1
|
Vladejić J, Kovacik M, Zwyrtková J, Szurman-Zubrzycka M, Doležel J, Pecinka A. Zeocin-induced DNA damage response in barley and its dependence on ATR. Sci Rep 2024; 14:3119. [PMID: 38326519 PMCID: PMC10850495 DOI: 10.1038/s41598-024-53264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
DNA damage response (DDR) is an essential mechanism by which living organisms maintain their genomic stability. In plants, DDR is important also for normal growth and yield. Here, we explored the DDR of a temperate model crop barley (Hordeum vulgare) at the phenotypic, physiological, and transcriptomic levels. By a series of in vitro DNA damage assays using the DNA strand break (DNA-SB) inducing agent zeocin, we showed reduced root growth and expansion of the differentiated zone to the root tip. Genome-wide transcriptional profiling of barley wild-type and plants mutated in DDR signaling kinase ATAXIA TELANGIECTASIA MUTATED AND RAD3-RELATED (hvatr.g) revealed zeocin-dependent, ATR-dependent, and zeocin-dependent/ATR-independent transcriptional responses. Transcriptional changes were scored also using the newly developed catalog of 421 barley DDR genes with the phylogenetically-resolved relationships of barley SUPRESSOR OF GAMMA 1 (SOG1) and SOG1-LIKE (SGL) genes. Zeocin caused up-regulation of specific DDR factors and down-regulation of cell cycle and histone genes, mostly in an ATR-independent manner. The ATR dependency was obvious for some factors associated with DDR during DNA replication and for many genes without an obvious connection to DDR. This provided molecular insight into the response to DNA-SB induction in the large and complex barley genome.
Collapse
Affiliation(s)
- Jovanka Vladejić
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Martin Kovacik
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Jana Zwyrtková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Miriam Szurman-Zubrzycka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Jaroslav Doležel
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia.
| |
Collapse
|
2
|
Bolaños-Villegas P. The Role of Structural Maintenance of Chromosomes Complexes in Meiosis and Genome Maintenance: Translating Biomedical and Model Plant Research Into Crop Breeding Opportunities. FRONTIERS IN PLANT SCIENCE 2021; 12:659558. [PMID: 33868354 PMCID: PMC8044525 DOI: 10.3389/fpls.2021.659558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 06/06/2023]
Abstract
Cohesin is a multi-unit protein complex from the structural maintenance of chromosomes (SMC) family, required for holding sister chromatids together during mitosis and meiosis. In yeast, the cohesin complex entraps sister DNAs within tripartite rings created by pairwise interactions between the central ring units SMC1 and SMC3 and subunits such as the α-kleisin SCC1 (REC8/SYN1 in meiosis). The complex is an indispensable regulator of meiotic recombination in eukaryotes. In Arabidopsis and maize, the SMC1/SMC3 heterodimer is a key determinant of meiosis. In Arabidopsis, several kleisin proteins are also essential: SYN1/REC8 is meiosis-specific and is essential for double-strand break repair, whereas AtSCC2 is a subunit of the cohesin SCC2/SCC4 loading complex that is important for synapsis and segregation. Other important meiotic subunits are the cohesin EXTRA SPINDLE POLES (AESP1) separase, the acetylase ESTABLISHMENT OF COHESION 1/CHROMOSOME TRANSMISSION FIDELITY 7 (ECO1/CTF7), the cohesion release factor WINGS APART-LIKE PROTEIN 1 (WAPL) in Arabidopsis (AtWAPL1/AtWAPL2), and the WAPL antagonist AtSWITCH1/DYAD (AtSWI1). Other important complexes are the SMC5/SMC6 complex, which is required for homologous DNA recombination during the S-phase and for proper meiotic synapsis, and the condensin complexes, featuring SMC2/SMC4 that regulate proper clustering of rDNA arrays during interphase. Meiotic recombination is the key to enrich desirable traits in commercial plant breeding. In this review, I highlight critical advances in understanding plant chromatid cohesion in the model plant Arabidopsis and crop plants and suggest how manipulation of crossover formation during meiosis, somatic DNA repair and chromosome folding may facilitate transmission of desirable alleles, tolerance to radiation, and enhanced transcription of alleles that regulate sexual development. I hope that these findings highlight opportunities for crop breeding.
Collapse
Affiliation(s)
- Pablo Bolaños-Villegas
- Fabio Baudrit Agricultural Research Station, University of Costa Rica, Alajuela, Costa Rica
- Lankester Botanical Garden, University of Costa Rica, Cartago, Costa Rica
| |
Collapse
|
3
|
Wu WQ, Zhang ML, Song CP. A comprehensive evaluation of a typical plant telomeric G-quadruplex (G4) DNA reveals the dynamics of G4 formation, rearrangement, and unfolding. J Biol Chem 2020; 295:5461-5469. [PMID: 32184352 PMCID: PMC7170514 DOI: 10.1074/jbc.ra119.012383] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/16/2020] [Indexed: 11/06/2022] Open
Abstract
Telomeres are specific nucleoprotein structures that are located at the ends of linear eukaryotic chromosomes and play crucial roles in genomic stability. Telomere DNA consists of simple repeats of a short G-rich sequence: TTAGGG in mammals and TTTAGGG in most plants. In recent years, the mammalian telomeric G-rich repeats have been shown to form G-quadruplex (G4) structures, which are crucial for modulating telomere functions. Surprisingly, even though plant telomeres are essential for plant growth, development, and environmental adaptions, only few reports exist on plant telomeric G4 DNA (pTG4). Here, using bulk and single-molecule assays, including CD spectroscopy, and single-molecule FRET approaches, we comprehensively characterized the structure and dynamics of a typical plant telomeric sequence, d[GGG(TTTAGGG)3]. We found that this sequence can fold into mixed G4s in potassium, including parallel and antiparallel structures. We also directly detected intermediate dynamic transitions, including G-hairpin, parallel G-triplex, and antiparallel G-triplex structures. Moreover, we observed that pTG4 is unfolded by the AtRecQ2 helicase but not by AtRecQ3. The results of our work shed light on our understanding about the existence, topological structures, stability, intermediates, unwinding, and functions of pTG4.
Collapse
Affiliation(s)
- Wen-Qiang Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Ming-Li Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475001, China.
| |
Collapse
|
4
|
DNA Helicases as Safekeepers of Genome Stability in Plants. Genes (Basel) 2019; 10:genes10121028. [PMID: 31835565 PMCID: PMC6947026 DOI: 10.3390/genes10121028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic information of all organisms is coded in double-stranded DNA. DNA helicases are essential for unwinding this double strand when it comes to replication, repair or transcription of genetic information. In this review, we will focus on what is known about a variety of DNA helicases that are required to ensure genome stability in plants. Due to their sessile lifestyle, plants are especially exposed to harmful environmental factors. Moreover, many crop plants have large and highly repetitive genomes, making them absolutely dependent on the correct interplay of DNA helicases for safeguarding their stability. Although basic features of a number of these enzymes are conserved between plants and other eukaryotes, a more detailed analysis shows surprising peculiarities, partly also between different plant species. This is additionally of high relevance for plant breeding as a number of these helicases are also involved in crossover control during meiosis and influence the outcome of different approaches of CRISPR/Cas based plant genome engineering. Thus, gaining knowledge about plant helicases, their interplay, as well as the manipulation of their pathways, possesses the potential for improving agriculture. In the long run, this might even help us cope with the increasing obstacles of climate change threatening food security in completely new ways.
Collapse
|
5
|
Bourbousse C, Vegesna N, Law JA. SOG1 activator and MYB3R repressors regulate a complex DNA damage network in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E12453-E12462. [PMID: 30541889 PMCID: PMC6310815 DOI: 10.1073/pnas.1810582115] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To combat DNA damage, organisms mount a DNA damage response (DDR) that results in cell cycle regulation, DNA repair and, in severe cases, cell death. Underscoring the importance of gene regulation in this response, studies in Arabidopsis have demonstrated that all of the aforementioned processes rely on SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a NAC family transcription factor (TF) that has been functionally equated to the mammalian tumor suppressor, p53. However, the expression networks connecting SOG1 to these processes remain largely unknown and, although the DDR spans from minutes to hours, most transcriptomic data correspond to single time-point snapshots. Here, we generated transcriptional models of the DDR from GAMMA (γ)-irradiated wild-type and sog1 seedlings during a 24-hour time course using DREM, the Dynamic Regulatory Events Miner, revealing 11 coexpressed gene groups with distinct biological functions and cis-regulatory features. Within these networks, additional chromatin immunoprecipitation and transcriptomic experiments revealed that SOG1 is the major activator, directly targeting the most strongly up-regulated genes, including TFs, repair factors, and early cell cycle regulators, while three MYB3R TFs are the major repressors, specifically targeting the most strongly down-regulated genes, which mainly correspond to G2/M cell cycle-regulated genes. Together these models reveal the temporal dynamics of the transcriptional events triggered by γ-irradiation and connects these events to TFs and biological processes over a time scale commensurate with key processes coordinated in response to DNA damage, greatly expanding our understanding of the DDR.
Collapse
Affiliation(s)
- Clara Bourbousse
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Neeraja Vegesna
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037;
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
6
|
Röhrig S, Dorn A, Enderle J, Schindele A, Herrmann NJ, Knoll A, Puchta H. The RecQ-like helicase HRQ1 is involved in DNA crosslink repair in Arabidopsis in a common pathway with the Fanconi anemia-associated nuclease FAN1 and the postreplicative repair ATPase RAD5A. THE NEW PHYTOLOGIST 2018; 218:1478-1490. [PMID: 29577315 DOI: 10.1111/nph.15109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/12/2018] [Indexed: 05/24/2023]
Abstract
RecQ helicases are important caretakers of genome stability and occur in varying copy numbers in different eukaryotes. Subsets of RecQ paralogs are involved in DNA crosslink (CL) repair. The orthologs of AtRECQ2, AtRECQ3 and AtHRQ1, HsWRN, DmRECQ5 and ScHRQ1 participate in CL repair in their respective organisms, and we aimed to define the function of these helicases for plants. We obtained Arabidopsis mutants of the three RecQ helicases and determined their sensitivity against CL agents in single- and double-mutant analyses. Only Athrq1, but not Atrecq2 and Atrecq3, mutants proved to be sensitive to intra- and interstrand crosslinking agents. AtHRQ1 is specifically involved in the repair of replicative damage induced by CL agents. It shares pathways with the Fanconi anemia-related endonuclease FAN1 but not with the endonuclease MUS81. Most surprisingly, AtHRQ1 is epistatic to the ATPase RAD5A for intra- as well as interstrand CL repair. We conclude that, as in fungi, AtHRQ1 has a conserved function in DNA excision repair. Additionally, HRQ1 not only shares pathways with the Fanconi anemia repair factors, but in contrast to fungi also seems to act in a common pathway with postreplicative DNA repair.
Collapse
Affiliation(s)
- Sarah Röhrig
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| | - Annika Dorn
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| | - Janina Enderle
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| | - Angelina Schindele
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| | - Natalie J Herrmann
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| | - Alexander Knoll
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| |
Collapse
|
7
|
Kobbe D, Kahles A, Walter M, Klemm T, Mannuss A, Knoll A, Focke M, Puchta H. AtRAD5A is a DNA translocase harboring a HIRAN domain which confers binding to branched DNA structures and is required for DNA repair in vivo. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:521-530. [PMID: 27458713 DOI: 10.1111/tpj.13283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 05/26/2023]
Abstract
DNA lesions such as crosslinks represent obstacles for the replication machinery. Nonetheless, replication can proceed via the DNA damage tolerance pathway also known as postreplicative repair pathway. SNF2 ATPase Rad5 homologs, such as RAD5A of the model plant Arabidopsis thaliana, are important for the error-free mode of this pathway. We able to demonstrate before, that RAD5A is a key factor in the repair of DNA crosslinks in Arabidopsis. Here, we show by in vitro analysis that AtRAD5A protein is a DNA translocase able to catalyse fork regression. Interestingly, replication forks with a gap in the leading strand are processed best, in line with its suggested function. Furthermore AtRAD5A catalyses branch migration of a Holliday junction and is furthermore not impaired by the DNA binding of a model protein, which is indicative of its ability to displace other proteins. Rad5 homologs possess HIRAN (Hip116, Rad5; N-terminal) domains. By biochemical analysis we were able to demonstrate that the HIRAN domain variant from Arabidopsis RAD5A mediates structure selective DNA binding without the necessity for a free 3'OH group as has been shown to be required for binding of HIRAN domains in a mammalian RAD5 homolog. The biological importance of the HIRAN domain in AtRAD5A is demonstrated by our result that it is required for its function in DNA crosslink repair in vivo.
Collapse
Affiliation(s)
- Daniela Kobbe
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Andy Kahles
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Maria Walter
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Tobias Klemm
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Anja Mannuss
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Manfred Focke
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| |
Collapse
|
8
|
Kemmerich FE, Kasaciunaite K, Seidel R. Modular magnetic tweezers for single-molecule characterizations of helicases. Methods 2016; 108:4-13. [PMID: 27402355 DOI: 10.1016/j.ymeth.2016.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/09/2023] Open
Abstract
Magnetic tweezers provide a versatile toolkit supporting the mechanistic investigation of helicases. In the present article, we show that custom magnetic tweezers setups are straightforward to construct and can easily be extended to provide adaptable platforms, capable of addressing a multitude of enquiries regarding the functions of these fascinating molecular machines. We first address the fundamental components of a basic magnetic tweezers scheme and review some previous results to demonstrate the versatility of this instrument. We then elaborate on several extensions to the basic magnetic tweezers scheme, and demonstrate their applications with data from ongoing research. As our methodological overview illustrates, magnetic tweezers are an extremely useful tool for the characterization of helicases and a custom built instrument can be specifically tailored to suit the experimenter's needs.
Collapse
Affiliation(s)
- Felix E Kemmerich
- Molecular Biophysics Group, Institute of Experimental Physics I, Universität Leipzig, 04103 Leipzig, Germany
| | - Kristina Kasaciunaite
- Molecular Biophysics Group, Institute of Experimental Physics I, Universität Leipzig, 04103 Leipzig, Germany
| | - Ralf Seidel
- Molecular Biophysics Group, Institute of Experimental Physics I, Universität Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
9
|
Nagulapalli M, Maji S, Dwivedi N, Dahiya P, Thakur JK. Evolution of disorder in Mediator complex and its functional relevance. Nucleic Acids Res 2015; 44:1591-612. [PMID: 26590257 PMCID: PMC4770211 DOI: 10.1093/nar/gkv1135] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 10/18/2015] [Indexed: 12/27/2022] Open
Abstract
Mediator, an important component of eukaryotic transcriptional machinery, is a huge multisubunit complex. Though the complex is known to be conserved across all the eukaryotic kingdoms, the evolutionary topology of its subunits has never been studied. In this study, we profiled disorder in the Mediator subunits of 146 eukaryotes belonging to three kingdoms viz., metazoans, plants and fungi, and attempted to find correlation between the evolution of Mediator complex and its disorder. Our analysis suggests that disorder in Mediator complex have played a crucial role in the evolutionary diversification of complexity of eukaryotic organisms. Conserved intrinsic disordered regions (IDRs) were identified in only six subunits in the three kingdoms whereas unique patterns of IDRs were identified in other Mediator subunits. Acquisition of novel molecular recognition features (MoRFs) through evolution of new subunits or through elongation of the existing subunits was evident in metazoans and plants. A new concept of ‘junction-MoRF’ has been introduced. Evolutionary link between CBP and Med15 has been provided which explain the evolution of extended-IDR in CBP from Med15 KIX-IDR junction-MoRF suggesting role of junction-MoRF in evolution and modulation of protein–protein interaction repertoire. This study can be informative and helpful in understanding the conserved and flexible nature of Mediator complex across eukaryotic kingdoms.
Collapse
Affiliation(s)
- Malini Nagulapalli
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sourobh Maji
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nidhi Dwivedi
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pradeep Dahiya
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitendra K Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
10
|
Klaue D, Kobbe D, Kemmerich F, Kozikowska A, Puchta H, Seidel R. Fork sensing and strand switching control antagonistic activities of RecQ helicases. Nat Commun 2013; 4:2024. [PMID: 23771268 PMCID: PMC3709500 DOI: 10.1038/ncomms3024] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 05/17/2013] [Indexed: 12/16/2022] Open
Abstract
RecQ helicases have essential roles in maintaining genome stability during replication and in controlling double-strand break repair by homologous recombination. Little is known about how the different RecQ helicases found in higher eukaryotes achieve their specialized and partially opposing functions. Here, we investigate the DNA unwinding of RecQ helicases from Arabidopsis thaliana, AtRECQ2 and AtRECQ3 at the single-molecule level using magnetic tweezers. Although AtRECQ2 predominantly unwinds forked DNA substrates in a highly repetitive fashion, AtRECQ3 prefers to rewind, that is, to close preopened DNA forks. For both enzymes, this process is controlled by frequent strand switches and active sensing of the unwinding fork. The relative extent of the strand switches towards unwinding or towards rewinding determines the predominant direction of the enzyme. Our results provide a simple explanation for how different biological activities can be achieved by rather similar members of the RecQ family. RecQ helicases are enzymes that play a central role in maintaining genome stability in the DNA repair cascade. Klaue et al. show that RecQ2 and RecQ3 from Arabidopsis thaliana process DNA by, respectively, unwinding and rewinding forked DNA substrates, using a frequent strand switching mechanism.
Collapse
Affiliation(s)
- Daniel Klaue
- Biotechnology Center, Technische Universität Dresden, Dresden 01062, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Schröpfer S, Kobbe D, Hartung F, Knoll A, Puchta H. Defining the roles of the N-terminal region and the helicase activity of RECQ4A in DNA repair and homologous recombination in Arabidopsis. Nucleic Acids Res 2013; 42:1684-97. [PMID: 24174542 PMCID: PMC3919593 DOI: 10.1093/nar/gkt1004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RecQ helicases are critical for the maintenance of genomic stability. The Arabidopsis RecQ helicase RECQ4A is the functional counterpart of human BLM, which is mutated in the genetic disorder Bloom’s syndrome. RECQ4A performs critical roles in regulation of homologous recombination (HR) and DNA repair. Loss of RECQ4A leads to elevated HR frequencies and hypersensitivity to genotoxic agents. Through complementation studies, we were now able to demonstrate that the N-terminal region and the helicase activity of RECQ4A are both essential for the cellular response to replicative stress induced by methyl methanesulfonate and cisplatin. In contrast, loss of helicase activity or deletion of the N-terminus only partially complemented the mutant hyper-recombination phenotype. Furthermore, the helicase-deficient protein lacking its N-terminus did not complement the hyper-recombination phenotype at all. Therefore, RECQ4A seems to possess at least two different and independent sub-functions involved in the suppression of HR. By in vitro analysis, we showed that the helicase core was able to regress an artificial replication fork. Swapping of the terminal regions of RECQ4A with the closely related but functionally distinct helicase RECQ4B indicated that in contrast to the C-terminus, the N-terminus of RECQ4A was required for its specific functions in DNA repair and recombination.
Collapse
Affiliation(s)
- Susan Schröpfer
- Botanical Institute II, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe 76187, Germany and Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI), Erwin-Baur-Strasse 27, Quedlinburg 06484, Germany
| | | | | | | | | |
Collapse
|
12
|
Sequence and expression analyses of KIX domain proteins suggest their importance in seed development and determination of seed size in rice, and genome stability in Arabidopsis. Mol Genet Genomics 2013; 288:329-46. [PMID: 23756993 DOI: 10.1007/s00438-013-0753-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 05/17/2013] [Indexed: 12/26/2022]
Abstract
The KIX domain, which mediates protein-protein interactions, was first discovered as a motif in the large multidomain transcriptional activator histone acetyltransferase p300/CBP. Later, the domain was also found in Mediator subunit MED15, where it interacts with many transcription factors. In both proteins, the KIX domain is a target of activation domains of diverse transcription activators. It was found to be an essential component of several specific gene-activation pathways in fungi and metazoans. Not much is known about KIX domain proteins in plants. This study aims to characterize all the KIX domain proteins encoded by the genomes of Arabidopsis and rice. All identified KIX domain proteins are presented, together with their chromosomal locations, phylogenetic analysis, expression and SNP analyses. KIX domains were found not only in p300/CBP- and MED15-like plant proteins, but also in F-box proteins in rice and DNA helicase in Arabidopsis, suggesting roles of KIX domains in ubiquitin-mediated proteasomal degradation and genome stability. Expression analysis revealed overlapping expression of OsKIX_3, OsKIX_5 and OsKIX_7 in different stages of rice seeds development. Moreover, an association analysis of 136 in silico mined SNP loci in 23 different rice genotypes with grain-length information identified three non-synonymous SNP loci in these three rice genes showing strong association with long- and short-grain differentiation. Interestingly, these SNPs were located within KIX domain encoding sequences. Overall, this study lays a foundation for functional analysis of KIX domain proteins in plants.
Collapse
|
13
|
Gyimesi M, Harami GM, Sarlós K, Hazai E, Bikádi Z, Kovács M. Complex activities of the human Bloom's syndrome helicase are encoded in a core region comprising the RecA and Zn-binding domains. Nucleic Acids Res 2012; 40:3952-63. [PMID: 22253018 PMCID: PMC3351180 DOI: 10.1093/nar/gks008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bloom's syndrome DNA helicase (BLM), a member of the RecQ family, is a key player in homologous recombination (HR)-based error-free DNA repair processes. During HR, BLM exerts various biochemical activities including single-stranded (ss) DNA translocation, separation and annealing of complementary DNA strands, disruption of complex DNA structures (e.g. displacement loops) and contributes to quality control of HR via clearance of Rad51 nucleoprotein filaments. We performed a quantitative mechanistic analysis of truncated BLM constructs that are shorter than the previously identified minimal functional module. Surprisingly, we found that a BLM construct comprising only the two conserved RecA domains and the Zn2+-binding domain (residues 642–1077) can efficiently perform all mentioned HR-related activities. The results demonstrate that the Zn2+-binding domain is necessary for functional interaction with DNA. We show that the extensions of this core, including the winged-helix domain and the strand separation hairpin identified therein in other RecQ-family helicases, are not required for mechanochemical activity per se and may instead play modulatory roles and mediate protein–protein interactions.
Collapse
Affiliation(s)
- Máté Gyimesi
- Department of Biochemistry, ELTE-MTA Momentum Motor Enzymology Research Group, Eötvös University, Pázmány P. s. 1/c, H-1117 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
14
|
Kidd BN, Cahill DM, Manners JM, Schenk PM, Kazan K. Diverse roles of the Mediator complex in plants. Semin Cell Dev Biol 2011; 22:741-8. [DOI: 10.1016/j.semcdb.2011.07.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/17/2011] [Indexed: 02/06/2023]
|
15
|
Knoll A, Puchta H. The role of DNA helicases and their interaction partners in genome stability and meiotic recombination in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1565-79. [PMID: 21081662 DOI: 10.1093/jxb/erq357] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
DNA helicases are enzymes that are able to unwind DNA by the use of the energy-equivalent ATP. They play essential roles in DNA replication, DNA repair, and DNA recombination in all organisms. As homologous recombination occurs in somatic and meiotic cells, the same proteins may participate in both processes, albeit not necessarily with identical functions. DNA helicases involved in genome stability and meiotic recombination are the focus of this review. The role of these enzymes and their characterized interaction partners in plants will be summarized. Although most factors are conserved in eukaryotes, plant-specific features are becoming apparent. In the RecQ helicase family, Arabidopsis thaliana RECQ4A has been shown before to be the functional homologue of the well-researched baker's yeast Sgs1 and human BLM proteins. It was surprising to find that its interaction partners AtRMI1 and AtTOP3α are absolutely essential for meiotic recombination in plants, where they are central factors of a formerly underappreciated dissolution step of recombination intermediates. In the expanding group of anti-recombinases, future analysis of plant helicases is especially promising. While no FBH1 homologue is present, the Arabidopsis genome contains homologues of both SRS2 and RTEL1. Yeast and mammals, on the other hand. only possess homologues of either one or the other of these helicases. Plants also contain several other classes of helicases that are known from other organisms to be involved in the preservation of genome stability: FANCM is conserved with parts of the human Fanconi anaemia proteins, as are homologues of the Swi2/Snf2 family and of PIF1.
Collapse
Affiliation(s)
- Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | |
Collapse
|
16
|
Mannuss A, Dukowic-Schulze S, Suer S, Hartung F, Pacher M, Puchta H. RAD5A, RECQ4A, and MUS81 have specific functions in homologous recombination and define different pathways of DNA repair in Arabidopsis thaliana. THE PLANT CELL 2010; 22:3318-30. [PMID: 20971895 PMCID: PMC2990144 DOI: 10.1105/tpc.110.078568] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/09/2010] [Accepted: 10/06/2010] [Indexed: 05/17/2023]
Abstract
Complex DNA structures, such as double Holliday junctions and stalled replication forks, arise during DNA replication and DNA repair. Factors processing these intermediates include the endonuclease MUS81, helicases of the RecQ family, and the yeast SNF2 ATPase RAD5 and its Arabidopsis thaliana homolog RAD5A. By testing sensitivity of mutant plants to DNA-damaging agents, we defined the roles of these factors in Arabidopsis. rad5A recq4A and rad5A mus81 double mutants are more sensitive to cross-linking and methylating agents, showing that RAD5A is required for damage-induced DNA repair, independent of MUS81 and RECQ4A. The lethality of the recq4A mus81 double mutant indicates that MUS81 and RECQ4A also define parallel DNA repair pathways. The recq4A/mus81 lethality is suppressed by blocking homologous recombination (HR) through disruption of RAD51C, showing that RECQ4A and MUS81 are required for processing recombination-induced aberrant intermediates during replication. Thus, plants possess at least three different pathways to process DNA repair intermediates. We also examined HR-mediated double-strand break (DSB) repair using recombination substrates with inducible site-specific DSBs: MUS81 and RECQ4A are required for efficient synthesis-dependent strand annealing (SDSA) but only to a small extent for single-strand annealing (SSA). Interestingly, RAD5A plays a significant role in SDSA but not in SSA.
Collapse
|
17
|
Umate P, Tuteja R, Tuteja N. Genome-wide analysis of helicase gene family from rice and Arabidopsis: a comparison with yeast and human. PLANT MOLECULAR BIOLOGY 2010; 73:449-65. [PMID: 20383562 DOI: 10.1007/s11103-010-9632-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 03/18/2010] [Indexed: 05/04/2023]
Abstract
Helicases are motor proteins which can catalyze the unwinding of stable RNA or DNA duplex utilizing mainly ATP as source of energy. In this study we have identified complete sets of helicases from rice and Arabidopsis. The helicase gene family in rice and Arabidopsis contains 115 and 113 genes respectively. These helicases were validated based on their annotations and supported with organization of conserved helicase signature motifs. We have also identified homologs of 64 rice RNA and DNA helicases in Arabidopsis, yeast and human. We explored Arabidopsis oligonucleotide array data to gain functional insights into the transcriptome of helicase family members under ten different stress conditions. Our results revealed that expression of helicase genes is profoundly regulated under various stress conditions. The helicases identified in this study lay a foundation for the in depth characterization of each helicase type.
Collapse
Affiliation(s)
- Pavan Umate
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|