated ∼50% less fatty acids (FAs) and ∼35% less protein than wild-type seeds. Seeds of cytokinin-deficient plants overexpressing CYTOKININ OXIDASE/DEHYDROGENASE1 (35S:AtCKX1) and GA-deficient ga20ox1 ga20ox2 mutants did not accumulate low levels of FAs, and exogenous application of the cytokinin 6-benzylaminopurine and GAs did not rescue the reduced weight and FA content of pgi1-2 seeds. Seeds from reciprocal crosses between pgi1-2 and wild-type plants accumulated wild-type levels of FAs and proteins. Therefore, PGI1 is an important determinant of Arabidopsis seed yield due to its involvement in two processes: GA-mediated reproductive development and the metabolic conversion of plastidial glucose-6-phosphate to storage reserves in the embryo.
Collapse
Affiliation(s)
- Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192 Mutiloabeti, Nafarroa, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192 Mutiloabeti, Nafarroa, Spain
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Samuel Gámez-Arcas
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192 Mutiloabeti, Nafarroa, Spain
| | | | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192 Mutiloabeti, Nafarroa, Spain
| | - Ramón José Barrio
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, E-01006 Vitoria-Gasteiz, Spain
| | - M Carmen Sampedro
- Central Service of Analysis of Alava, SGIker, University of the Basque Country, UPV/EHU, E-01006 Vitoria-Gasteiz, Spain
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, CZ-78371 Olomouc, Czech Republic
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Faculty of Science, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Faculty of Science, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Elisabetta Caporali
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marta Adelina Mendes
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192 Mutiloabeti, Nafarroa, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192 Mutiloabeti, Nafarroa, Spain
| |
Collapse
|
26
|
Marchand J, Heydarizadeh P, Schoefs B, Spetea C. Ion and metabolite transport in the chloroplast of algae: lessons from land plants. Cell Mol Life Sci 2018; 75:2153-2176. [PMID: 29541792 PMCID: PMC5948301 DOI: 10.1007/s00018-018-2793-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 12/28/2022]
Abstract
Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.
Collapse
Affiliation(s)
- Justine Marchand
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France
| | - Parisa Heydarizadeh
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France.
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Göteborg, Sweden.
| |
Collapse
|
27
|
De Col V, Fuchs P, Nietzel T, Elsässer M, Voon CP, Candeo A, Seeliger I, Fricker MD, Grefen C, Møller IM, Bassi A, Lim BL, Zancani M, Meyer AJ, Costa A, Wagner S, Schwarzländer M. ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology. eLife 2017; 6. [PMID: 28716182 PMCID: PMC5515573 DOI: 10.7554/elife.26770] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/28/2017] [Indexed: 12/13/2022] Open
Abstract
Growth and development of plants is ultimately driven by light energy captured through photosynthesis. ATP acts as universal cellular energy cofactor fuelling all life processes, including gene expression, metabolism, and transport. Despite a mechanistic understanding of ATP biochemistry, ATP dynamics in the living plant have been largely elusive. Here, we establish MgATP2- measurement in living plants using the fluorescent protein biosensor ATeam1.03-nD/nA. We generate Arabidopsis sensor lines and investigate the sensor in vitro under conditions appropriate for the plant cytosol. We establish an assay for ATP fluxes in isolated mitochondria, and demonstrate that the sensor responds rapidly and reliably to MgATP2- changes in planta. A MgATP2- map of the Arabidopsis seedling highlights different MgATP2- concentrations between tissues and within individual cell types, such as root hairs. Progression of hypoxia reveals substantial plasticity of ATP homeostasis in seedlings, demonstrating that ATP dynamics can be monitored in the living plant.
Collapse
Affiliation(s)
- Valentina De Col
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.,Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Philippe Fuchs
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Thomas Nietzel
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Marlene Elsässer
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Chia Pao Voon
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Alessia Candeo
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Ingo Seeliger
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Christopher Grefen
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andrea Bassi
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Marco Zancani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.,Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| | - Alex Costa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Stephan Wagner
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Markus Schwarzländer
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.,Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
28
|
Chu L, Gruber A, Ast M, Schmitz-Esser S, Altensell J, Neuhaus HE, Kroth PG, Haferkamp I. Shuttling of (deoxy-) purine nucleotides between compartments of the diatom Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2017; 213:193-205. [PMID: 27504715 DOI: 10.1111/nph.14126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/25/2016] [Indexed: 05/10/2023]
Abstract
Diatom plastids show several peculiarities when compared with primary plastids of higher plants or algae. They are surrounded by four membranes and depend on nucleotide uptake because, unlike in plants, nucleotide de novo synthesis exclusively occurs in the cytosol. Previous analyses suggest that two specifically adapted nucleotide transporters (NTTs) facilitate the required passage of nucleotides across the innermost plastid membrane. However, nucleotide transport across the additional plastid membranes remains to be clarified. Phylogenetic studies, transport assays with the recombinant protein as well as GFP-based targeting analyses allowed detailed characterization of a novel isoform (PtNTT5) of the six NTTs of Phaeodactylum tricornutum. PtNTT5 exhibits low amino acid similarities and is only distantly related to all previously characterized NTTs. However, in a heterologous expression system, it acts as a nucleotide antiporter and prefers various (deoxy-) purine nucleotides as substrates. Interestingly, PtNTT5 is probably located in the endoplasmic reticulum, which in diatoms also represents the outermost plastid membrane. PtNTT5, with its unusual transport properties, phylogeny and localization, can be taken as further evidence for the establishment of a sophisticated and specifically adapted nucleotide transport system in diatom plastids.
Collapse
Affiliation(s)
- Lili Chu
- Pflanzliche Ökophysiologie, Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany
| | - Ansgar Gruber
- Pflanzliche Ökophysiologie, Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany
| | - Michelle Ast
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67653, Kaiserslautern, Germany
| | | | - Jacqueline Altensell
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67653, Kaiserslautern, Germany
| | - Horst Ekkehard Neuhaus
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67653, Kaiserslautern, Germany
| | - Peter G Kroth
- Pflanzliche Ökophysiologie, Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany
| | - Ilka Haferkamp
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67653, Kaiserslautern, Germany
| |
Collapse
|
29
|
Lin Z, An J, Wang J, Niu J, Ma C, Wang L, Yuan G, Shi L, Liu L, Zhang J, Zhang Z, Qi J, Lin S. Integrated analysis of 454 and Illumina transcriptomic sequencing characterizes carbon flux and energy source for fatty acid synthesis in developing Lindera glauca fruits for woody biodiesel. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:134. [PMID: 28559925 PMCID: PMC5445305 DOI: 10.1186/s13068-017-0820-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/15/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND Lindera glauca fruit with high quality and quantity of oil has emerged as a novel potential source of biodiesel in China, but the molecular regulatory mechanism of carbon flux and energy source for oil biosynthesis in developing fruits is still unknown. To better develop fruit oils of L. glauca as woody biodiesel, a combination of two different sequencing platforms (454 and Illumina) and qRT-PCR analysis was used to define a minimal reference transcriptome of developing L. glauca fruits, and to construct carbon and energy metabolic model for regulation of carbon partitioning and energy supply for FA biosynthesis and oil accumulation. RESULTS We first analyzed the dynamic patterns of growth tendency, oil content, FA compositions, biodiesel properties, and the contents of ATP and pyridine nucleotide of L. glauca fruits from seven different developing stages. Comprehensive characterization of transcriptome of the developing L. glauca fruit was performed using a combination of two different next-generation sequencing platforms, of which three representative fruit samples (50, 125, and 150 DAF) and one mixed sample from seven developing stages were selected for Illumina and 454 sequencing, respectively. The unigenes separately obtained from long and short reads (201, and 259, respectively, in total) were reconciled using TGICL software, resulting in a total of 60,031 unigenes (mean length = 1061.95 bp) to describe a transcriptome for developing L. glauca fruits. Notably, 198 genes were annotated for photosynthesis, sucrose cleavage, carbon allocation, metabolite transport, acetyl-CoA formation, oil synthesis, and energy metabolism, among which some specific transporters, transcription factors, and enzymes were identified to be implicated in carbon partitioning and energy source for oil synthesis by an integrated analysis of transcriptomic sequencing and qRT-PCR. Importantly, the carbon and energy metabolic model was well established for oil biosynthesis of developing L. glauca fruits, which could help to reveal the molecular regulatory mechanism of the increased oil production in developing fruits. CONCLUSIONS This study presents for the first time the application of an integrated two different sequencing analyses (Illumina and 454) and qRT-PCR detection to define a minimal reference transcriptome for developing L. glauca fruits, and to elucidate the molecular regulatory mechanism of carbon flux control and energy provision for oil synthesis. Our results will provide a valuable resource for future fundamental and applied research on the woody biodiesel plants.
Collapse
Affiliation(s)
- Zixin Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Jiyong An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Jia Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Jun Niu
- College of Horticulture and Landscape Architecture, Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources, Ministry of Education, Hainan University, Haikou, 570228 China
| | - Chao Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Libing Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 10091 China
| | - Guanshen Yuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Lingling Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Lili Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Jinsong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Zhixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Ji Qi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Shanzhi Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| |
Collapse
|
30
|
Wang F, Ye Y, Niu Y, Wan F, Qi B, Chen X, Zhou Q, Chen B. A tomato plastidic ATP/ADP transporter gene SlAATP increases starch content in transgenic Arabidopsis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:497-506. [PMID: 27924122 PMCID: PMC5120046 DOI: 10.1007/s12298-016-0389-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 05/09/2023]
Abstract
A plastidic ATP/ADP transporter (AATP) is responsible for importing ATP from the cytosol into plastids. Increasing the ATP supply is a potential way to facilitate anabolic synthesis in heterotrophic plastids of plants. In this work, a gene encoding the AATP protein, named SlAATP, was successfully isolated from tomato. Expression of SlAATP was induced by exogenous sucrose treatment in tomato. The coding region of SlAATP was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis to obtain transgenic plants. Constitutive expression of SlAATP significantly increased the starch accumulation in the transgenic plants. Real-time quantitative PCR (qRT-PCR) analysis showed that constitutive expression of StAATP up-regulated the expression of phosphoglucomutase (AtPGM), ADP-glucose pyrophosphorylase (AtAGPase), granule-bound starch synthase (AtGBSS I and AtGBSS II), soluble starch synthases (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) and starch branching enzyme (AtSBE I and AtSBE II) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses indicated that the major enzymes (AGPase, GBSS, SSS and SBE) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to the wild-type (WT). These findings suggest that SlAATP may improve starch content of Arabidopsis by up-regulating the expression of the related genes and increasing the activities of the major enzymes invovled in starch biosynthesis. The manipulation of SlAATP expression might be used for increasing starch accumulation of plants in the future.
Collapse
Affiliation(s)
- Feibing Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu China
| | - Yuxiu Ye
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu China
| | - Yuan Niu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu China
| | - Faxiang Wan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu China
| | - Bo Qi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu China
| | - Xinhong Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu China
| | - Qing Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu China
| | - Boqing Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu China
| |
Collapse
|
31
|
Drechsler N, Zheng Y, Bohner A, Nobmann B, von Wirén N, Kunze R, Rausch C. Nitrate-Dependent Control of Shoot K Homeostasis by the Nitrate Transporter1/Peptide Transporter Family Member NPF7.3/NRT1.5 and the Stelar K+ Outward Rectifier SKOR in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:2832-47. [PMID: 26508776 PMCID: PMC4677904 DOI: 10.1104/pp.15.01152] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/25/2015] [Indexed: 05/03/2023]
Abstract
Root-to-shoot translocation and shoot homeostasis of potassium (K) determine nutrient balance, growth, and stress tolerance of vascular plants. To maintain the cation-anion balance, xylem loading of K(+) in the roots relies on the concomitant loading of counteranions, like nitrate (NO3 (-)). However, the coregulation of these loading steps is unclear. Here, we show that the bidirectional, low-affinity Nitrate Transporter1 (NRT1)/Peptide Transporter (PTR) family member NPF7.3/NRT1.5 is important for the NO3 (-)-dependent K(+) translocation in Arabidopsis (Arabidopsis thaliana). Lack of NPF7.3/NRT1.5 resulted in K deficiency in shoots under low NO3 (-) nutrition, whereas the root elemental composition was unchanged. Gene expression data corroborated K deficiency in the nrt1.5-5 shoot, whereas the root responded with a differential expression of genes involved in cation-anion balance. A grafting experiment confirmed that the presence of NPF7.3/NRT1.5 in the root is a prerequisite for proper root-to-shoot translocation of K(+) under low NO3 (-) supply. Because the depolarization-activated Stelar K(+) Outward Rectifier (SKOR) has previously been described as a major contributor for root-to-shoot translocation of K(+) in Arabidopsis, we addressed the hypothesis that NPF7.3/NRT1.5-mediated NO3 (-) translocation might affect xylem loading and root-to-shoot K(+) translocation through SKOR. Indeed, growth of nrt1.5-5 and skor-2 single and double mutants under different K/NO3 (-) regimes revealed that both proteins contribute to K(+) translocation from root to shoot. SKOR activity dominates under high NO3 (-) and low K(+) supply, whereas NPF7.3/NRT1.5 is required under low NO3 (-) availability. This study unravels nutritional conditions as a critical factor for the joint activity of SKOR and NPF7.3/NRT1.5 for shoot K homeostasis.
Collapse
Affiliation(s)
- Navina Drechsler
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany (N.D., Y.Z., B.N., R.K., C.R.); andMolecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany (A.B., N.v.W.)
| | - Yue Zheng
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany (N.D., Y.Z., B.N., R.K., C.R.); andMolecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany (A.B., N.v.W.)
| | - Anne Bohner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany (N.D., Y.Z., B.N., R.K., C.R.); andMolecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany (A.B., N.v.W.)
| | - Barbara Nobmann
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany (N.D., Y.Z., B.N., R.K., C.R.); andMolecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany (A.B., N.v.W.)
| | - Nicolaus von Wirén
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany (N.D., Y.Z., B.N., R.K., C.R.); andMolecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany (A.B., N.v.W.)
| | - Reinhard Kunze
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany (N.D., Y.Z., B.N., R.K., C.R.); andMolecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany (A.B., N.v.W.)
| | - Christine Rausch
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany (N.D., Y.Z., B.N., R.K., C.R.); andMolecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany (A.B., N.v.W.)
| |
Collapse
|
32
|
Soto D, Córdoba JP, Villarreal F, Bartoli C, Schmitz J, Maurino VG, Braun HP, Pagnussat GC, Zabaleta E. Functional characterization of mutants affected in the carbonic anhydrase domain of the respiratory complex I in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:831-844. [PMID: 26148112 DOI: 10.1111/tpj.12930] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 06/04/2023]
Abstract
The NADH-ubiquinone oxidoreductase complex (complex I) (EC 1.6.5.3) is the main entrance site of electrons into the respiratory chain. In a variety of eukaryotic organisms, except animals and fungi (Opisthokonta), it contains an extra domain comprising trimers of putative γ-carbonic anhydrases, named the CA domain, which has been proposed to be essential for assembly of complex I. However, its physiological role in plants is not fully understood. Here, we report that Arabidopsis mutants defective in two CA subunits show an altered photorespiratory phenotype. Mutants grown in ambient air show growth retardation compared to wild-type plants, a feature that is reversed by cultivating plants in a high-CO2 atmosphere. Moreover, under photorespiratory conditions, carbon assimilation is diminished and glycine accumulates, suggesting an imbalance with respect to photorespiration. Additionally, transcript levels of specific CA subunits are reduced in plants grown under non-photorespiratory conditions. Taken together, these results suggest that the CA domain of plant complex I contributes to sustaining efficient photosynthesis under ambient (photorespiratory) conditions.
Collapse
Affiliation(s)
- Débora Soto
- Instituto de Investigaciones Biológicas IIB/CONICET, Universidad Nacional de Mar del Plata, cc 1245, 7600, Mar del Plata, Argentina
| | - Juan Pablo Córdoba
- Instituto de Investigaciones Biológicas IIB/CONICET, Universidad Nacional de Mar del Plata, cc 1245, 7600, Mar del Plata, Argentina
| | - Fernando Villarreal
- Instituto de Investigaciones Biológicas IIB/CONICET, Universidad Nacional de Mar del Plata, cc 1245, 7600, Mar del Plata, Argentina
| | - Carlos Bartoli
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata/CONICET La Plata, cc 327, 1900, La Plata, Argentina
| | - Jessica Schmitz
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Cluster of Excellence on Plant Sciences, Heinrich Heine Universität, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Veronica G Maurino
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Cluster of Excellence on Plant Sciences, Heinrich Heine Universität, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Hans Peter Braun
- Institute for Plant Genetics, Leibniz Universität Hannover, Herrenhäuserstraße 2, D-30419, Hannover, Germany
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biológicas IIB/CONICET, Universidad Nacional de Mar del Plata, cc 1245, 7600, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas IIB/CONICET, Universidad Nacional de Mar del Plata, cc 1245, 7600, Mar del Plata, Argentina
| |
Collapse
|
33
|
Reyes-Prieto A. The basic genetic toolkit to move in with your photosynthetic partner. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Mukherjee P, Banerjee S, Wheeler A, Ratliff LA, Irigoyen S, Garcia LR, Lockless SW, Versaw WK. Live imaging of inorganic phosphate in plants with cellular and subcellular resolution. PLANT PHYSIOLOGY 2015; 167:628-38. [PMID: 25624397 PMCID: PMC4348774 DOI: 10.1104/pp.114.254003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/25/2015] [Indexed: 05/17/2023]
Abstract
Despite variable and often scarce supplies of inorganic phosphate (Pi) from soils, plants must distribute appropriate amounts of Pi to each cell and subcellular compartment to sustain essential metabolic activities. The ability to monitor Pi dynamics with subcellular resolution in live plants is, therefore, critical for understanding how this essential nutrient is acquired, mobilized, recycled, and stored. Fluorescence indicator protein for inorganic phosphate (FLIPPi) sensors are genetically encoded fluorescence resonance energy transfer-based sensors that have been used to monitor Pi dynamics in cultured animal cells. Here, we present a series of Pi sensors optimized for use in plants. Substitution of the enhanced yellow fluorescent protein component of a FLIPPi sensor with a circularly permuted version of Venus enhanced sensor dynamic range nearly 2.5-fold. The resulting circularly permuted FLIPPi sensor was subjected to a high-efficiency mutagenesis strategy that relied on statistical coupling analysis to identify regions of the protein likely to influence Pi affinity. A series of affinity mutants was selected with dissociation constant values of 0.08 to 11 mm, which span the range for most plant cell compartments. The sensors were expressed in Arabidopsis (Arabidopsis thaliana), and ratiometric imaging was used to monitor cytosolic Pi dynamics in root cells in response to Pi deprivation and resupply. Moreover, plastid-targeted versions of the sensors expressed in the wild type and a mutant lacking the PHOSPHATE TRANSPORT4;2 plastidic Pi transporter confirmed a physiological role for this transporter in Pi export from root plastids. These circularly permuted FLIPPi sensors, therefore, enable detailed analysis of Pi dynamics with subcellular resolution in live plants.
Collapse
Affiliation(s)
- Pallavi Mukherjee
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Swayoma Banerjee
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Amanda Wheeler
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Lyndsay A Ratliff
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Sonia Irigoyen
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - L Rene Garcia
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Steve W Lockless
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Wayne K Versaw
- Department of Biology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
35
|
Chilli leaf curl virus infection highlights the differential expression of genes involved in protein homeostasis and defense in resistant chilli plants. Appl Microbiol Biotechnol 2015; 99:4757-70. [DOI: 10.1007/s00253-015-6415-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/15/2015] [Accepted: 01/17/2015] [Indexed: 01/22/2023]
|
36
|
Jung B, Ludewig F, Schulz A, Meißner G, Wöstefeld N, Flügge UI, Pommerrenig B, Wirsching P, Sauer N, Koch W, Sommer F, Mühlhaus T, Schroda M, Cuin TA, Graus D, Marten I, Hedrich R, Neuhaus HE. Identification of the transporter responsible for sucrose accumulation in sugar beet taproots. NATURE PLANTS 2015; 1:14001. [PMID: 27246048 DOI: 10.1038/nplants.2014.1] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/24/2014] [Indexed: 05/21/2023]
Abstract
Sugar beet provides around one third of the sugar consumed worldwide and serves as a significant source of bioenergy in the form of ethanol. Sucrose accounts for up to 18% of plant fresh weight in sugar beet. Most of the sucrose is concentrated in the taproot, where it accumulates in the vacuoles. Despite 30 years of intensive research, the transporter that facilitates taproot sucrose accumulation has escaped identification. Here, we combine proteomic analyses of the taproot vacuolar membrane, the tonoplast, with electrophysiological analyses to show that the transporter BvTST2.1 is responsible for vacuolar sucrose uptake in sugar beet taproots. We show that BvTST2.1 is a sucrose-specific transporter, and present evidence to suggest that it operates as a proton antiporter, coupling the import of sucrose into the vacuole to the export of protons. BvTST2.1 exhibits a high amino acid sequence similarity to members of the tonoplast monosaccharide transporter family in Arabidopsis, prompting us to rename this group of proteins 'tonoplast sugar transporters'. The identification of BvTST2.1 could help to increase sugar yields from sugar beet and other sugar-storing plants in future breeding programs.
Collapse
Affiliation(s)
- Benjamin Jung
- Pflanzenphysiologie, University Kaiserslautern, Erwin Schrödinger Straße, D-67653 Kaiserslautern, Germany
| | - Frank Ludewig
- Biocenter Cologne, Botanical Institute II and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Straße 47b, D-50674, Germany
| | - Alexander Schulz
- Biophysics and Molecular Plant Physiology, University Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany
| | - Garvin Meißner
- Pflanzenphysiologie, University Kaiserslautern, Erwin Schrödinger Straße, D-67653 Kaiserslautern, Germany
| | - Nicole Wöstefeld
- Biocenter Cologne, Botanical Institute II and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Straße 47b, D-50674, Germany
| | - Ulf-Ingo Flügge
- Biocenter Cologne, Botanical Institute II and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Straße 47b, D-50674, Germany
| | - Benjamin Pommerrenig
- Molecular Plant Physiology, University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Petra Wirsching
- Molecular Plant Physiology, University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Wolfgang Koch
- KWS Saat AG, Grimsehlstr.31, D37555 Einbeck, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University Kaiserslautern, Paul-Ehrlich-Straße, D-67653 Kaiserslautern Germany
| | - Timo Mühlhaus
- Molecular Biotechnology and Systems Biology, University Kaiserslautern, Paul-Ehrlich-Straße, D-67653 Kaiserslautern Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University Kaiserslautern, Paul-Ehrlich-Straße, D-67653 Kaiserslautern Germany
| | - Tracey Ann Cuin
- Biophysics and Molecular Plant Physiology, University Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany
| | - Dorothea Graus
- Biophysics and Molecular Plant Physiology, University Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany
| | - Irene Marten
- Biophysics and Molecular Plant Physiology, University Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany
| | - Rainer Hedrich
- Biophysics and Molecular Plant Physiology, University Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany
| | - H Ekkehard Neuhaus
- Pflanzenphysiologie, University Kaiserslautern, Erwin Schrödinger Straße, D-67653 Kaiserslautern, Germany
| |
Collapse
|
37
|
Selinski J, König N, Wellmeyer B, Hanke GT, Linke V, Neuhaus HE, Scheibe R. The plastid-localized NAD-dependent malate dehydrogenase is crucial for energy homeostasis in developing Arabidopsis thaliana seeds. MOLECULAR PLANT 2014; 7:170-86. [PMID: 24198233 DOI: 10.1093/mp/sst151] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the absence of photosynthesis, ATP is imported into chloroplasts and non-green plastids by ATP/ADP transporters or formed during glycolysis, the latter requiring continuous regeneration of NAD(+), supplied by the plastidial isoform of NAD-MDH. During screening for T-DNA insertion mutants in the plNAD-MDH gene of Arabidopsis, only heterozygous plants could be isolated and homozygous knockout mutants grew only after complementation. These heterozygous plants show higher transcript levels of an alternative NAD(+)-regenerating enzyme, NADH-GOGAT, and, remarkably, improved growth when ammonium is the sole N-source. In situ hybridization and GUS-histochemical staining revealed that plNAD-MDH was particularly abundant in male and female gametophytes. Knockout plNAD-MDH pollen exhibit impaired tube growth in vitro, which can be overcome by adding the substrates of NADH-GOGAT. In vivo, knockout pollen is able to fertilize the egg cell. Young siliques of selfed heterozygous plants contain both green and white seeds corresponding to wild-type/heterozygous (green) and homozygous knockout mutants (white) in a (1:2):1 ratio. Embryos of the homozygous knockout seeds only reached the globular stage, did not green, and developed to tiny wrinkled seeds. Complementation with the gene under the native promoter rescued this defect, and all seeds developed as wild-type. This suggests that a blocked major physiological process in plNAD-MDH mutants stops both embryo and endosperm development, thus avoiding assimilate investment in compromised offspring.
Collapse
Affiliation(s)
- Jennifer Selinski
- Department of Plant Physiology, FB 5, University of Osnabrueck, D-49069 Osnabrueck, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Selinski J, Scheibe R. Pollen tube growth: where does the energy come from? PLANT SIGNALING & BEHAVIOR 2014; 9:e977200. [PMID: 25482752 PMCID: PMC4622831 DOI: 10.4161/15592324.2014.977200] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/28/2014] [Indexed: 05/18/2023]
Abstract
This review focuses on the energy metabolism during pollen maturation and tube growth and updates current knowledge. Pollen tube growth is essential for male reproductive success and extremely fast. Therefore, pollen development and tube growth are high energy-demanding processes. During the last years, various publications (including research papers and reviews) emphasize the importance of mitochondrial respiration and fermentation during male gametogenesis and pollen tube elongation. These pathways obviously contribute to satisfy the high energy demand, and there are many studies which suggest that respiration and fermentation are the only pathways to generate the needed energy. Here, we review data which show for the first time that in addition plastidial glycolysis and the balancing of the ATP/NAD(P)H ratio (by malate valves and NAD(+) biosynthesis) contribute to satisfy the energy demand during pollen development. Although the importance of energy generation by plastids was discounted during the last years (possibly due to the controversial opinion about their existence in pollen grains and pollen tubes), the available data underline their prime role during pollen maturation and tube growth.
Collapse
Key Words
- 2-OG, 2-oxoglutarate
- 2-PGA, 2-phosphoglycerate
- 3-PGA, 3-phosphoglycerate
- ACS, acetyl-CoA synthase
- ADH, alcohol dehydrogenase
- ALDH, aldehyde dehydrogenase
- AOX, alternative oxidase
- BPGA, bisphosphoglyceric acid
- ENO, enolase
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GOGAT, glutamate synthase
- GPT, G-6-P/phosphate translocators
- Gln, glutamine
- Glu, glutamate
- MDH, malate dehydrogenase
- NDP, nucleotide diphosphate kinase
- NMNAT, nicotinate/nicotinamide mononucleotide adenyltransferase
- NTT, ATP/ADP transporters
- OAA, oxaloacetate
- OPP, oxidative pentose-phosphate pathway
- PDC, pyruvate decarboxylase
- PDH, pyruvate dehydrogenase
- PEP, phosphoenolpyruvate
- PGAM, phosphoglycerate mutase
- PGDH, 3-phosphoglycerate dehydrogenase
- PK, pyruvate kinase
- PPSB, phosphorylated pathway of serine biosynthesis
- PPT, phosphoenolpyruvate/phosphate translocator
- PSP, phosphoserine phosphatase
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- RPOT, T3/T7 phage-type RNA polymerases
- T, malate/oxaloacetate translocator
- TP, triose phosphate.
- energy metabolism
- malate
- plastidial glycolysis
- pollen tube growth
- respiration
Collapse
Affiliation(s)
- Jennifer Selinski
- Department of Plant Physiology; University of Osnabrueck; Osnabrueck, Germany
| | - Renate Scheibe
- Department of Plant Physiology; University of Osnabrueck; Osnabrueck, Germany
- Correspondence to: Renate Scheibe;
| |
Collapse
|
39
|
Selinski J, Scheibe R. Lack of malate valve capacities lead to improved N-assimilation and growth in transgenic A. thaliana plants. PLANT SIGNALING & BEHAVIOR 2014; 9:e29057. [PMID: 25763488 PMCID: PMC4091578 DOI: 10.4161/psb.29057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/29/2014] [Indexed: 05/18/2023]
Abstract
In this study we analyzed the relationship between malate valve capacities, N-assimilation, and energy metabolism. We used transgenic plants either lacking the chloroplast NADP-dependent malate dehydrogenase or mutants with a decreased transcript level of the plastid-localized NAD-dependent malate dehydrogenase. Plants were grown on nitrate or ammonium, respectively, as the sole N-source and transcripts were analyzed by qRT-PCR. We could show that the lack of malate valve capacities enhances N-assimilation and plastidial glycolysis by increasing transcript levels of Fd-GOGATs or NADH-GOGAT and plastidic NAD-GAPDHs (GapCps), respectively. Based on our results, we conclude that the lack of malate valve capacities is balanced by an increase of the activity of plastid-localized glycolysis in order to cover the high demand for plastidial ATP, stressing the importance of the plastids for energy metabolism in plant cells.
Collapse
|
40
|
Chromoplast biogenesis and carotenoid accumulation. Arch Biochem Biophys 2013; 539:102-9. [PMID: 23851381 DOI: 10.1016/j.abb.2013.07.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/07/2013] [Accepted: 07/01/2013] [Indexed: 01/29/2023]
Abstract
Chromoplasts are special organelles that possess superior ability to synthesize and store massive amounts of carotenoids. They are responsible for the distinctive colors found in fruits, flowers, and roots. Chromoplasts exhibit various morphologies and are derived from either pre-existing chloroplasts or other non-photosynthetic plastids such as proplastids, leucoplasts or amyloplasts. While little is known about the molecular mechanisms underlying chromoplast biogenesis, research progress along with proteomics study of chromoplast proteomes signifies various processes and factors important for chromoplast differentiation and development. Chromoplasts act as a metabolic sink that enables great biosynthesis and high storage capacity of carotenoids. The formation of chromoplasts enhances carotenoid metabolic sink strength and controls carotenoid accumulation in plants. The objective of this review is to provide an integrated view on our understanding of chromoplast biogenesis and carotenoid accumulation in plants.
Collapse
|
41
|
Hoffmann C, Plocharski B, Haferkamp I, Leroch M, Ewald R, Bauwe H, Riemer J, Herrmann JM, Neuhaus HE. From endoplasmic reticulum to mitochondria: absence of the Arabidopsis ATP antiporter endoplasmic Reticulum Adenylate Transporter1 perturbs photorespiration. THE PLANT CELL 2013; 25:2647-60. [PMID: 23860249 PMCID: PMC3753389 DOI: 10.1105/tpc.113.113605] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The carrier Endoplasmic Reticulum Adenylate Transporter1 (ER-ANT1) resides in the endoplasmic reticulum (ER) membrane and acts as an ATP/ADP antiporter. Mutant plants lacking ER-ANT1 exhibit a dwarf phenotype and their seeds contain reduced protein and lipid contents. In this study, we describe a further surprising metabolic peculiarity of the er-ant1 mutants. Interestingly, Gly levels in leaves are immensely enhanced (26×) when compared with that of wild-type plants. Gly accumulation is caused by significantly decreased mitochondrial glycine decarboxylase (GDC) activity. Reduced GDC activity in mutant plants was attributed to oxidative posttranslational protein modification induced by elevated levels of reactive oxygen species (ROS). GDC activity is crucial for photorespiration; accordingly, morphological and physiological defects in er-ant1 plants were nearly completely abolished by application of high environmental CO(2) concentrations. The latter observation demonstrates that the absence of ER-ANT1 activity mainly affects photorespiration (maybe solely GDC), whereas basic cellular metabolism remains largely unchanged. Since ER-ANT1 homologs are restricted to higher plants, it is tempting to speculate that this carrier fulfils a plant-specific function directly or indirectly controlling cellular ROS production. The observation that ER-ANT1 activity is associated with cellular ROS levels reveals an unexpected and critical physiological connection between the ER and other organelles in plants.
Collapse
Affiliation(s)
- Christiane Hoffmann
- Department of Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Bartolome Plocharski
- Department of Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Ilka Haferkamp
- Department of Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Michaela Leroch
- Department of Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Ralph Ewald
- Department of Plant Physiology, University of Rostock, D-18059 Rostock, Germany
| | - Hermann Bauwe
- Department of Plant Physiology, University of Rostock, D-18059 Rostock, Germany
| | - Jan Riemer
- Department of Cell Biochemistry, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Johannes M. Herrmann
- Department of Cell Biology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - H. Ekkehard Neuhaus
- Department of Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
- Address correspondence to
| |
Collapse
|
42
|
Wang YQ, Yang Y, Fei Z, Yuan H, Fish T, Thannhauser TW, Mazourek M, Kochian LV, Wang X, Li L. Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:949-61. [PMID: 23314817 PMCID: PMC3580812 DOI: 10.1093/jxb/ers375] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chromoplasts are unique plastids that accumulate massive amounts of carotenoids. To gain a general and comparative characterization of chromoplast proteins, this study performed proteomic analysis of chromoplasts from six carotenoid-rich crops: watermelon, tomato, carrot, orange cauliflower, red papaya, and red bell pepper. Stromal and membrane proteins of chromoplasts were separated by 1D gel electrophoresis and analysed using nLC-MS/MS. A total of 953-2262 proteins from chromoplasts of different crop species were identified. Approximately 60% of the identified proteins were predicted to be plastid localized. Functional classification using MapMan bins revealed large numbers of proteins involved in protein metabolism, transport, amino acid metabolism, lipid metabolism, and redox in chromoplasts from all six species. Seventeen core carotenoid metabolic enzymes were identified. Phytoene synthase, phytoene desaturase, ζ-carotene desaturase, 9-cis-epoxycarotenoid dioxygenase, and carotenoid cleavage dioxygenase 1 were found in almost all crops, suggesting relative abundance of them among the carotenoid pathway enzymes. Chromoplasts from different crops contained abundant amounts of ATP synthase and adenine nucleotide translocator, which indicates an important role of ATP production and transport in chromoplast development. Distinctive abundant proteins were observed in chromoplast from different crops, including capsanthin/capsorubin synthase and fibrillins in pepper, superoxide dismutase in watermelon, carrot, and cauliflower, and glutathione-S-transferease in papaya. The comparative analysis of chromoplast proteins among six crop species offers new insights into the general metabolism and function of chromoplasts as well as the uniqueness of chromoplasts in specific crop species. This work provides reference datasets for future experimental study of chromoplast biogenesis, development, and regulation in plants.
Collapse
Affiliation(s)
- Yong-Qiang Wang
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
- * These two authors contributed equally to this work
| | - Yong Yang
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
- To whom correspondence should be addressed. E-mail:
| | - Zhangjun Fei
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tara Fish
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
| | - Theodore W. Thannhauser
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
| | - Michael Mazourek
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Leon V. Kochian
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Li
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Ludewig F, Flügge UI. Role of metabolite transporters in source-sink carbon allocation. FRONTIERS IN PLANT SCIENCE 2013; 4:231. [PMID: 23847636 PMCID: PMC3698459 DOI: 10.3389/fpls.2013.00231] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/13/2013] [Indexed: 05/18/2023]
Abstract
Plants assimilate carbon dioxide during photosynthesis in chloroplasts. Assimilated carbon is subsequently allocated throughout the plant. Generally, two types of organs can be distinguished, mature green source leaves as net photoassimilate exporters, and net importers, the sinks, e.g., roots, flowers, small leaves, and storage organs like tubers. Within these organs, different tissue types developed according to their respective function, and cells of either tissue type are highly compartmentalized. Photoassimilates are allocated to distinct compartments of these tissues in all organs, requiring a set of metabolite transporters mediating this intercompartmental transfer. The general route of photoassimilates can be briefly described as follows. Upon fixation of carbon dioxide in chloroplasts of mesophyll cells, triose phosphates either enter the cytosol for mainly sucrose formation or remain in the stroma to form transiently stored starch which is degraded during the night and enters the cytosol as maltose or glucose to be further metabolized to sucrose. In both cases, sucrose enters the phloem for long distance transport or is transiently stored in the vacuole, or can be degraded to hexoses which also can be stored in the vacuole. In the majority of plant species, sucrose is actively loaded into the phloem via the apoplast. Following long distance transport, it is released into sink organs, where it enters cells as source of carbon and energy. In storage organs, sucrose can be stored, or carbon derived from sucrose can be stored as starch in plastids, or as oil in oil bodies, or - in combination with nitrogen - as protein in protein storage vacuoles and protein bodies. Here, we focus on transport proteins known for either of these steps, and discuss the implications for yield increase in plants upon genetic engineering of respective transporters.
Collapse
Affiliation(s)
- Frank Ludewig
- *Correspondence: Frank Ludewig, Botanical Institute II, Cologne Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany e-mail:
| | | |
Collapse
|
44
|
Hassler S, Lemke L, Jung B, Möhlmann T, Krüger F, Schumacher K, Espen L, Martinoia E, Neuhaus HE. Lack of the Golgi phosphate transporter PHT4;6 causes strong developmental defects, constitutively activated disease resistance mechanisms and altered intracellular phosphate compartmentation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:732-44. [PMID: 22788523 DOI: 10.1111/j.1365-313x.2012.05106.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Golgi-located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6-GFP is targeted to the trans-Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi-related functions, such as an altered abundance of certain N-glycosylated proteins, altered composition of cell-wall hemicelluose, and higher sensitivity to the Golgi α-mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a 'mimic disease' phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild-type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans-Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance.
Collapse
Affiliation(s)
- Sebastian Hassler
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Straße, D-67653 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jonik C, Sonnewald U, Hajirezaei MR, Flügge UI, Ludewig F. Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1088-98. [PMID: 22931170 DOI: 10.1111/j.1467-7652.2012.00736.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 05/22/2023]
Abstract
An important goal in biotechnological research is to improve the yield of crop plants. Here, we genetically modified simultaneously source and sink capacities in potato (Solanum tuberosum cv. Desirée) plants to improve starch yield. Source capacity was increased by mesophyll-specific overexpression of a pyrophosphatase or, alternatively, by antisense expression of the ADP-glucose pyrophosphorylase in leaves. Both approaches make use of re-routing photoassimilates to sink organs at the expense of leaf starch accumulation. Simultaneous increase in sink capacity was accomplished by overexpression of two plastidic metabolite translocators, that is, a glucose 6-phosphate/phosphate translocator and an adenylate translocator in tubers. Employing such a 'pull' approach, we have previously shown that potato starch content and yield can be increased when sink strength is elevated. In the current biotechnological approach, we successfully enhanced source and sink capacities by a combination of 'pull' and 'push' approaches using two different attempts. A doubling in tuber starch yield was achieved. This successful approach might be transferable to other crop plants in the future.
Collapse
Affiliation(s)
- Claudia Jonik
- Cologne Biocenter, Botanical Institute II, University of Cologne, Cologne, Germany
| | | | | | | | | |
Collapse
|
46
|
Gigolashvili T, Geier M, Ashykhmina N, Frerigmann H, Wulfert S, Krueger S, Mugford SG, Kopriva S, Haferkamp I, Flügge UI. The Arabidopsis thylakoid ADP/ATP carrier TAAC has an additional role in supplying plastidic phosphoadenosine 5'-phosphosulfate to the cytosol. THE PLANT CELL 2012; 24:4187-204. [PMID: 23085732 PMCID: PMC3517245 DOI: 10.1105/tpc.112.101964] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 09/03/2012] [Accepted: 09/28/2012] [Indexed: 05/18/2023]
Abstract
3'-Phosphoadenosine 5'-phosphosulfate (PAPS) is the high-energy sulfate donor for sulfation reactions. Plants produce some PAPS in the cytosol, but it is predominantly produced in plastids. Accordingly, PAPS has to be provided by plastids to serve as a substrate for sulfotransferase reactions in the cytosol and the Golgi apparatus. We present several lines of evidence that the recently described Arabidopsis thaliana thylakoid ADP/ATP carrier TAAC transports PAPS across the plastid envelope and thus fulfills an additional function of high physiological relevance. Transport studies using the recombinant protein revealed that it favors PAPS, 3'-phosphoadenosine 5'-phosphate, and ATP as substrates; thus, we named it PAPST1. The protein could be detected both in the plastid envelope membrane and in thylakoids, and it is present in plastids of autotrophic and heterotrophic tissues. TAAC/PAPST1 belongs to the mitochondrial carrier family in contrast with the known animal PAPS transporters, which are members of the nucleotide-sugar transporter family. The expression of the PAPST1 gene is regulated by the same MYB transcription factors also regulating the biosynthesis of sulfated secondary metabolites, glucosinolates. Molecular and physiological analyses of papst1 mutant plants indicate that PAPST1 is involved in several aspects of sulfur metabolism, including the biosynthesis of thiols, glucosinolates, and phytosulfokines.
Collapse
Affiliation(s)
- Tamara Gigolashvili
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Melanie Geier
- Cellular Physiology/Membrane Transport, Technical University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Natallia Ashykhmina
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Henning Frerigmann
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Sabine Wulfert
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Stephan Krueger
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Sarah G. Mugford
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Stanislav Kopriva
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Ilka Haferkamp
- Cellular Physiology/Membrane Transport, Technical University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Ulf-Ingo Flügge
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
47
|
Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds. PLoS One 2012; 7:e36522. [PMID: 22574177 PMCID: PMC3344900 DOI: 10.1371/journal.pone.0036522] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 04/03/2012] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. METHODOLOGY/PRINCIPAL FINDINGS We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29-41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. CONCLUSIONS/SIGNIFICANCE The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production.
Collapse
|
48
|
Linka M, Weber APM. Evolutionary Integration of Chloroplast Metabolism with the Metabolic Networks of the Cells. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Irigoyen S, Karlsson PM, Kuruvilla J, Spetea C, Versaw WK. The sink-specific plastidic phosphate transporter PHT4;2 influences starch accumulation and leaf size in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:1765-77. [PMID: 21960139 PMCID: PMC3327177 DOI: 10.1104/pp.111.181925] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/29/2011] [Indexed: 05/03/2023]
Abstract
Nonphotosynthetic plastids are important sites for the biosynthesis of starch, fatty acids, and amino acids. The uptake and subsequent use of cytosolic ATP to fuel these and other anabolic processes would lead to the accumulation of inorganic phosphate (Pi) if not balanced by a Pi export activity. However, the identity of the transporter(s) responsible for Pi export is unclear. The plastid-localized Pi transporter PHT4;2 of Arabidopsis (Arabidopsis thaliana) is expressed in multiple sink organs but is nearly restricted to roots during vegetative growth. We identified and used pht4;2 null mutants to confirm that PHT4;2 contributes to Pi transport in isolated root plastids. Starch accumulation was limited in pht4;2 roots, which is consistent with the inhibition of starch synthesis by excess Pi as a result of a defect in Pi export. Reduced starch accumulation in leaves and altered expression patterns for starch synthesis genes and other plastid transporter genes suggest metabolic adaptation to the defect in roots. Moreover, pht4;2 rosettes, but not roots, were significantly larger than those of the wild type, with 40% greater leaf area and twice the biomass when plants were grown with a short (8-h) photoperiod. Increased cell proliferation accounted for the larger leaf size and biomass, as no changes were detected in mature cell size, specific leaf area, or relative photosynthetic electron transport activity. These data suggest novel signaling between roots and leaves that contributes to the regulation of leaf size.
Collapse
Affiliation(s)
| | | | | | | | - Wayne K. Versaw
- Department of Biology and Interdepartmental Program in Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas 77843 (S.I., W.K.V.); Division of Molecular Genetics, Department of Physics, Chemistry, and Biology, Linköping University, 581 83 Linkoeping, Sweden (P.M.K., J.K., C.S.); Department of Plant and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden (P.M.K., C.S.)
| |
Collapse
|
50
|
Cornelius S, Witz S, Rolletschek H, Möhlmann T. Pyrimidine degradation influences germination seedling growth and production of Arabidopsis seeds. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5623-32. [PMID: 21865177 PMCID: PMC3223058 DOI: 10.1093/jxb/err251] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/30/2011] [Accepted: 07/18/2011] [Indexed: 05/20/2023]
Abstract
PYD1 (dihydropyrimidine dehydogenase) initiates the degradation of pyrimidine nucleobases and is located in plastids. In this study, a physiological analysis of PYD1 employing T-DNA knockout mutants and overexpressors was carried out. PYD1 knockout mutants were restricted in degradation of exogenously provided uracil and accumulated high uracil levels in plant organs throughout development, especially in dry seeds. Moreover, PYD1 knockout mutants showed delayed germination which was accompanied by low invertase activity and decreased monosaccharide levels. Abscisic acid (ABA) is an important regulator of seed germination, and ABA-responsive genes were deregulated in PYD1 knockout mutants. Together with an observed increased PYD1 expression in wild-type seedlings upon ABA treatment, an interference of PYD1 with ABA signalling can be assumed. Constitutive PYD1 overexpression mutants showed increased growth and higher seed number compared with wild-type and knockout mutant plants. During senescence PYD1 expression increased to allow uracil catabolism. From this it is concluded that early in development and during seed production PYD1 is needed to balance pyrimidine catabolism versus salvage.
Collapse
Affiliation(s)
- Stefanie Cornelius
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany
| | - Sandra Witz
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany
| | - Hardy Rolletschek
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Technische Universität Kaiserslautern, Corrensstraße 3, D-06466 Gatersleben, Germany
| | - Torsten Möhlmann
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany
| |
Collapse
|