1
|
Casal JJ, Murcia G, Bianchimano L. Plant Thermosensors. Annu Rev Genet 2024; 58:135-158. [PMID: 38986032 DOI: 10.1146/annurev-genet-111523-102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Plants are exposed to temperature conditions that fluctuate over different time scales, including those inherent to global warming. In the face of these variations, plants sense temperature to adjust their functions and minimize the negative consequences. Transcriptome responses underlie changes in growth, development, and biochemistry (thermomorphogenesis and acclimation to extreme temperatures). We are only beginning to understand temperature sensation by plants. Multiple thermosensors convey complementary temperature information to a given signaling network to control gene expression. Temperature-induced changes in protein or transcript structure and/or in the dynamics of biomolecular condensates are the core sensing mechanisms of known thermosensors, but temperature impinges on their activities via additional indirect pathways. The diversity of plant responses to temperature anticipates that many new thermosensors and eventually novel sensing mechanisms will be uncovered soon.
Collapse
Affiliation(s)
- Jorge J Casal
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina; ,
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina;
| | - Germán Murcia
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina; ,
| | | |
Collapse
|
2
|
Hajdu A, Nyári DV, Ádám É, Kim YJ, Somers DE, Silhavy D, Nagy F, Kozma-Bognár L. Forward genetic approach identifies a phylogenetically conserved serine residue critical for the catalytic activity of UBIQUITIN-SPECIFIC PROTEASE 12 in Arabidopsis. Sci Rep 2024; 14:25273. [PMID: 39455703 PMCID: PMC11511944 DOI: 10.1038/s41598-024-77232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Circadian clocks rely on transcriptional/translational feedback loops involving clock genes and their corresponding proteins. While the primary oscillations originate from gene expression, the precise control of clock protein stability plays a pivotal role in establishing the 24-hour circadian rhythms. Most clock proteins are degraded through the ubiquitin/26S proteasome pathway, yet the enzymes responsible for ubiquitination and deubiquitination remain poorly characterised. We identified a missense allele (ubp12-3, S327F) of the UBP12 gene/protein in Arabidopsis. Despite ubp12-3 exhibited a short period phenotype similar to that of a loss-of-function allele, molecular analysis indicated elevated protease activity in ubp12-3. We demonstrated that early flowering of ubp12 mutants is a result of the shortened circadian period rather than a direct alteration of UBP12 function. Analysis of protease activity of non-phosphorylatable (S327A, S327F) and phosphomimetic (S327D) derivatives in bacteria suggested that phosphorylation of serine 327 inhibits UBP12 enzymatic activity, which could explain the over-functioning of S327F in vivo. We showed that phosphomimetic mutations of the conserved serine in the Neurospora and human orthologues reduced ubiquitin cleavage activity suggesting that not only the primary structures of UBP12-like enzymes are phylogenetically conserved across a wide range of species, but also the molecular mechanisms governing their enzymatic activity.
Collapse
Affiliation(s)
- Anita Hajdu
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, Szeged, H- 6726, Hungary
- Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, H-6726, Hungary
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, Szeged, H-6720, Hungary
| | - Dóra Vivien Nyári
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, Szeged, H- 6726, Hungary
- Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, H-6726, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, H-6726, Hungary
| | - Éva Ádám
- Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, H-6726, Hungary
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, Szeged, H-6720, Hungary
| | - Yeon Jeong Kim
- Department of Molecular Genetics, Ohio State University, Columbus, OH, USA
| | - David E Somers
- Department of Molecular Genetics, Ohio State University, Columbus, OH, USA
| | - Dániel Silhavy
- Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, H-6726, Hungary
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, H-6726, Hungary
| | - László Kozma-Bognár
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, Szeged, H- 6726, Hungary.
- Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, H-6726, Hungary.
| |
Collapse
|
3
|
Hajdu A, Nyári D, Terecskei K, Gyula P, Ádám É, Dobos O, Mérai Z, Kozma-Bognár L. LIP1 Regulates the Plant Circadian Oscillator by Modulating the Function of the Clock Component GIGANTEA. Cells 2024; 13:1503. [PMID: 39273073 PMCID: PMC11394198 DOI: 10.3390/cells13171503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Circadian clocks are biochemical timers regulating many physiological and molecular processes according to the day/night cycles. The function of the oscillator relies on negative transcriptional/translational feedback loops operated by the so-called clock genes and the encoded clock proteins. Previously, we identified the small GTPase LIGHT INSENSITIVE PERIOD 1 (LIP1) as a circadian-clock-associated protein that regulates light input to the clock in the model plant Arabidopsis thaliana. We showed that LIP1 is also required for suppressing red and blue light-mediated photomorphogenesis, pavement cell shape determination and tolerance to salt stress. Here, we demonstrate that LIP1 is present in a complex of clock proteins GIGANTEA (GI), ZEITLUPE (ZTL) and TIMING OF CAB 1 (TOC1). LIP1 participates in this complex via GUANINE EX-CHANGE FACTOR 7. Analysis of genetic interactions proved that LIP1 affects the oscillator via modulating the function of GI. We show that LIP1 and GI independently and additively regulate photomorphogenesis and salt stress responses, whereas controlling cell shape and photoperiodic flowering are not shared functions of LIP1 and GI. Collectively, our results suggest that LIP1 affects a specific function of GI, possibly by altering binding of GI to downstream signalling components.
Collapse
Affiliation(s)
- Anita Hajdu
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (A.H.); (D.N.)
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (K.T.); (É.Á.); (O.D.)
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Dóra Nyári
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (A.H.); (D.N.)
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (K.T.); (É.Á.); (O.D.)
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Kata Terecskei
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (K.T.); (É.Á.); (O.D.)
| | - Péter Gyula
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary;
| | - Éva Ádám
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (K.T.); (É.Á.); (O.D.)
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Orsolya Dobos
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (K.T.); (É.Á.); (O.D.)
| | - Zsuzsanna Mérai
- Gregor Mendel Institute of Molecular Plant Biology GmbH, 1030 Vienna, Austria;
| | - László Kozma-Bognár
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (A.H.); (D.N.)
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (K.T.); (É.Á.); (O.D.)
| |
Collapse
|
4
|
Viczián A, Nagy F. Phytochrome B phosphorylation expanded: site-specific kinases are identified. THE NEW PHYTOLOGIST 2024; 241:65-72. [PMID: 37814506 DOI: 10.1111/nph.19314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
The phytochrome B (phyB) photoreceptor is a key participant in red and far-red light sensing, playing a dominant role in many developmental and growth responses throughout the whole life of plants. Accordingly, phyB governs diverse signaling pathways, and although our knowledge about these pathways is constantly expanding, our view about their fine-tuning is still rudimentary. Phosphorylation of phyB is one of the relevant regulatory mechanisms, and - despite the expansion of the available methodology - it is still not easy to examine. Phosphorylated phytochromes have been detected using various techniques for decades, but the first phosphorylated phyB residues were only identified in 2013. Since then, concentrated attention has been turned toward the functional role of post-translational modifications in phyB signaling. Very recently in 2023, the first kinases that phosphorylate phyB were identified. These discoveries opened up new research avenues, especially by connecting diverse environmental impacts to light signaling and helping to explain some long-term unsolved problems such as the co-action of Ca2+ and phyB signaling. This review summarizes our recent views about the roles of the identified phosphorylated phyB residues, what we know about the enzymes that modulate the phospho-state of phyB, and how these recent discoveries impact future investigations.
Collapse
Affiliation(s)
- András Viczián
- Laboratory of Photo- and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, H-6726, Hungary
| | - Ferenc Nagy
- Laboratory of Photo- and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, H-6726, Hungary
| |
Collapse
|
5
|
Petersen J, Rredhi A, Szyttenholm J, Mittag M. Evolution of circadian clocks along the green lineage. PLANT PHYSIOLOGY 2022; 190:924-937. [PMID: 35325228 PMCID: PMC9516769 DOI: 10.1093/plphys/kiac141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 05/10/2023]
Abstract
Circadian clocks govern temporal programs in the green lineage (Chloroplastida) as they do in other photosynthetic pro- and eukaryotes, bacteria, fungi, animals, and humans. Their physiological properties, including entrainment, phase responses, and temperature compensation, are well conserved. The involvement of transcriptional/translational feedback loops in the oscillatory machinery and reversible phosphorylation events are also maintained. Circadian clocks control a large variety of output rhythms in green algae and terrestrial plants, adjusting their metabolism and behavior to the day-night cycle. The angiosperm Arabidopsis (Arabidopsis thaliana) represents a well-studied circadian clock model. Several molecular components of its oscillatory machinery are conserved in other Chloroplastida, but their functions may differ. Conserved clock components include at least one member of the CIRCADIAN CLOCK ASSOCIATED1/REVEILLE and one of the PSEUDO RESPONSE REGULATOR family. The Arabidopsis evening complex members EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO are found in the moss Physcomitrium patens and in the liverwort Marchantia polymorpha. In the flagellate chlorophyte alga Chlamydomonas reinhardtii, only homologs of ELF4 and LUX (named RHYTHM OF CHLOROPLAST ROC75) are present. Temporal ROC75 expression in C. reinhardtii is opposite to that of the angiosperm LUX, suggesting different clock mechanisms. In the picoalga Ostreococcus tauri, both ELF genes are missing, suggesting that it has a progenitor circadian "green" clock. Clock-relevant photoreceptors and thermosensors vary within the green lineage, except for the CRYPTOCHROMEs, whose variety and functions may differ. More genetically tractable models of Chloroplastida are needed to draw final conclusions about the gradual evolution of circadian clocks within the green lineage.
Collapse
Affiliation(s)
- Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Julie Szyttenholm
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
6
|
Nimmo HG, Laird J. Arabidopsis thaliana PRR7 Provides Circadian Input to the CCA1 Promoter in Shoots but not Roots. FRONTIERS IN PLANT SCIENCE 2021; 12:750367. [PMID: 34733306 PMCID: PMC8559795 DOI: 10.3389/fpls.2021.750367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/23/2021] [Indexed: 05/24/2023]
Abstract
The core of the plant circadian clock involves multiple interlocking gene expression loops and post-translational controls along with inputs from light and metabolism. The complexity of the interactions is such that few specific functions can be ascribed to single components. In previous work, we reported differences in the operation of the clocks in Arabidopsis shoots and roots, including the effects of mutations of key clock components. Here, we have used luciferase imaging to study prr7 mutants expressing CCA1::LUC and GI::LUC markers. In mature shoots expressing CCA1::LUC, loss of PRR7 radically altered behaviour in light:dark cycles and caused loss of rhythmicity in constant light but had little effect on roots. In contrast, in mature plants expressing GI::LUC, loss of PRR7 had little effect in light:dark cycles but in constant light increased the circadian period in shoots and reduced it in roots. We conclude that most or all of the circadian input to the CCA1 promoter in shoots is mediated by PRR7 and that loss of PRR7 has organ-specific effects. The results emphasise the differences in operation of the shoot and root clocks, and the importance of studying clock mutants in both light:dark cycles and constant light.
Collapse
|
7
|
Hu W, Figueroa‐Balderas R, Chi‐Ham C, Lagarias JC. Regulation of monocot and dicot plant development with constitutively active alleles of phytochrome B. PLANT DIRECT 2020; 4:e00210. [PMID: 32346668 PMCID: PMC7184922 DOI: 10.1002/pld3.210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 05/31/2023]
Abstract
The constitutively active missense allele of Arabidopsis phytochrome B, AtPHYBY276H or AtYHB, encodes a polypeptide that adopts a light-insensitive, physiologically active conformation capable of sustaining photomorphogenesis in darkness. Here, we show that the orthologous OsYHB allele of rice phytochrome B (OsPHYBY283H ) also encodes a dominant "constitutively active" photoreceptor through comparative phenotypic analyses of AtYHB and OsYHB transgenic lines of four eudicot species, Arabidopsis thaliana, Nicotiana tabacum (tobacco), Nicotiana sylvestris and Solanum lycopersicum cv. MicroTom (tomato), and of two monocot species, Oryza sativa ssp. japonica and Brachypodium distachyon. Reciprocal transformation experiments show that the gain-of-function constitutive photomorphogenic (cop) phenotypes by YHB expression are stronger in host plants within the same class than across classes. Our studies also reveal additional YHB-dependent traits in adult plants, which include extreme shade tolerance, both early and late flowering behaviors, delayed leaf senescence, reduced tillering, and even viviparous seed germination. However, the strength of these gain-of-function phenotypes depends on the specific combination of YHB allele and species/cultivar transformed. Flowering and tillering of OsYHB- and OsPHYB-expressing lines of rice Nipponbare and Kitaake cultivars were compared, also revealing differences in YHB/PHYB allele versus genotype interaction on the phenotypic behavior of the two rice cultivars. In view of recent evidence that the regulatory activity of AtYHB is not only light insensitive but also temperature insensitive, selective YHB expression is expected to yield improved agronomic performance of both dicot and monocot crop plant species not possible with wild-type PHYB alleles.
Collapse
Affiliation(s)
- Wei Hu
- Department of Molecular and Cellular BiologyUniversity of CaliforniaDavisCAUSA
| | - Rosa Figueroa‐Balderas
- Public Intellectual Property Resource for Agriculture (PIPRA)University of CaliforniaDavisCAUSA
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCAUSA
| | - Cecilia Chi‐Ham
- Public Intellectual Property Resource for Agriculture (PIPRA)University of CaliforniaDavisCAUSA
| | - J. Clark Lagarias
- Department of Molecular and Cellular BiologyUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
8
|
Sanchez SE, Rugnone ML, Kay SA. Light Perception: A Matter of Time. MOLECULAR PLANT 2020; 13:363-385. [PMID: 32068156 PMCID: PMC7056494 DOI: 10.1016/j.molp.2020.02.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 05/02/2023]
Abstract
Optimizing the perception of external cues and regulating physiology accordingly help plants to cope with the constantly changing environmental conditions to which they are exposed. An array of photoreceptors and intricate signaling pathways allow plants to convey the surrounding light information and synchronize an endogenous timekeeping system known as the circadian clock. This biological clock integrates multiple cues to modulate a myriad of downstream responses, timing them to occur at the best moment of the day and the year. Notably, the mechanism underlying entrainment of the light-mediated clock is not clear. This review addresses known interactions between the light-signaling and circadian-clock networks, focusing on the role of light in clock entrainment and known molecular players in this process.
Collapse
Affiliation(s)
- Sabrina E Sanchez
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matias L Rugnone
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Ronald J, Davis SJ. Focusing on the nuclear and subnuclear dynamics of light and circadian signalling. PLANT, CELL & ENVIRONMENT 2019; 42:2871-2884. [PMID: 31369151 DOI: 10.1111/pce.13634] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 05/22/2023]
Abstract
Circadian clocks provide organisms the ability to synchronize their internal physiological responses with the external environment. This process, termed entrainment, occurs through the perception of internal and external stimuli. As with other organisms, in plants, the perception of light is a critical for the entrainment and sustainment of circadian rhythms. Red, blue, far-red, and UV-B light are perceived by the oscillator through the activity of photoreceptors. Four classes of photoreceptors signal to the oscillator: phytochromes, cryptochromes, UVR8, and LOV-KELCH domain proteins. In most cases, these photoreceptors localize to the nucleus in response to light and can associate to subnuclear structures to initiate downstream signalling. In this review, we will highlight the recent advances made in understanding the mechanisms facilitating the nuclear and subnuclear localization of photoreceptors and the role these subnuclear bodies have in photoreceptor signalling, including to the oscillator. We will also highlight recent progress that has been made in understanding the regulation of the nuclear and subnuclear localization of components of the plant circadian clock.
Collapse
Affiliation(s)
- James Ronald
- Department of Biology, University of York, YO10 5DD, York, UK
| | - Seth J Davis
- Department of Biology, University of York, YO10 5DD, York, UK
| |
Collapse
|
10
|
Greenwood M, Domijan M, Gould PD, Hall AJW, Locke JCW. Coordinated circadian timing through the integration of local inputs in Arabidopsis thaliana. PLoS Biol 2019; 17:e3000407. [PMID: 31415556 PMCID: PMC6695092 DOI: 10.1371/journal.pbio.3000407] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Individual plant cells have a genetic circuit, the circadian clock, that times key processes to the day-night cycle. These clocks are aligned to the day-night cycle by multiple environmental signals that vary across the plant. How does the plant integrate clock rhythms, both within and between organs, to ensure coordinated timing? To address this question, we examined the clock at the sub-tissue level across Arabidopsis thaliana seedlings under multiple environmental conditions and genetic backgrounds. Our results show that the clock runs at different speeds (periods) in each organ, which causes the clock to peak at different times across the plant in both constant environmental conditions and light-dark (LD) cycles. Closer examination reveals that spatial waves of clock gene expression propagate both within and between organs. Using a combination of modeling and experiment, we reveal that these spatial waves are the result of the period differences between organs and local coupling, rather than long-distance signaling. With further experiments we show that the endogenous period differences, and thus the spatial waves, can be generated by the organ specificity of inputs into the clock. We demonstrate this by modulating periods using light and metabolic signals, as well as with genetic perturbations. Our results reveal that plant clocks can be set locally by organ-specific inputs but coordinated globally via spatial waves of clock gene expression.
Collapse
Affiliation(s)
- Mark Greenwood
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mirela Domijan
- Department of Mathematical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Peter D. Gould
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | | | - James C. W. Locke
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Microsoft Research, Cambridge, United Kingdom
| |
Collapse
|
11
|
Abstract
Posttranslational modifications (PTMs) happen after or during protein translation. Small Ubiquitin-like Modifier (SUMO) proteins are covalently attached to certain lysine residues of the target proteins to modify their activity, stability, or localization. This process is called SUMOylation, which is a reversible PTM: SUMO protease enzymes can cleave SUMOs off the target protein backbone. Although many ubiquitinated proteins are targeted for degradation, SUMOylation does not necessary lead to the degradation of the modified protein but lead to the regulation of various physiological responses. SUMOylation of the examined protein cannot simply be monitored by immunoblotting techniques performed on total protein extracts, due to the SUMO-specific signals derived from other modified molecules. Furthermore, the fact that only a limited fraction of the target protein pool is SUMOylated makes the detection of SUMOylated proteins challenging. This protocol shows how SUMOylated phytochrome B (phyB) molecules can be detected using homologous and heterologous experimental systems in planta.
Collapse
Affiliation(s)
- Beatriz Orosa
- School of Biological and Biomedical Sciences, University of Durham, Durham, County Durham, UK
| | - András Viczián
- Biological Research Centre, Plant Biology Institute, Szeged, Hungary.
| |
Collapse
|
12
|
Hajdu A, Dobos O, Domijan M, Bálint B, Nagy I, Nagy F, Kozma-Bognár L. ELONGATED HYPOCOTYL 5 mediates blue light signalling to the Arabidopsis circadian clock. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1242-1254. [PMID: 30256479 DOI: 10.1111/tpj.14106] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 05/21/2023]
Abstract
Circadian clocks are gene networks producing 24-h oscillations at the level of clock gene expression that are synchronized to environmental cycles via light signals. The ELONGATED HYPOCOTYL 5 (HY5) transcription factor is a signalling hub acting downstream of several photoreceptors and is a key mediator of photomorphogenesis. Here we describe a mechanism by which light quality could modulate the pace of the circadian clock through governing abundance of HY5. We show that hy5 mutants display remarkably shorter period rhythms in blue but not in red light or darkness, and blue light is more efficient than red to induce accumulation of HY5 at transcriptional and post-transcriptional levels. We demonstrate that the pattern and level of HY5 accumulation modulates its binding to specific promoter elements of the majority of clock genes, but only a few of these show altered transcription in the hy5 mutant. Mathematical modelling suggests that the direct effect of HY5 on the apparently non-responsive clock genes could be masked by feedback from the clock gene network. We conclude that the information on the ratio of blue and red components of the white light spectrum is decoded and relayed to the circadian oscillator, at least partially, by HY5.
Collapse
Affiliation(s)
- Anita Hajdu
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
| | - Orsolya Dobos
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, H-6726, Hungary
| | - Mirela Domijan
- Department of Mathematical Sciences, University of Liverpool, Liverpool, L69 7ZL, UK
| | | | - István Nagy
- SeqOmics Ltd, Mórahalom, H-6782, Hungary
- Institute of Biochemistry, Biological Research Centre, Szeged, H-6726, Hungary
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - László Kozma-Bognár
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, Szeged, H-6726, Hungary
| |
Collapse
|
13
|
Mutations in EID1 and LNK2 caused light-conditional clock deceleration during tomato domestication. Proc Natl Acad Sci U S A 2018; 115:7135-7140. [PMID: 29789384 DOI: 10.1073/pnas.1801862115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Circadian period and phase of cultivated tomato (Solanum lycopersicum) were changed during domestication, likely adapting the species to its new agricultural environments. Whereas the delayed circadian phase is mainly caused by allelic variation of EID1, the genetic basis of the long circadian period has remained elusive. Here we show that a partial deletion of the clock gene LNK2 is responsible for the period lengthening in cultivated tomatoes. We use resequencing data to phylogenetically classify hundreds of tomato accessions and investigate the evolution of the eid1 and lnk2 mutations along successive domestication steps. We reveal signatures of selection across the genomic region of LNK2 and different patterns of fixation of the mutant alleles. Strikingly, LNK2 and EID1 are both involved in light input to the circadian clock, indicating that domestication specifically targeted this input pathway. In line with this, we show that the clock deceleration in the cultivated tomato is light-dependent and requires the phytochrome B1 photoreceptor. Such conditional variation in circadian rhythms may be key for latitudinal adaptation in a variety of species, including crop plants and livestock.
Collapse
|
14
|
Gould PD, Domijan M, Greenwood M, Tokuda IT, Rees H, Kozma-Bognar L, Hall AJ, Locke JC. Coordination of robust single cell rhythms in the Arabidopsis circadian clock via spatial waves of gene expression. eLife 2018; 7:31700. [PMID: 29697372 PMCID: PMC5988422 DOI: 10.7554/elife.31700] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
The Arabidopsis circadian clock orchestrates gene regulation across the day/night cycle. Although a multiple feedback loop circuit has been shown to generate the 24-hr rhythm, it remains unclear how robust the clock is in individual cells, or how clock timing is coordinated across the plant. Here we examine clock activity at the single cell level across Arabidopsis seedlings over several days under constant environmental conditions. Our data reveal robust single cell oscillations, albeit desynchronised. In particular, we observe two waves of clock activity; one going down, and one up the root. We also find evidence of cell-to-cell coupling of the clock, especially in the root tip. A simple model shows that cell-to-cell coupling and our measured period differences between cells can generate the observed waves. Our results reveal the spatial structure of the plant clock and suggest that unlike the centralised mammalian clock, the Arabidopsis clock has multiple coordination points.
Collapse
Affiliation(s)
- Peter D Gould
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Mirela Domijan
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom.,Department of Mathematical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Mark Greenwood
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Isao T Tokuda
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Japan
| | - Hannah Rees
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Laszlo Kozma-Bognar
- Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Genetics, University of Szeged, Szeged, Hungary
| | - Anthony Jw Hall
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - James Cw Locke
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.,Microsoft Research, Cambridge, United Kingdom
| |
Collapse
|
15
|
Song C, Mroginski MA, Lang C, Kopycki J, Gärtner W, Matysik J, Hughes J. 3D Structures of Plant Phytochrome A as Pr and Pfr From Solid-State NMR: Implications for Molecular Function. FRONTIERS IN PLANT SCIENCE 2018; 9:498. [PMID: 29740459 PMCID: PMC5928327 DOI: 10.3389/fpls.2018.00498] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/03/2018] [Indexed: 05/25/2023]
Abstract
We present structural information for oat phyA3 in the far-red-light-absorbing (Pfr) signaling state, to our knowledge the first three-dimensional (3D) information for a plant phytochrome as Pfr. Solid-state magic-angle spinning (MAS) NMR was used to detect interatomic contacts in the complete photosensory module [residues 1-595, including the NTE (N-terminal extension), PAS (Per/Arnt/Sim), GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) and PHY (phytochrome-specific) domains but with the C-terminal PAS repeat and transmitter-like module deleted] auto-assembled in vitro with 13C- and 15N-labeled phycocyanobilin (PCB) chromophore. Thereafter, quantum mechanics/molecular mechanics (QM/MM) enabled us to refine 3D structural models constrained by the NMR data. We provide definitive atomic assignments for all carbon and nitrogen atoms of the chromophore, showing the Pfr chromophore geometry to be periplanar ZZEssa with the D -ring in a β-facial disposition incompatible with many earlier notions regarding photoconversion yet supporting circular dichroism (CD) data. The Y268 side chain is shifted radically relative to published Pfr crystal structures in order to accommodate the β-facial ring D . Our findings support a photoconversion sequence beginning with Pr photoactivation via an anticlockwise D -ring Za→Ea photoflip followed by significant shifts at the coupling of ring A to the protein, a B -ring propionate partner swap from R317 to R287, changes in the C -ring propionate hydrogen-bonding network, breakage of the D272-R552 salt bridge accompanied by sheet-to-helix refolding of the tongue region stabilized by Y326-D272-S554 hydrogen bonding, and binding of the NTE to the hydrophobic side of ring A . We discuss phyA photoconversion, including the possible roles of mesoscopic phase transitions and protonation dynamics in the chromophore pocket. We also discuss possible associations between structural changes and translocation and signaling processes within the cell.
Collapse
Affiliation(s)
- Chen Song
- Institut für Analytische Chemie, Universität Leipzig, Leipzig, Germany
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden, Leiden, Netherlands
| | | | - Christina Lang
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Giessen, Germany
| | - Jakub Kopycki
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Giessen, Germany
| | - Wolfgang Gärtner
- Institut für Analytische Chemie, Universität Leipzig, Leipzig, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Leipzig, Germany
| | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Giessen, Germany
| |
Collapse
|
16
|
de Montaigu A, Coupland G. The timing of GIGANTEA expression during day/night cycles varies with the geographical origin of Arabidopsis accessions. PLANT SIGNALING & BEHAVIOR 2017. [PMID: 28644109 DOI: 10.1080/15592324.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Latitudinal clines in circadian rhythms have consistently been described in various plant species, with the most recent examples appearing in soybean cultivars and in monkey flower natural populations. These latitudinal clines provide evidence that natural variation in circadian rhythms is adaptive, but it is still unclear what adaptive benefits this variation confers, particularly because circadian rhythms are not usually measured in day/night conditions that reflect those experienced by organisms in nature. Here, we report that daily rhythms of GIGANTEA expression respond to day length in a way that depends on the latitude of origin of Arabidopsis accessions. We additionally extend previous findings by confirming that natural variation in GI expression affects growth related traits, and alters the expression of different target genes. The results support the idea that natural variation in daily rhythms of expression have broad effects on plant development and are of potential adaptive value.
Collapse
Affiliation(s)
- Amaury de Montaigu
- a Department of Developmental Biology , Max Planck Institute for Plant Breeding Research , Cologne , Germany
| | - George Coupland
- a Department of Developmental Biology , Max Planck Institute for Plant Breeding Research , Cologne , Germany
| |
Collapse
|
17
|
de Montaigu A, Coupland G. The timing of GIGANTEA expression during day/night cycles varies with the geographical origin of Arabidopsis accessions. PLANT SIGNALING & BEHAVIOR 2017; 12:e1342026. [PMID: 28644109 PMCID: PMC5586394 DOI: 10.1080/15592324.2017.1342026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 05/13/2023]
Abstract
Latitudinal clines in circadian rhythms have consistently been described in various plant species, with the most recent examples appearing in soybean cultivars and in monkey flower natural populations. These latitudinal clines provide evidence that natural variation in circadian rhythms is adaptive, but it is still unclear what adaptive benefits this variation confers, particularly because circadian rhythms are not usually measured in day/night conditions that reflect those experienced by organisms in nature. Here, we report that daily rhythms of GIGANTEA expression respond to day length in a way that depends on the latitude of origin of Arabidopsis accessions. We additionally extend previous findings by confirming that natural variation in GI expression affects growth related traits, and alters the expression of different target genes. The results support the idea that natural variation in daily rhythms of expression have broad effects on plant development and are of potential adaptive value.
Collapse
Affiliation(s)
- Amaury de Montaigu
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
18
|
Hu W, Lagarias JC. A Tightly Regulated Genetic Selection System with Signaling-Active Alleles of Phytochrome B. PLANT PHYSIOLOGY 2017; 173:366-375. [PMID: 27881727 PMCID: PMC5210734 DOI: 10.1104/pp.16.01345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/22/2016] [Indexed: 06/01/2023]
Abstract
Selectable markers derived from plant genes circumvent the potential risk of antibiotic/herbicide-resistance gene transfer into neighboring plant species, endophytic bacteria, and mycorrhizal fungi. Toward this goal, we have engineered and validated signaling-active alleles of phytochrome B (eYHB) as plant-derived selection marker genes in the model plant Arabidopsis (Arabidopsis thaliana). By probing the relationship of construct size and induction conditions to optimal phenotypic selection, we show that eYHB-based alleles are robust substitutes for antibiotic/herbicide-dependent marker genes as well as surprisingly sensitive reporters of off-target transgene expression.
Collapse
Affiliation(s)
- Wei Hu
- Department of Molecular and Cellular Biology, University of California, Davis, California 95776
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, California 95776
| |
Collapse
|
19
|
Hajdu A, Ádám É, Sheerin DJ, Dobos O, Bernula P, Hiltbrunner A, Kozma-Bognár L, Nagy F. High-level expression and phosphorylation of phytochrome B modulates flowering time in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:794-805. [PMID: 26120968 DOI: 10.1111/tpj.12926] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
Optimal timing of flowering in higher plants is crucial for successful reproduction and is coordinated by external and internal factors, including light and the circadian clock. In Arabidopsis, light-dependent stabilization of the rhythmically expressed CONSTANS (CO) is required for the activation of FLOWERING LOCUS T (FT), resulting in the initiation of flowering. Phytochrome A and cryptochrome photoreceptors stabilize CO in the evening by attenuating the activity of the CONSTITUTIVE PHOTOMORPHOGENIC 1-SUPPRESSOR OF PHYA-105 1 (COP1-SPA1) ubiquitin ligase complex, which promotes turnover of CO. In contrast, phytochrome B (phyB) facilitates degradation of CO in the morning and delays flowering. Accordingly, flowering is accelerated in phyB mutants. Paradoxically, plants overexpressing phyB also show early flowering, which may arise from an early phase of rhythmic CO expression. Here we demonstrate that overexpression of phyB induces FT transcription at dusk and in the night without affecting the phase or level of CO transcription. This response depends on the light-activated Pfr form of phyB that inhibits the function of the COP1-SPA1 complex by direct interactions. Our data suggest that attenuation of COP1 activity results in the accumulation of CO protein and subsequent induction of FT. We show that phosphorylation of Ser-86 inhibits this function of phyB by accelerating dark reversion and thus depletion of Pfr forms in the night. Our results explain the early flowering phenotype of phyB overexpression and reveal additional features of the molecular machinery by which photoreceptors mediate photoperiodism.
Collapse
Affiliation(s)
- Anita Hajdu
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Éva Ádám
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - David J Sheerin
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Orsolya Dobos
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Péter Bernula
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Andreas Hiltbrunner
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, 79104, Germany
| | - László Kozma-Bognár
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JR, UK
| |
Collapse
|
20
|
Jones MA, Hu W, Litthauer S, Lagarias JC, Harmer SL. A Constitutively Active Allele of Phytochrome B Maintains Circadian Robustness in the Absence of Light. PLANT PHYSIOLOGY 2015; 169:814-25. [PMID: 26157113 PMCID: PMC4577416 DOI: 10.1104/pp.15.00782] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/06/2015] [Indexed: 05/18/2023]
Abstract
The sensitivity of the circadian system to light allows entrainment of the clock, permitting coordination of plant metabolic function and flowering time across seasons. Light affects the circadian system via both photoreceptors, such as phytochromes and cryptochromes, and sugar production by photosynthesis. In the present study, we introduce a constitutively active version of phytochrome B-Y276H (YHB) into both wild-type and phytochrome null backgrounds of Arabidopsis (Arabidopsis thaliana) to distinguish the effects of photoreceptor signaling on clock function from those of photosynthesis. We find that the YHB mutation is sufficient to phenocopy red light input into the circadian mechanism and to sustain robust rhythms in steady-state mRNA levels even in plants grown without light or exogenous sugars. The pace of the clock is insensitive to light intensity in YHB plants, indicating that light input to the clock is constitutively activated by this allele. Mutation of YHB so that it is retained in the cytoplasm abrogates its effects on clock function, indicating that nuclear localization of phytochrome is necessary for its clock regulatory activity. We also demonstrate a role for phytochrome C as part of the red light sensing network that modulates phytochrome B signaling input into the circadian system. Our findings indicate that phytochrome signaling in the nucleus plays a critical role in sustaining robust clock function under red light, even in the absence of photosynthesis or exogenous sources of energy.
Collapse
Affiliation(s)
- Matthew Alan Jones
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, United Kingdom (M.A.J., S.L.); andDepartment of Plant Biology, College of Biological Sciences (M.A.J., S.L.H.) and Department of Molecular and Cellular Biology (W.H., J.C.L.), University of California, Davis, California 95616
| | - Wei Hu
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, United Kingdom (M.A.J., S.L.); andDepartment of Plant Biology, College of Biological Sciences (M.A.J., S.L.H.) and Department of Molecular and Cellular Biology (W.H., J.C.L.), University of California, Davis, California 95616
| | - Suzanne Litthauer
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, United Kingdom (M.A.J., S.L.); andDepartment of Plant Biology, College of Biological Sciences (M.A.J., S.L.H.) and Department of Molecular and Cellular Biology (W.H., J.C.L.), University of California, Davis, California 95616
| | - J Clark Lagarias
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, United Kingdom (M.A.J., S.L.); andDepartment of Plant Biology, College of Biological Sciences (M.A.J., S.L.H.) and Department of Molecular and Cellular Biology (W.H., J.C.L.), University of California, Davis, California 95616
| | - Stacey Lynn Harmer
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, United Kingdom (M.A.J., S.L.); andDepartment of Plant Biology, College of Biological Sciences (M.A.J., S.L.H.) and Department of Molecular and Cellular Biology (W.H., J.C.L.), University of California, Davis, California 95616
| |
Collapse
|
21
|
SUMOylation of phytochrome-B negatively regulates light-induced signaling in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:11108-13. [PMID: 26283376 DOI: 10.1073/pnas.1415260112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The red/far red light absorbing photoreceptor phytochrome-B (phyB) cycles between the biologically inactive (Pr, λmax, 660 nm) and active (Pfr; λmax, 730 nm) forms and functions as a light quality and quantity controlled switch to regulate photomorphogenesis in Arabidopsis. At the molecular level, phyB interacts in a conformation-dependent fashion with a battery of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR transcription factors, and by modulating their activity/abundance, it alters expression patterns of genes underlying photomorphogenesis. Here we report that the small ubiquitin-like modifier (SUMO) is conjugated (SUMOylation) to the C terminus of phyB; the accumulation of SUMOylated phyB is enhanced by red light and displays a diurnal pattern in plants grown under light/dark cycles. Our data demonstrate that (i) transgenic plants expressing the mutant phyB(Lys996Arg)-YFP photoreceptor are hypersensitive to red light, (ii) light-induced SUMOylation of the mutant phyB is drastically decreased compared with phyB-YFP, and (iii) SUMOylation of phyB inhibits binding of PHYTOCHROME INTERACTING FACTOR 5 to phyB Pfr. In addition, we show that OVERLY TOLERANT TO SALT 1 (OTS1) de-SUMOylates phyB in vitro, it interacts with phyB in vivo, and the ots1/ots2 mutant is hyposensitive to red light. Taken together, we conclude that SUMOylation of phyB negatively regulates light signaling and it is mediated, at least partly, by the action of OTS SUMO proteases.
Collapse
|
22
|
Natural diversity in daily rhythms of gene expression contributes to phenotypic variation. Proc Natl Acad Sci U S A 2014; 112:905-10. [PMID: 25548158 DOI: 10.1073/pnas.1422242112] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Daily rhythms of gene expression provide a benefit to most organisms by ensuring that biological processes are activated at the optimal time of day. Although temporal patterns of expression control plant traits of agricultural importance, how natural genetic variation modifies these patterns during the day and how precisely these patterns influence phenotypes is poorly understood. The circadian clock regulates the timing of gene expression, and natural variation in circadian rhythms has been described, but circadian rhythms are measured in artificial continuous conditions that do not reflect the complexity of biologically relevant day/night cycles. By studying transcriptional rhythms of the evening-expressed gene gigantea (GI) at high temporal resolution and during day/night cycles, we show that natural variation in the timing of GI expression occurs mostly under long days in 77 Arabidopsis accessions. This variation is explained by natural alleles that alter light sensitivity of GI, specifically in the evening, and that act at least partly independent of circadian rhythms. Natural alleles induce precise changes in the temporal waveform of GI expression, and these changes have detectable effects on phytochrome interacting factor 4 expression and growth. Our findings provide a paradigm for how natural alleles act within day/night cycles to precisely modify temporal gene expression waveforms and cause phenotypic diversity. Such alleles could confer an advantage by adjusting the activity of temporally regulated processes without severely disrupting the circadian system.
Collapse
|
23
|
Phytochrome controls alternative splicing to mediate light responses in Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:18781-6. [PMID: 25512548 DOI: 10.1073/pnas.1407147112] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants monitor the ambient light conditions using several informational photoreceptors, including red/far-red light absorbing phytochrome. Phytochrome is widely believed to regulate the transcription of light-responsive genes by modulating the activity of several transcription factors. Here we provide evidence that phytochrome significantly changes alternative splicing (AS) profiles at the genomic level in Arabidopsis, to approximately the same degree as it affects steady-state transcript levels. mRNA sequencing analysis revealed that 1,505 and 1,678 genes underwent changes in their AS and steady-state transcript level profiles, respectively, within 1 h of red light exposure in a phytochrome-dependent manner. Furthermore, we show that splicing factor genes were the main early targets of AS control by phytochrome, whereas transcription factor genes were the primary direct targets of phytochrome-mediated transcriptional regulation. We experimentally validated phytochrome-induced changes in the AS of genes that are involved in RNA splicing, phytochrome signaling, the circadian clock, and photosynthesis. Moreover, we show that phytochrome-induced AS changes of SPA1-RELATED 3, the negative regulator of light signaling, physiologically contributed to promoting photomorphogenesis. Finally, photophysiological experiments demonstrated that phytochrome transduces the signal from its photosensory domain to induce light-dependent AS alterations in the nucleus. Taking these data together, we show that phytochrome directly induces AS cascades in parallel with transcriptional cascades to mediate light responses in Arabidopsis.
Collapse
|
24
|
Van Buskirk EK, Reddy AK, Nagatani A, Chen M. Photobody Localization of Phytochrome B Is Tightly Correlated with Prolonged and Light-Dependent Inhibition of Hypocotyl Elongation in the Dark. PLANT PHYSIOLOGY 2014; 165:595-607. [PMID: 24769533 PMCID: PMC4044834 DOI: 10.1104/pp.114.236661] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/25/2014] [Indexed: 05/20/2023]
Abstract
Photobody localization of Arabidopsis (Arabidopsis thaliana) phytochrome B (phyB) fused to green fluorescent protein (PBG) correlates closely with the photoinhibition of hypocotyl elongation. However, the amino-terminal half of phyB fused to green fluorescent protein (NGB) is hypersensitive to light despite its inability to localize to photobodies. Therefore, the significance of photobodies in regulating hypocotyl growth remains debatable. Accumulating evidence indicates that under diurnal conditions, photoactivated phyB persists into darkness to inhibit hypocotyl elongation. Here, we examine whether photobodies are involved in inhibiting hypocotyl growth in darkness by comparing the PBG and NGB lines after the red light-to-dark transition. Surprisingly, after the transition from 10 μmol m-2 s-1 red light to darkness, PBG inhibits hypocotyl elongation three times longer than NGB. The disassembly of photobodies in PBG hypocotyl nuclei correlates tightly with the accumulation of the growth-promoting transcription factor PHYTOCHROME-INTERACTING FACTOR3 (PIF3). Destabilizing photobodies by either decreasing the light intensity or adding monochromatic far-red light treatment before the light-to-dark transition leads to faster PIF3 accumulation and a dramatic reduction in the capacity for hypocotyl growth inhibition in PBG. In contrast, NGB is defective in PIF3 degradation, and its hypocotyl growth in the dark is nearly unresponsive to changes in light conditions. Together, our results support the model that photobodies are required for the prolonged, light-dependent inhibition of hypocotyl elongation in the dark by repressing PIF3 accumulation and by stabilizing the far-red light-absorbing form of phyB. Our study suggests that photobody localization patterns of phyB could serve as instructive cues that control light-dependent photomorphogenetic responses in the dark.
Collapse
Affiliation(s)
- Elise K Van Buskirk
- Department of Biology, Duke University, Durham, North Carolina 27708 (E.K.V.B., A.K.R., M.C.); andDepartment of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (A.N.)
| | - Amit K Reddy
- Department of Biology, Duke University, Durham, North Carolina 27708 (E.K.V.B., A.K.R., M.C.); andDepartment of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (A.N.)
| | - Akira Nagatani
- Department of Biology, Duke University, Durham, North Carolina 27708 (E.K.V.B., A.K.R., M.C.); andDepartment of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (A.N.)
| | - Meng Chen
- Department of Biology, Duke University, Durham, North Carolina 27708 (E.K.V.B., A.K.R., M.C.); andDepartment of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (A.N.)
| |
Collapse
|
25
|
Pérez-Salamó I, Papdi C, Rigó G, Zsigmond L, Vilela B, Lumbreras V, Nagy I, Horváth B, Domoki M, Darula Z, Medzihradszky K, Bögre L, Koncz C, Szabados L. The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. PLANT PHYSIOLOGY 2014; 165:319-34. [PMID: 24676858 PMCID: PMC4012591 DOI: 10.1104/pp.114.237891] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 03/25/2014] [Indexed: 05/18/2023]
Abstract
Heat shock factors (HSFs) are principal regulators of plant responses to several abiotic stresses. Here, we show that estradiol-dependent induction of HSFA4A confers enhanced tolerance to salt and oxidative agents, whereas inactivation of HSFA4A results in hypersensitivity to salt stress in Arabidopsis (Arabidopsis thaliana). Estradiol induction of HSFA4A in transgenic plants decreases, while the knockout hsfa4a mutation elevates hydrogen peroxide accumulation and lipid peroxidation. Overexpression of HSFA4A alters the transcription of a large set of genes regulated by oxidative stress. In yeast (Saccharomyces cerevisiae) two-hybrid and bimolecular fluorescence complementation assays, HSFA4A shows homomeric interaction, which is reduced by alanine replacement of three conserved cysteine residues. HSFA4A interacts with mitogen-activated protein kinases MPK3 and MPK6 in yeast and plant cells. MPK3 and MPK6 phosphorylate HSFA4A in vitro on three distinct sites, serine-309 being the major phosphorylation site. Activation of the MPK3 and MPK6 mitogen-activated protein kinase pathway led to the transcriptional activation of the HEAT SHOCK PROTEIN17.6A gene. In agreement that mutation of serine-309 to alanine strongly diminished phosphorylation of HSFA4A, it also strongly reduced the transcriptional activation of HEAT SHOCK PROTEIN17.6A. These data suggest that HSFA4A is a substrate of the MPK3/MPK6 signaling and that it regulates stress responses in Arabidopsis.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/physiology
- Arabidopsis Proteins/chemistry
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cells, Cultured
- DNA, Bacterial/genetics
- Estradiol/pharmacology
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Mutagenesis, Insertional/genetics
- Oxidation-Reduction/drug effects
- Oxidative Stress/drug effects
- Oxidative Stress/genetics
- Phosphorylation/drug effects
- Plants, Genetically Modified
- Protein Binding/drug effects
- Protein Multimerization/drug effects
- Salinity
- Salt Tolerance/drug effects
- Salt Tolerance/genetics
- Sodium Chloride/pharmacology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transformation, Genetic/drug effects
Collapse
|
26
|
Liu Y, Liu Q, Yan Q, Shi L, Fang Y. Nucleolus-tethering system (NoTS) reveals that assembly of photobodies follows a self-organization model. Mol Biol Cell 2014; 25:1366-73. [PMID: 24554768 PMCID: PMC3983000 DOI: 10.1091/mbc.e13-09-0527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/27/2014] [Accepted: 02/13/2014] [Indexed: 01/08/2023] Open
Abstract
Protein-protein interactions play essential roles in regulating many biological processes. At the cellular level, many proteins form nuclear foci known as nuclear bodies in which many components interact with each other. Photobodies are nuclear bodies containing proteins for light-signaling pathways in plants. What initiates the formation of photobodies is poorly understood. Here we develop a nucleolar marker protein nucleolin2 (Nuc2)-based method called the nucleolus-tethering system (NoTS) by artificially tethering a protein of interest to the nucleolus to analyze the initiation of photobodies. A candidate initiator is evaluated by visualizing whether a protein fused with Nuc2 forms body-like structures at the periphery of the nucleolus, and other components are recruited to the de novo-formed bodies. The interaction between two proteins can also be revealed through relocation and recruitment of interacting proteins to the nucleolus. Using the NoTS, we test the interactions among components in photobodies. In addition, we demonstrate that components of photobodies such as CONSTITUTIVELY PHOTOMORPHOGENIC 1, photoreceptors, and transcription factors tethered to the nucleolus have the capacity to form body-like structures at the periphery of the nucleolus, which contain other components of photobodies, suggesting a self-organization model for the biogenesis of photobodies.
Collapse
Affiliation(s)
- Yin Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qi Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qingqing Yan
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Leilei Shi
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuda Fang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
27
|
Ádám É, Kircher S, Liu P, Mérai Z, González-Schain N, Hörner M, Viczián A, Monte E, Sharrock RA, Schäfer E, Nagy F. Comparative functional analysis of full-length and N-terminal fragments of phytochrome C, D and E in red light-induced signaling. THE NEW PHYTOLOGIST 2013; 200:86-96. [PMID: 23772959 DOI: 10.1111/nph.12364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/12/2013] [Indexed: 06/02/2023]
Abstract
Phytochromes (phy) C, D and E are involved in the regulation of red/far-red light-induced photomorphogenesis of Arabidopsis thaliana, but only limited data are available on the mode of action and biological function of these lesser studied phytochrome species. We fused N-terminal fragments or full-length PHYC, D and E to YELLOW FLUORESCENT PROTEIN (YFP), and analyzed the function, stability and intracellular distribution of these fusion proteins in planta. The activity of the constitutively nuclear-localized homodimers of N-terminal fragments was comparable with that of full-length PHYC, D, E-YFP, and resulted in the regulation of various red light-induced photomorphogenic responses in the studied genetic backgrounds. PHYE-YFP was active in the absence of phyB and phyD, and PHYE-YFP controlled responses, as well as accumulation, of the fusion protein in the nuclei, was saturated at low fluence rates of red light and did not require functional FAR-RED ELONGATED HYPOCOTYL1 (FHY-1) and FHY-1-like proteins. Our data suggest that PHYC-YFP, PHYD-YFP and PHYE-YFP fusion proteins, as well as their truncated N-terminal derivatives, are biologically active in the modulation of red light-regulated photomorphogenesis. We propose that PHYE-YFP can function as a homodimer and that low-fluence red light-induced translocation of phyE and phyA into the nuclei is mediated by different molecular mechanisms.
Collapse
Affiliation(s)
- Éva Ádám
- Institute of Plant Biology, Biological Research Centre, Temesvári krt.62., H-6726, Szeged, Hungary
| | - Stefan Kircher
- Institute of Botany, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Peng Liu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Zsuzsanna Mérai
- Institute of Botany, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Nahuel González-Schain
- Departament de Genètica Molecular, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Univ. Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Maximilian Hörner
- BIOSS Center for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, D-79104, Freiburg, Germany
| | - András Viczián
- Institute of Plant Biology, Biological Research Centre, Temesvári krt.62., H-6726, Szeged, Hungary
| | - Elena Monte
- Departament de Genètica Molecular, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Univ. Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Robert A Sharrock
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Eberhard Schäfer
- Institute of Botany, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
- BIOSS Center for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, D-79104, Freiburg, Germany
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Temesvári krt.62., H-6726, Szeged, Hungary
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| |
Collapse
|
28
|
Liu P, Sharrock RA. Directed dimerization: an in vivo expression system for functional studies of type II phytochromes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:915-926. [PMID: 23738620 DOI: 10.1111/tpj.12255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/16/2013] [Accepted: 05/29/2013] [Indexed: 06/02/2023]
Abstract
Type II phytochromes (phy) in Arabidopsis form homodimers and heterodimers, resulting in a diverse collection of light-stable red/far-red (R/FR) sensing photoreceptors. We describe an in vivo protein engineering system and its use in characterizing the activities of these molecules. Using a phyB null mutant background, singly and doubly transgenic plants were generated that express fusion proteins containing the phyB-phyE N-terminal photosensory regions (NB-NE PSRs), a nuclear localization sequence, and small yeast protein domains that mediate either homodimerization or heterodimerization. Activity of NB/NB homodimers but not monomeric NB subunits in control of seedling and adult plant responses to R light is demonstrated. Heterodimers of the NB sequence with the chromophoreless NB(C357S) sequence, which mimic phyB Pfr/Pr photo-heterodimers, mediate R sensitivity in leaves and petioles but not hypocotyls. Homodimerization of the NC, ND and NE sequences and directed heterodimerization of these photosensory regions with the NB region reveal form-specific R-induced activities for different type II phy dimers. The experimental approach developed here of directed assembly of defined protein dimer combinations in vivo may be applicable to other systems.
Collapse
Affiliation(s)
- Peng Liu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | | |
Collapse
|
29
|
Unanticipated regulatory roles for Arabidopsis phytochromes revealed by null mutant analysis. Proc Natl Acad Sci U S A 2013; 110:1542-7. [PMID: 23302690 DOI: 10.1073/pnas.1221738110] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In view of the extensive literature on phytochrome mutants in the Ler accession of Arabidopsis, we sought to secure a phytochrome-null line in the same genetic background for comparative studies. Here we report the isolation and phenotypic characterization of phyABCDE quintuple and phyABDE quadruple mutants in the Ler background. Unlike earlier studies, these lines possess a functional allele of FT permitting measurements of photoperiod-dependent flowering behavior. Comparative studies of both classes of mutants establish that phytochromes are dispensable for completion of the Arabidopsis life cycle under red light, despite the lack of a transcriptomic response, and also indicate that phyC is nonfunctional in the absence of other phytochromes. Phytochrome-less plants can produce chlorophyll for photosynthesis under continuous red light, yet require elevated fluence rates for survival. Unexpectedly, our analyses reveal both light-dependent and -independent roles for phytochromes to regulate the Arabidopsis circadian clock. The rapid transition of these mutants from vegetative to reproductive growth, as well as their insensitivity to photoperiod, establish a dual role for phytochromes to arrest and to promote progression of plant development in response to the prevailing light environment.
Collapse
|
30
|
Terecskei K, Tóth R, Gyula P, Kevei É, Bindics J, Coupland G, Nagy F, Kozma-Bognár L. The circadian clock-associated small GTPase LIGHT INSENSITIVE PERIOD1 suppresses light-controlled endoreplication and affects tolerance to salt stress in Arabidopsis. PLANT PHYSIOLOGY 2013; 161:278-90. [PMID: 23144185 PMCID: PMC3532258 DOI: 10.1104/pp.112.203356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Circadian clocks are biochemical timers regulating many physiological and molecular processes according to the day/night cycle. The small GTPase LIGHT INSENSITIVE PERIOD1 (LIP1) is a circadian clock-associated protein that regulates light input to the clock. In the absence of LIP1, the effect of light on free-running period length is much reduced. Here, we show that in addition to suppressing red and blue light-mediated photomorphogenesis, LIP1 is also required for light-controlled inhibition of endoreplication and tolerance to salt stress in Arabidopsis (Arabidopsis thaliana). We demonstrate that in the processes of endoreplication and photomorphogenesis, LIP1 acts downstream of the red and blue light photoreceptors phytochrome B and cryptochromes. Manipulation of the subcellular distribution of LIP1 revealed that the circadian function of LIP1 requires nuclear localization of the protein. Our data collectively suggest that LIP1 influences several signaling cascades and that its role in the entrainment of the circadian clock is independent from the other pleiotropic effects. Since these functions of LIP1 are important for the early stages of development or under conditions normally experienced by germinating seedlings, we suggest that LIP1 is a regulator of seedling establishment.
Collapse
|
31
|
Oka Y, Ono Y, Toledo-Ortiz G, Kokaji K, Matsui M, Mochizuki N, Nagatani A. Arabidopsis phytochrome a is modularly structured to integrate the multiple features that are required for a highly sensitized phytochrome. THE PLANT CELL 2012; 24:2949-62. [PMID: 22843485 PMCID: PMC3426125 DOI: 10.1105/tpc.111.094201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Phytochrome is a red (R)/far-red (FR) light-sensing photoreceptor that regulates various aspects of plant development. Among the members of the phytochrome family, phytochrome A (phyA) exclusively mediates atypical phytochrome responses, such as the FR high irradiance response (FR-HIR), which is elicited under prolonged FR. A proteasome-based degradation pathway rapidly eliminates active Pfr (the FR-absorbing form of phyA) under R. To elucidate the structural basis for the phyA-specific properties, we systematically constructed 16 chimeric phytochromes in which each of four parts of the phytochrome molecule, namely, the N-terminal extension plus the Per/Arnt/Sim domain (N-PAS), the cGMP phosphodiesterase/adenyl cyclase/FhlA domain (GAF), the phytochrome domain (PHY), and the entire C-terminal half, was occupied by either the phyA or phytochrome B sequence. These phytochromes were expressed in transgenic Arabidopsis thaliana to examine their physiological activities. Consequently, the phyA N-PAS sequence was shown to be necessary and sufficient to promote nuclear accumulation under FR, whereas the phyA sequence in PHY was additionally required to exhibit FR-HIR. Furthermore, the phyA sequence in PHY alone substantially increased the light sensitivity to R. In addition, the GAF phyA sequence was important for rapid Pfr degradation. In summary, distinct structural modules, each of which confers different properties to phyA, are assembled on the phyA molecule.
Collapse
Affiliation(s)
- Yoshito Oka
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
- Plant Functional Genomics Research Group, Plant Science Center, RIKEN Yokohama Institute, Tsurumiku, Yokohama, Kanagawa 2300-0045, Japan
| | - Yuya Ono
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Gabriela Toledo-Ortiz
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Keio Kokaji
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Minami Matsui
- Plant Functional Genomics Research Group, Plant Science Center, RIKEN Yokohama Institute, Tsurumiku, Yokohama, Kanagawa 2300-0045, Japan
| | - Nobuyoshi Mochizuki
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Akira Nagatani
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
- Address correspondence to
| |
Collapse
|
32
|
Viczián A, Ádám É, Wolf I, Bindics J, Kircher S, Heijde M, Ulm R, Schäfer E, Nagy F. A short amino-terminal part of Arabidopsis phytochrome A induces constitutive photomorphogenic response. MOLECULAR PLANT 2012; 5:629-641. [PMID: 22498774 DOI: 10.1093/mp/sss035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phytochrome A (phyA) is the dominant photoreceptor of far-red light sensing in Arabidopsis thaliana. phyA accumulates at high levels in the cytoplasm of etiolated seedlings, and light-induced phyA signaling is mediated by a complex regulatory network. This includes light- and FHY1/FHL protein-dependent translocation of native phyA into the nucleus in vivo. It has also been shown that a short N-terminal fragment of phyA (PHYA406) is sufficient to phenocopy this highly regulated cellular process in vitro. To test the biological activity of this N-terminal fragment of phyA in planta, we produced transgenic phyA-201 plants expressing the PHYA406-YFP (YELLOW FLUORESCENT PROTEIN)-DD, PHYA406-YFP-DD-NLS (nuclear localization signal), and PHYA406-YFP-DD-NES (nuclear export signal) fusion proteins. Here, we report that PHYA406-YFP-DD is imported into the nucleus and this process is partially light-dependent whereas PHYA406-YFP-DD-NLS and PHYA406-YFP-DD-NES display the expected constitutive localization patterns. Our results show that these truncated phyA proteins are light-stable, they trigger a constitutive photomorphogenic-like response when localized in the nuclei, and neither of them induces proper phyA signaling. We demonstrate that in vitro and in vivo PHYA406 Pfr and Pr bind COP1, a general repressor of photomorphogenesis, and co-localize with it in nuclear bodies. Thus, we conclude that, in planta, the truncated PHYA406 proteins inactivate COP1 in the nuclei in a light-independent fashion.
Collapse
Affiliation(s)
- András Viczián
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Van Buskirk EK, Decker PV, Chen M. Photobodies in light signaling. PLANT PHYSIOLOGY 2012; 158:52-60. [PMID: 21951469 PMCID: PMC3252093 DOI: 10.1104/pp.111.186411] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/22/2011] [Indexed: 05/17/2023]
|
34
|
Sokolova V, Bindics J, Kircher S, Ádám É, Schäfer E, Nagy F, Viczián A. Missense mutation in the amino terminus of phytochrome A disrupts the nuclear import of the photoreceptor. PLANT PHYSIOLOGY 2012; 158:107-18. [PMID: 21969386 PMCID: PMC3252074 DOI: 10.1104/pp.111.186288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phytochromes are the red/far-red photoreceptors in higher plants. Among them, phytochrome A (PHYA) is responsible for the far-red high-irradiance response and for the perception of very low amounts of light, initiating the very-low-fluence response. Here, we report a detailed physiological and molecular characterization of the phyA-5 mutant of Arabidopsis (Arabidopsis thaliana), which displays hyposensitivity to continuous low-intensity far-red light and shows reduced very-low-fluence response and high-irradiance response. Red light-induced degradation of the mutant phyA-5 protein appears to be normal, yet higher residual amounts of phyA-5 are detected in seedlings grown under low-intensity far-red light. We show that (1) the phyA-5 mutant harbors a new missense mutation in the PHYA amino-terminal extension domain and that (2) the complex phenotype of the mutant is caused by reduced nuclear import of phyA-5 under low fluences of far-red light. We also demonstrate that impaired nuclear import of phyA-5 is brought about by weakened binding affinity of the mutant photoreceptor to nuclear import facilitators FHY1 (for FAR-RED ELONGATED HYPOCOTYL1) and FHL (for FHY1-LIKE). Finally, we provide evidence that the signaling and degradation kinetics of constitutively nuclear-localized phyA-5 and phyA are identical. Taken together, our data show that aberrant nucleo/cytoplasmic distribution impairs light-induced degradation of this photoreceptor and that the amino-terminal extension domain mediates the formation of the FHY1/FHL/PHYA far-red-absorbing form complex, whereby it plays a role in regulating the nuclear import of phyA.
Collapse
|
35
|
Oka Y, Kong SG, Matsushita T. A non-covalently attached chromophore can mediate phytochrome B signaling in Arabidopsis. PLANT & CELL PHYSIOLOGY 2011; 52:2088-102. [PMID: 22006939 DOI: 10.1093/pcp/pcr139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Phytochrome B (phyB) is the major informational photoreceptor in light-grown plants. The phyB polypeptide is folded into two domains, the N-terminal domain and the C-terminal domain. The N-terminal domain covalently binds to the chromophore via a particular cysteine residue, which allows the holoprotein to absorb light and undergo a photoreversible conformational change. The N-terminal domain of phyB interacts with transcription factors, such as PIF3 (PHYTOCHROME-INTERACTING FACTOR 3), to transduce the light signal to downstream components. Since substitution of the chromophore attachment site, Cys357, with alanine (C357A) abolishes the biological activity of Arabidopsis phyB, the covalent attachment with the chromophore is widely assumed to be necessary for phyB signal transduction. In this study, we show that Arabidopsis phyB is capable of transducing signals with a non-covalently retained chromophore. Substituting the Tyr276 residue of phyB with histidine (Y276H) is known to confer constitutive phyB signaling. PhyB containing both Y276H and C357A substitutions exhibited light-independent biological activity in transgenic Arabidopsis plants in a chromophore-dependent manner. Spectrophotometric analysis showed that the N-terminal domain of phyB containing just the C357A substitution could retain the chromophore non-covalently. The N-terminal domain containing both the Y276H and C357A substitutions interacted with PIF3 in a light-independent but chromophore-dependent fashion in yeast two-hybrid assays. From these results, we conclude that the constitutive phyB signaling conferred by Y276H requires the chromophore, but that the chromophore does not need to be covalently bonded to phyB.
Collapse
Affiliation(s)
- Yoshito Oka
- RIKEN Plant Science Center, Yokohama, 230-0045 Japan
| | | | | |
Collapse
|
36
|
Chen M, Chory J. Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 2011; 21:664-71. [PMID: 21852137 DOI: 10.1016/j.tcb.2011.07.002] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/01/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022]
Abstract
As they emerge from the ground, seedlings adopt a photosynthetic lifestyle, which is accompanied by dramatic changes in morphology and global alterations in gene expression that optimizes the plant body plan for light capture. Phytochromes are red and far-red photoreceptors that play a major role during photomorphogenesis, a complex developmental program that seedlings initiate when they first encounter light. The earliest phytochrome signaling events after excitation by red light include their rapid translocation from the cytoplasm to subnuclear bodies (photobodies) that contain other proteins involved in photomorphogenesis, including a number of transcription factors and E3 ligases. In the light, phytochromes and negatively acting transcriptional regulators that interact directly with phytochromes are destabilized, whereas positively acting transcriptional regulators are stabilized. Here, we discuss recent advances in our knowledge of the mechanisms linking phytochrome photoactivation in the cytoplasm and transcriptional regulation in the nucleus.
Collapse
Affiliation(s)
- Meng Chen
- Department of Biology, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
37
|
Sanchez A, Shin J, Davis SJ. Abiotic stress and the plant circadian clock. PLANT SIGNALING & BEHAVIOR 2011; 6:223-31. [PMID: 21325898 PMCID: PMC3121982 DOI: 10.4161/psb.6.2.14893] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 05/20/2023]
Abstract
In this review, we focus on the interaction between the circadian clock of higher plants to that of metabolic and physiological processes that coordinate growth and performance under a predictable, albeit changing environment. In this, the phytochrome and cryptochrome photoreceptors have shown to be important, but not essential for oscillator control under diurnal cycles of light and dark. From this foundation, we will examine how emerging findings have firmly linked the circadian clock, as a central mediator in the coordination of metabolism, to maintain homeostasis. This occurs by oscillator synchronization of global transcription, which leads to a dynamic control of a host of physiological processes. These include the determination of the levels of primary and secondary metabolites, and the anticipation of future environmental stresses, such as mid-day drought and midnight coldness. Interestingly, metabolic and stress cues themselves appear to feedback on oscillator function. In such a way, the circadian clock of plants and abiotic-stress tolerance appear to be firmly interconnected processes.
Collapse
Affiliation(s)
- Alfredo Sanchez
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | |
Collapse
|