1
|
Ahmed N, Li J, Li Y, Deng L, Deng L, Chachar M, Chachar Z, Chachar S, Hayat F, Raza A, Umrani JH, Gong L, Tu P. Symbiotic synergy: How Arbuscular Mycorrhizal Fungi enhance nutrient uptake, stress tolerance, and soil health through molecular mechanisms and hormonal regulation. IMA Fungus 2025; 16:e144989. [PMID: 40162002 PMCID: PMC11953731 DOI: 10.3897/imafungus.16.144989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
Arbuscular Mycorrhizal (AM) symbiosis is integral to sustainable agriculture and enhances plant resilience to abiotic and biotic stressors. Through their symbiotic association with plant roots, AM improves nutrient and water uptake, activates antioxidant defenses, and facilitates hormonal regulation, contributing to improved plant health and productivity. Plants release strigolactones, which trigger AM spore germination and hyphal branching, a process regulated by genes, such as D27, CCD7, CCD8, and MAX1. AM recognition by plants is mediated by receptor-like kinases (RLKs) and LysM domains, leading to the formation of arbuscules that optimize nutrient exchange. Hormonal regulation plays a pivotal role in this symbiosis; cytokinins enhance AM colonization, auxins support arbuscule formation, and brassinosteroids regulate root growth. Other hormones, such as salicylic acid, gibberellins, ethylene, jasmonic acid, and abscisic acid, also influence AM colonization and stress responses, further bolstering plant resilience. In addition to plant health, AM enhances soil health by improving microbial diversity, soil structure, nutrient cycling, and carbon sequestration. This symbiosis supports soil pH regulation and pathogen suppression, offering a sustainable alternative to chemical fertilizers and improving soil fertility. To maximize AM 's potential of AM in agriculture, future research should focus on refining inoculation strategies, enhancing compatibility with different crops, and assessing the long-term ecological and economic benefits. Optimizing AM applications is critical for improving agricultural resilience, food security, and sustainable farming practices.
Collapse
Affiliation(s)
- Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| | - Juan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| | - Lifang Deng
- Institute of Biomass Engineering, South China Agricultural University, 510642, Guangzhou, China
| | - Lansheng Deng
- Institute of Biomass Engineering, South China Agricultural University, 510642, Guangzhou, China
| | - Muzafaruddin Chachar
- College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China
| | - Zaid Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| | - Faisal Hayat
- Faculty of Crop Production, Sindh Agriculture University, 70060), Tandojam, Pakistan
| | - Ahmed Raza
- College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China
| | - Javed Hussain Umrani
- College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China
| | - Lin Gong
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| |
Collapse
|
2
|
Wang Z, Zhang S, Liang J, Chen H, Jiang Z, Hu W, Tang M. Rhizophagus irregularis regulates RiCPSI and RiCARI expression to influence plant drought tolerance. PLANT PHYSIOLOGY 2024; 197:kiae645. [PMID: 39657034 DOI: 10.1093/plphys/kiae645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/10/2024] [Indexed: 12/17/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) can transfer inorganic nitrogen (N) from the soil to host plants to cope with drought stress, with arginine synthesis and NH4+ transport being pivotal processes. However, the regulatory mechanism underlying these processes remains unclear. Here, we found that drought stress upregulated expression of genes involved in the N transfer pathway and putrescine and glutathione synthesis in the mycorrhizal structures of Rhizophagus irregularis within alfalfa (Medicago sativa) roots, i.e. carbamoyl phosphate synthase (RiCPSI), arginase (RiCARI), urease (RiURE), ornithine decarboxylase (RiODC), and glutamate-cysteine ligase (RiGCL). Furthermore, we confirmed that RiCPSI is a carbamoyl phosphate synthase. Silencing RiCARI via host-induced gene silencing inhibited arbuscule formation, suppressed putrescine and glutathione synthesis, and altered arginine metabolism within R. irregularis-plant symbiosis, leading to a substantial reduction in the drought tolerance of M. sativa. Conversely, silencing RiCPSI decreased arginine, putrescine, and glutathione synthesis in R. irregularis but did not adversely affect NH4+ transfer from fungi to the host plant and drought tolerance of M. sativa. Interestingly, overexpressing RiCPSI via our host-induced gene overexpressing system enhanced arginine, putrescine, and glutathione synthesis in R. irregularis, reduced arbuscule abundance, and improved drought tolerance of M. sativa. Our findings demonstrate that under drought stress, the nitrogen transfer from AMF to the host plant was improved. This is accompanied by increased arginine, putrescine, and glutathione synthesis within R. irregularis, driven by the upregulation of RiCPSI and RiCARI expression in mycorrhizal structures within the roots. These molecular adjustments collectively contribute to enhanced drought tolerance in R. irregularis-plant symbiosis.
Collapse
Affiliation(s)
- Zhihao Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Shiqi Zhang
- Department of Biological Sciences, East Stroudsburg University of Pennsylvania, East Stroudsburg, PA 18301, USA
| | - Jingwei Liang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Howard NOA, Williams A, Durant E, Pressel S, Daniell TJ, Field KJ. Preferential nitrogen and carbon exchange dynamics in Mucoromycotina "fine root endophyte"-plant symbiosis. Curr Biol 2024; 34:5484-5493.e3. [PMID: 39566496 DOI: 10.1016/j.cub.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024]
Abstract
Mucoromycotina "fine root endophyte" (MFRE) fungi are an understudied group of plant symbionts that regularly co-occur with arbuscular mycorrhizal fungi. The functional significance of MFRE in plant nutrition remains underexplored, particularly their role in plant nitrogen (N) assimilation from the variety of sources typically found in soils. Using four 15N-labeled N sources to track N transfer between MFRE and Plantago lanceolata, applied singly and in tandem, we investigated N source discrimination, preference, and transfer to host plants by MFRE. We traced movement of 14C from plants to MFRE to determine the impact of N source type on plant carbon (C) allocation to MFRE. We found that MFRE preferentially transferred N derived from glycine and ammonium to plant hosts over that derived from nitrate and urea, regardless of other N sources present. MFRE mycelium supplied with glycine and ammonium contained more plant-derived carbon than those supplied with other N sources. We show that the MFRE directly assimilates and metabolizes organic compounds, retaining C to meet its own metabolic requirements and transferring N to plant hosts. Our findings highlight diversity in the function of endomycorrhizal associations, with potentially profound implications for our understanding of the physiology and ecology of plant-fungal symbioses.
Collapse
Affiliation(s)
- Nathan O A Howard
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Alex Williams
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Emily Durant
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Tim J Daniell
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Katie J Field
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
4
|
Duan S, Feng G, Limpens E, Bonfante P, Xie X, Zhang L. Cross-kingdom nutrient exchange in the plant-arbuscular mycorrhizal fungus-bacterium continuum. Nat Rev Microbiol 2024; 22:773-790. [PMID: 39014094 DOI: 10.1038/s41579-024-01073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
The association between plants and arbuscular mycorrhizal fungi (AMF) affects plant performance and ecosystem functioning. Recent studies have identified AMF-associated bacteria as cooperative partners that participate in AMF-plant symbiosis: specific endobacteria live inside AMF, and hyphospheric bacteria colonize the soil that surrounds the extraradical hyphae. In this Review, we describe the concept of a plant-AMF-bacterium continuum, summarize current advances and provide perspectives on soil microbiology. First, we review the top-down carbon flow and the bottom-up mineral flow (especially phosphorus and nitrogen) in this continuum, as well as how AMF-bacteria interactions influence the biogeochemical cycling of nutrients (for example, carbon, phosphorus and nitrogen). Second, we discuss how AMF interact with hyphospheric bacteria or endobacteria to regulate nutrient exchange between plants and AMF, and the possible molecular mechanisms that underpin this continuum. Finally, we explore future prospects for studies on the hyphosphere to facilitate the utilization of AMF and hyphospheric bacteria in sustainable agriculture.
Collapse
Affiliation(s)
- Shilong Duan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Gu Feng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Erik Limpens
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.
| | - Lin Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Duo L, Su H, Li J, Wang Q, Zhao S. Impact of graphene oxide disturbance on the structure and function of arbuscular mycorrhizal networks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117412. [PMID: 39603222 DOI: 10.1016/j.ecoenv.2024.117412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/01/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
With the widespread application of graphene oxide (GO), its potential toxicity has received increasing attention. The extraradical mycelium of arbuscular mycorrhizal fungi (AMF) can extend from the roots of one plant to those of another, forming complex common mycorrhizal networks (CMNs) for the transfer of nutrients and infochemicals. However, the impact of GO on the structure and transfer function of CMNs remains unknown. In this study, controlled compartments with designated donors and receptors were established to form CMNs after inoculation of Festuca arundinacea plants with Rhizophagus irregularis. GO was found to inhibit host plant growth and decrease AMF colonization, nitrogen and phosphorus uptake, and signal transmission capability in the recipient plants. Specifically, exposure to 5 % GO resulted in decreases of 27.5 % and 35.0 % in shoot and root weights, respectively, and a 38.1 % reduction in AMF colonization. The shoot nitrogen and phosphorus contents were reduced by 41.0 % and 32.3 %, respectively, and the root nitrogen and phosphorus contents were reduced by 12.4 % and 38.6 %, respectively, in response to 5 % GO. Additionally, the upregulation of key genes, such as aquaporin (Rir-AQP2), nitrogen transporter (GiNT), urease (GiURE), and phosphorus transporter (GintPT) in Rhizophagus irregularis was observed in the roots of the recipient plants under the GO treatments, with maximum increases of 192.7 %, 182.6 %, 162.1 %, and 125.8 %, respectively. The differential expressed genes (DEGs) were notably enriched in processes such as the spliceosome and endocytosis, the pentose phosphate pathway, glycolysis and secondary metabolism, and amino acid metabolism. These findings strongly indicate that GO has a significant effect on the structure and functionality of CMNs.
Collapse
Affiliation(s)
- Lian Duo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Hang Su
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Jiayi Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Qi Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Shulan Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
6
|
Pan G, Xu Y, Li W, Zan L, Wang X. Claroideglomus etunicatum enhances Pteris vittata L. arsenic resistance and accumulation by mediating the rapid reduction and transport of arsenic in roots. FRONTIERS IN PLANT SCIENCE 2024; 15:1464547. [PMID: 39606667 PMCID: PMC11598345 DOI: 10.3389/fpls.2024.1464547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) have been widely shown to significantly promote the growth and recovery of Pteris vittata L. growth and repair under arsenic stress; however, little is known about the molecular mechanisms by which AMF mediate the efficient uptake of arsenic in this species. To understand how AMF mediate P. vittata arsenic metabolism under arsenic stress, we performed P. vittata root transcriptome analysis before and after Claroideglomus etunicatum (C. etunicatum) colonization. The results showed that after C. etunicatum colonization, P. vittata showed greater arsenic resistance and enrichment, and its dry weight and arsenic accumulation increased by 2.01-3.36 times. This response is attributed to the rapid reduction and upward translocation of arsenic. C. etunicatum enhances arsenic uptake by mediating the MIP, PHT, and NRT transporter families, while also increasing arsenic reduction (PvACR2 direct reduction and vesicular PvGSTF1 reduction). In addition, it downregulates the expression of ABC and P-type ATPase protein families, which inhibits the compartmentalization of arsenic in the roots and promotes its translocation to the leaves. This study revealed the mechanism of C. etunicatum-mediated arsenic hyperaccumulation in P. vittata, providing guidance for understanding the regulatory mechanism of P. vittata.
Collapse
Affiliation(s)
| | | | | | | | - Xueli Wang
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key
Laboratory for Conservation and Utilization of Subtropical Agri–Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
7
|
Khan NF, Ahmed SS, Abdulraheem MI, Reshi ZA, Wahab A, Abdi G. Deciphering mycobiota and its functional dynamics in root hairs of Rhododendron campanulatum D. Don through Next-gen sequencing. Sci Rep 2024; 14:10294. [PMID: 38704448 PMCID: PMC11069570 DOI: 10.1038/s41598-024-61120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
The Himalayas provide unique opportunities for the extension of shrubs beyond the upper limit of the tree. However, little is known about the limitation of the biotic factors belowground of shrub growth at these cruising altitudes. To fill this gap, the present study deals with the documentation of root-associated microbiota with their predicted functional profiles and interactions in the host Rhododendron campanulatum, a krummholz species. While processing 12 root samples of R. campanulatum from the sites using Omics we could identify 134 root-associated fungal species belonging to 104 genera, 74 families, 39 orders, 17 classes, and 5 phyla. The root-associated microbiota members of Ascomycota were unambiguously dominant followed by Basidiomycota. Using FUNGuild, we reported that symbiotroph and pathotroph as abundant trophic modes. Furthermore, FUNGuild revealed the dominant prevalence of the saptroptroph guild followed by plant pathogens and wood saprotrophs. Alpha diversity was significantly different at the sites. The heatmap dendrogram showed the correlation between various soil nutrients and some fungal species. The study paves the way for a more in-depth exploration of unidentified root fungal symbionts, their interactions and their probable functional roles, which may serve as an important factor for the growth and conservation of these high-altitude ericaceous plants.
Collapse
Affiliation(s)
- Nafeesa Farooq Khan
- Biological Invasion Lab, Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India.
| | - Sheikh Sajad Ahmed
- Biological Invasion Lab, Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | - Mukhtar Iderawumi Abdulraheem
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou, 450002, China
| | - Zafar Ahmad Reshi
- Biological Invasion Lab, Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | - Abdul Wahab
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gul Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
8
|
Wang Z, Lian J, Liang J, Wei H, Chen H, Hu W, Tang M. Arbuscular mycorrhizal symbiosis modulates nitrogen uptake and assimilation to enhance drought tolerance of Populus cathayana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108648. [PMID: 38653094 DOI: 10.1016/j.plaphy.2024.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
This study aims to investigate effects of arbuscular mycorrhizal fungi (AMF) inoculation on nitrogen (N) uptake and assimilation in Populus cathayana under drought stress (DS). Herein, we measured photosynthetic performance, antioxidant enzyme system, N level and N assimilation enzymes, proteins content and distribution, transcripts of genes associated with N uptake or transport in P. cathayana with AMF (AM) or without AMF (NM) under soil water limitation and adequate irrigation. Compared with NM-DS P. cathayana, the growth, gas exchange properties, antioxidant enzyme activities, total N content and the proportion of water-soluble and membrane-bound proteins in AM-DS P. cathayana were increased. Meanwhile, nitrate reductase (NR) activity, NO3- and NO2- concentrations in AM-DS P. cathayana were reduced, while NH4+ concentration, glutamine synthetase (GS) and glutamate synthetase (GOGAT) activities were elevated, indicating that AM symbiosis reduces NO3- assimilation while promoting NH4+ assimilation. Furthermore, the transcriptional levels of NH4+ transporter genes (PcAMT1-4 and PcAMT2-1) and NO3- transporter genes (PcNRT2-1 and PcNRT3-1) in AM-DS P. cathayana roots were significantly down-regulated, as well as NH4+ transporter genes (PcAMT1-6 and PcAMT4-3) in leaves. In AM P. cathayana roots, DS significantly up-regulated the transcriptional levels of RiCPSI and RiURE, the key N transport regulatory genes in AMF compared with adequate irrigation. These results indicated that AM N transport pathway play an essential role on N uptake and utilization in AM P. cathayana to cope with DS. Therefore, this research offers a novel perspective on how AM symbiosis enhances plant resilience to drought at aspect of N acquisition and assimilation.
Collapse
Affiliation(s)
- Zhihao Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaqian Lian
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jingwei Liang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hongjian Wei
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Zhao B, Jia X, Yu N, Murray JD, Yi K, Wang E. Microbe-dependent and independent nitrogen and phosphate acquisition and regulation in plants. THE NEW PHYTOLOGIST 2024; 242:1507-1522. [PMID: 37715479 DOI: 10.1111/nph.19263] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023]
Abstract
Nitrogen (N) and phosphorus (P) are the most important macronutrients required for plant growth and development. To cope with the limited and uneven distribution of N and P in complicated soil environments, plants have evolved intricate molecular strategies to improve nutrient acquisition that involve adaptive root development, production of root exudates, and the assistance of microbes. Recently, great advances have been made in understanding the regulation of N and P uptake and utilization and how plants balance the direct uptake of nutrients from the soil with the nutrient acquisition from beneficial microbes such as arbuscular mycorrhiza. Here, we summarize the major advances in these areas and highlight plant responses to changes in nutrient availability in the external environment through local and systemic signals.
Collapse
Affiliation(s)
- Boyu Zhao
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xianqing Jia
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Nan Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- New Cornerstone Science Laboratory, Shenzhen, 518054, China
| |
Collapse
|
10
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Molecular and Systems Biology Approaches for Harnessing the Symbiotic Interaction in Mycorrhizal Symbiosis for Grain and Oil Crop Cultivation. Int J Mol Sci 2024; 25:912. [PMID: 38255984 PMCID: PMC10815302 DOI: 10.3390/ijms25020912] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Mycorrhizal symbiosis, the mutually beneficial association between plants and fungi, has gained significant attention in recent years due to its widespread significance in agricultural productivity. Specifically, arbuscular mycorrhizal fungi (AMF) provide a range of benefits to grain and oil crops, including improved nutrient uptake, growth, and resistance to (a)biotic stressors. Harnessing this symbiotic interaction using molecular and systems biology approaches presents promising opportunities for sustainable and economically-viable agricultural practices. Research in this area aims to identify and manipulate specific genes and pathways involved in the symbiotic interaction, leading to improved cereal and oilseed crop yields and nutrient acquisition. This review provides an overview of the research frontier on utilizing molecular and systems biology approaches for harnessing the symbiotic interaction in mycorrhizal symbiosis for grain and oil crop cultivation. Moreover, we address the mechanistic insights and molecular determinants underpinning this exchange. We conclude with an overview of current efforts to harness mycorrhizal diversity to improve cereal and oilseed health through systems biology.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University of Casablanca, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Biology, Multidisciplinary Faculty of Nador, Mohamed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
11
|
Zhang R, Qu S, Zhang B, Gao Y, Xing F. Interactive effects between the invasive weed Stellera chamaejasme and grass: can arbuscular mycorrhizal fungi and fungal pathogens coregulate interspecific relationships? Front Microbiol 2023; 14:1236891. [PMID: 37711687 PMCID: PMC10498474 DOI: 10.3389/fmicb.2023.1236891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
The interaction between poisonous weeds and neighboring plants is complex. Poisonous weeds frequently have a competitive advantage in the interaction between poisonous weeds and neighboring plants. Arbuscular mycorrhizal fungi (AMF) and plant pathogenic fungi (PPF) are closely related to the interspecific relationships of plants. However, the role of AMF and PPF between poisonous weeds and neighboring grasses remains unclear. Here, we designed a pot experiment to determine the interspecific relationship between Leymus chinensis and Stellera chamaejasme and the regulation of AMF and PPF. The results showed that interactive effects between L. chinensis and S. chamaejasme significantly inhibited the aboveground growth of both but promoted the underground growth of L. chinensis. As the proportions of S. chamaejasme increased, the total nitrogen content and pH in the rhizosphere soil of L. chinensis were reduced, the soil pH of S. chamaejasme was reduced, and the relative abundance of AMF in the rhizosphere soil of L. chinensis significantly increased and that of S. chamaejasme decreased considerably. The relative abundances of PPF in the rhizosphere soil of both in the mono-cultures were significantly higher than those in the mixed cultures. Structural equation modeling indicated that soil abiotic (pH and N availability) and biotic (AMF and PPF) factors are major drivers explaining the interactive effects between L. chinensis and S. chamaejasme. We provided new evidence for the interspecific interactions between poisonous weeds and neighboring grasses and revealed the regulatory role of AMF and PPF in the interactive effects of both plants. This study will provide a scientific basis for the prevention and control of poisonous weeds and the vegetation restoration of degraded grasslands in the future.
Collapse
Affiliation(s)
- Ruohui Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Shanmin Qu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Ying Gao
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Fu Xing
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| |
Collapse
|
12
|
Berrios L, Yeam J, Holm L, Robinson W, Pellitier PT, Chin ML, Henkel TW, Peay KG. Positive interactions between mycorrhizal fungi and bacteria are widespread and benefit plant growth. Curr Biol 2023:S0960-9822(23)00760-1. [PMID: 37369208 DOI: 10.1016/j.cub.2023.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Bacteria, ectomycorrhizal (EcM) fungi, and land plants have been coevolving for nearly 200 million years, and their interactions presumably contribute to the function of terrestrial ecosystems. The direction, stability, and strength of bacteria-EcM fungi interactions across landscapes and across a single plant host, however, remains unclear. Moreover, the genetic mechanisms that govern them have not been addressed. To these ends, we collected soil samples from Bishop pine forests across a climate-latitude gradient spanning coastal California, fractionated the soil samples based on their proximity to EcM-colonized roots, characterized the microbial communities using amplicon sequencing, and generated linear regression models showing the impact that select bacterial taxa have on EcM fungal abundance. In addition, we paired greenhouse experiments with transcriptomic analyses to determine the directionality of these relationships and identify which genes EcM-synergist bacteria express during tripartite symbioses. Our data reveal that ectomycorrhizas (i.e., EcM-colonized roots) enrich conserved bacterial taxa across climatically heterogeneous regions. We also show that phylogenetically diverse EcM synergists are positively associated with plant and fungal growth and have unique gene expression profiles compared with EcM-antagonist bacteria. In sum, we identify common mechanisms that facilitate widespread and diverse multipartite symbioses, which inform our understanding of how plants develop in complex environments.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Jay Yeam
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Wallis Robinson
- Forestry and Forest Health Program, University of California Cooperative Extension Humboldt and Del Norte Counties, Eureka, CA 95503, USA
| | | | - Mei Lin Chin
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA 95521, USA
| | - Terry W Henkel
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA 95521, USA
| | - Kabir G Peay
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Hui J, An X, Li Z, Neuhäuser B, Ludewig U, Wu X, Schulze WX, Chen F, Feng G, Lambers H, Zhang F, Yuan L. The mycorrhiza-specific ammonium transporter ZmAMT3;1 mediates mycorrhiza-dependent nitrogen uptake in maize roots. THE PLANT CELL 2022; 34:4066-4087. [PMID: 35880836 PMCID: PMC9516061 DOI: 10.1093/plcell/koac225] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Most plant species can form symbioses with arbuscular mycorrhizal fungi (AMFs), which may enhance the host plant's acquisition of soil nutrients. In contrast to phosphorus nutrition, the molecular mechanism of mycorrhizal nitrogen (N) uptake remains largely unknown, and its physiological relevance is unclear. Here, we identified a gene encoding an AMF-inducible ammonium transporter, ZmAMT3;1, in maize (Zea mays) roots. ZmAMT3;1 was specifically expressed in arbuscule-containing cortical cells and the encoded protein was localized at the peri-arbuscular membrane. Functional analysis in yeast and Xenopus oocytes indicated that ZmAMT3;1 mediated high-affinity ammonium transport, with the substrate NH4+ being accessed, but likely translocating uncharged NH3. Phosphorylation of ZmAMT3;1 at the C-terminus suppressed transport activity. Using ZmAMT3;1-RNAi transgenic maize lines grown in compartmented pot experiments, we demonstrated that substantial quantities of N were transferred from AMF to plants, and 68%-74% of this capacity was conferred by ZmAMT3;1. Under field conditions, the ZmAMT3;1-dependent mycorrhizal N pathway contributed >30% of postsilking N uptake. Furthermore, AMFs downregulated ZmAMT1;1a and ZmAMT1;3 protein abundance and transport activities expressed in the root epidermis, suggesting a trade-off between mycorrhizal and direct root N-uptake pathways. Taken together, our results provide a comprehensive understanding of mycorrhiza-dependent N uptake in maize and present a promising approach to improve N-acquisition efficiency via plant-microbe interactions.
Collapse
Affiliation(s)
- Jing Hui
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Xia An
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Zhibo Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Benjamin Neuhäuser
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, 70593, Germany
| | - Uwe Ludewig
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, 70593, Germany
| | - Xuna Wu
- Department of Plant Systems Biology, Institute for Physiology and Biotechnology of Plants, University of Hohenheim, Stuttgart, 70593, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, Institute for Physiology and Biotechnology of Plants, University of Hohenheim, Stuttgart, 70593, Germany
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Gu Feng
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Hans Lambers
- School of Biological Science and Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | | |
Collapse
|
14
|
Rui W, Mao Z, Li Z. The Roles of Phosphorus and Nitrogen Nutrient Transporters in the Arbuscular Mycorrhizal Symbiosis. Int J Mol Sci 2022; 23:11027. [PMID: 36232323 PMCID: PMC9570102 DOI: 10.3390/ijms231911027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
More than 80% of land plant species can form symbioses with arbuscular mycorrhizal (AM) fungi, and nutrient transfer to plants is largely mediated through this partnership. Over the last few years, great progress has been made in deciphering the molecular mechanisms underlying the AM-mediated modulation of nutrient uptake progress, and a growing number of fungal and plant genes responsible for the uptake of nutrients from soil or transfer across the fungal-root interface have been identified. In this review, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation) and focus on P and N transfer from the fungal partner to the host plant, with a highlight on a possible interplay between P and N nutrient exchanges. Transporters belonging to the plant or AM fungi can synergistically process the transmembrane transport of soil nutrients to the symbiotic interface for further plant acquisition. Although much progress has been made to elucidate the complex mechanism for the integrated roles of nutrient transfers in AM symbiosis, questions still remain to be answered; for example, P and N transporters are less studied in different species of AM fungi; the involvement of AM fungi in plant N uptake is not as clearly defined as that of P; coordinated utilization of N and P is unknown; transporters of cultivated plants inoculated with AM fungi and transcriptomic and metabolomic networks at both the soil-fungi interface and fungi-plant interface have been insufficiently studied. These findings open new perspectives for fundamental research and application of AM fungi in agriculture.
Collapse
Affiliation(s)
| | | | - Zhifang Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China
| |
Collapse
|
15
|
Kafle A, Cooney DR, Shah G, Garcia K. Mycorrhiza-mediated potassium transport in Medicago truncatula can be evaluated by using rubidium as a proxy. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111364. [PMID: 35760157 DOI: 10.1016/j.plantsci.2022.111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi considerably improve plant nutrient acquisition, particularly phosphorus and nitrogen. Despite the physiological importance of potassium (K+) in plants, there is increasing interest in the mycorrhizal contribution to plant K+ nutrition. Yet, methods to track K+ transport are often costly and limiting evaluation opportunities. Rubidium (Rb+) is known to be transported through same pathways as K+. As such our research efforts attempt to evaluate if Rb+ could serve as a viable proxy for evaluating K+ transport in AM symbiosis. Therefore, we examined the transport of K+ in Medicago truncatula colonized by the AM fungus Rhizophagus irregularis isolate 09 having access to various concentrations of Rb+ in custom-made two-compartment systems. Plant biomass, fungal root colonization, and shoot nutrient concentrations were recorded under sufficient and limited K+ regimes. We report that AM plants displayed higher shoot Rb+ and K+ concentrations and a greater K+:Na+ ratio relative to non-colonized plants in both sufficient and limited K+ conditions. Consequently, our results indicate that Rb+ can be used as a proxy to assess the movement of K+ in AM symbiosis, and suggest the existence of a mycorrhizal uptake pathway for K+ nutrition in M. truncatula.
Collapse
Affiliation(s)
- Arjun Kafle
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Danielle R Cooney
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Garud Shah
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA; Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
16
|
Howard N, Pressel S, Kaye RS, Daniell TJ, Field KJ. The potential role of Mucoromycotina 'fine root endophytes' in plant nitrogen nutrition. PHYSIOLOGIA PLANTARUM 2022; 174:e13715. [PMID: 35560043 PMCID: PMC9328347 DOI: 10.1111/ppl.13715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 05/29/2023]
Abstract
Mycorrhizal associations between fungi and plant roots have globally significant impacts on nutrient cycling. Mucoromycotina 'fine root endophytes' (MFRE) are a distinct and recently characterised group of mycorrhiza-forming fungi that associate with the roots of a range of host plant species. Given their previous misidentification and assignment as arbuscular mycorrhizal fungi (AMF) of the Glomeromycotina, it is now important to untangle the specific form and function of MFRE symbioses. In particular, relatively little is known about the nature of MFRE colonisation and its role in N uptake and transfer to host plants. Even less is known about the mechanisms by which MFRE access and assimilate N, and how this N is processed and subsequently exchanged with host plants for photosynthates. Here, we summarise and contrast the structures formed by MFRE and arbuscular mycorrhizal fungi in host plants as well as compare the N source preference of each mycorrhizal fungal group with what is currently known for MFRE N uptake. We compare the mechanisms of N assimilation and transfer to host plants utilised by the main groups of mycorrhizal fungi and hypothesise potential mechanisms for MFRE N assimilation and transfer, outlining directions for future research.
Collapse
Affiliation(s)
- Nathan Howard
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Silvia Pressel
- Department of Life SciencesNatural History MuseumLondonUK
| | - Ryan S. Kaye
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Tim J. Daniell
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Katie J. Field
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
17
|
Di Martino C, Torino V, Minotti P, Pietrantonio L, Del Grosso C, Palmieri D, Palumbo G, Crawford TW, Carfagna S. Mycorrhized Wheat Plants and Nitrogen Assimilation in Coexistence and Antagonism with Spontaneous Colonization of Pathogenic and Saprophytic Fungi in a Soil of Low Fertility. PLANTS (BASEL, SWITZERLAND) 2022; 11:924. [PMID: 35406904 PMCID: PMC9002679 DOI: 10.3390/plants11070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/25/2022]
Abstract
The aim of the work was to study the biological interference of the spontaneous colonization of pathogenic and saprophytic endophytes on the nitrogen assimilation of mycorrhized wheat plants cultivated in soils deficient in N and P. The nitrogen assimilation efficiency of mycorrhized plants was determined by measuring the activities of nitrate reductase assimilatory and glutamine synthetase enzymes and free amino acid patterns. Mycorrhizal plants at two different sites showed an assimilative activity of nitrate and ammonium approximately 30% greater than control plants. This activity was associated with significant increases in the amino acids Arg, Glu Gln and Orn in the roots where those amino acids are part of the inorganic nitrogen assimilation of mycorrhizal fungi. The nutrient supply of mycorrhizal fungi at the root guaranteed the increased growth of the plant that was about 40% greater in fresh weight and 25% greater in productive yield than the controls. To better understand the biological interaction between plant and fungus, microbiological screening was carried out to identify colonies of radicular endophytic fungi. Fourteen fungal strains belonging to nine different species were classified. Among pathogenic fungi, the genus Fusarium was present in all the examined roots with different frequencies, depending on the site and the fungal population present in the roots, providing useful clues regarding the principle of spatial conflict and fungal spread within the root system.
Collapse
Affiliation(s)
- Catello Di Martino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (V.T.); (P.M.); (C.D.G.); (D.P.); (G.P.)
| | - Valentina Torino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (V.T.); (P.M.); (C.D.G.); (D.P.); (G.P.)
| | - Pasqualino Minotti
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (V.T.); (P.M.); (C.D.G.); (D.P.); (G.P.)
| | | | - Carmine Del Grosso
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (V.T.); (P.M.); (C.D.G.); (D.P.); (G.P.)
| | - Davide Palmieri
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (V.T.); (P.M.); (C.D.G.); (D.P.); (G.P.)
| | - Giuseppe Palumbo
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (V.T.); (P.M.); (C.D.G.); (D.P.); (G.P.)
| | | | - Simona Carfagna
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy;
| |
Collapse
|
18
|
Ma Y, Ankit, Tiwari J, Bauddh K. Plant-Mycorrhizal Fungi Interactions in Phytoremediation of Geogenic Contaminated Soils. Front Microbiol 2022; 13:843415. [PMID: 35283821 PMCID: PMC8908265 DOI: 10.3389/fmicb.2022.843415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 11/26/2022] Open
Abstract
Soil contamination by geogenic contaminants (GCs) represents an imperative environmental problem. Various soil remediation methods have been successfully employed to ameliorate the health risks associated with GCs. Phytoremediation is considered as an eco-friendly and economical approach to revegetate GC-contaminated soils. However, it is a very slow process, as plants take a considerable amount of time to gain biomass. Also, the process is limited only to the depth and surface area of the root. Inoculation of arbuscular mycorrhizal fungi (AMF) with remediating plants has been found to accelerate the phytoremediation process by enhancing plant biomass and their metal accumulation potential while improving the soil physicochemical and biological characteristics. Progress in the field application is hindered by a lack of understanding of complex interactions between host plant and AMF that contribute to metal detoxification/(im)mobilization/accumulation/translocation. Thus, this review is an attempt to reveal the underlying mechanisms of plant-AMF interactions in phytoremediation.
Collapse
Affiliation(s)
- Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Ankit
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Jaya Tiwari
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| |
Collapse
|
19
|
Current Studies of the Effects of Drought Stress on Root Exudates and Rhizosphere Microbiomes of Crop Plant Species. Int J Mol Sci 2022; 23:ijms23042374. [PMID: 35216487 PMCID: PMC8874553 DOI: 10.3390/ijms23042374] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 12/16/2022] Open
Abstract
With the warming global climate, drought stress is considered to be the most important abiotic factor limiting plant growth and yield in the world. Drought stress has serious impacts on crop production. Many researchers have studied the influences of drought stress on crop production and plant physiology; however, few researchers have combined root exudates with root-associated microbiomes for their mutual effects under drought conditions. In this review, we systematically illustrate the impact of drought stress on root exudates and root-associated microbiomes, and then we discuss the mutual regulation of root-associated microbiomes and the host plant in helping the plant adapt to drought. Finally, we construct a framework for the mutual connections between the plant, root exudates, and the microbiome. We hope this review can provide some significant guidelines to promote the study of drought resistance in plants in association with the rhizosphere microbiota.
Collapse
|
20
|
McDonald TR, Rizvi MF, Ruiter BL, Roy R, Reinders A, Ward JM. Posttranslational regulation of transporters important for symbiotic interactions. PLANT PHYSIOLOGY 2022; 188:941-954. [PMID: 34850211 PMCID: PMC8825328 DOI: 10.1093/plphys/kiab544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/27/2021] [Indexed: 05/20/2023]
Abstract
Coordinated sharing of nutritional resources is a central feature of symbiotic interactions, and, despite the importance of this topic, many questions remain concerning the identification, activity, and regulation of transporter proteins involved. Recent progress in obtaining genome and transcriptome sequences for symbiotic organisms provides a wealth of information on plant, fungal, and bacterial transporters that can be applied to these questions. In this update, we focus on legume-rhizobia and mycorrhizal symbioses and how transporters at the symbiotic interfaces can be regulated at the protein level. We point out areas where more research is needed and ways that an understanding of transporter mechanism and energetics can focus hypotheses. Protein phosphorylation is a predominant mechanism of posttranslational regulation of transporters in general and at the symbiotic interface specifically. Other mechanisms of transporter regulation, such as protein-protein interaction, including transporter multimerization, polar localization, and regulation by pH and membrane potential are also important at the symbiotic interface. Most of the transporters that function in the symbiotic interface are members of transporter families; we bring in relevant information on posttranslational regulation within transporter families to help generate hypotheses for transporter regulation at the symbiotic interface.
Collapse
Affiliation(s)
- Tami R McDonald
- Department of Biology, St Catherine University, St Paul, Minnesota, USA
| | - Madeeha F Rizvi
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Bretton L Ruiter
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Rahul Roy
- Department of Biology, St Catherine University, St Paul, Minnesota, USA
| | - Anke Reinders
- College of Continuing and Professional Studies, University of Minnesota, St. Paul, Minnesota, USA
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Author for communication:
| |
Collapse
|
21
|
Xie K, Ren Y, Chen A, Yang C, Zheng Q, Chen J, Wang D, Li Y, Hu S, Xu G. Plant nitrogen nutrition: The roles of arbuscular mycorrhizal fungi. JOURNAL OF PLANT PHYSIOLOGY 2022; 269:153591. [PMID: 34936969 DOI: 10.1016/j.jplph.2021.153591] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is the most abundant mineral nutrient required by plants, and crop productivity depends heavily on N fertilization in many soils. Production and application of N fertilizers consume huge amounts of energy and substantially increase the costs of agricultural production. Excess N compounds released from agricultural systems are also detrimental to the environment. Thus, increasing plant N uptake efficiency is essential for the development of sustainable agriculture. Arbuscular mycorrhizal (AM) fungi are beneficial symbionts of most terrestrial plants that facilitate plant nutrient uptake and increase host resistance to diverse environmental stresses. AM association is an endosymbiotic process that relies on the differentiation of both host plant roots and AM fungi to create novel contact interfaces within the cells of plant roots. AM plants have two pathways for nutrient uptake: either direct uptake via the root hairs and root epidermis, or indirectly through AM fungal hyphae into root cortical cells. Over the last few years, great progress has been made in deciphering the molecular mechanisms underlying the AM-mediated modulation of nutrient uptake processes, and a growing number of fungal and plant genes responsible for the uptake of nutrients from soil or transfer across the fungi-root interface have been identified. Here, we mainly summarize the recent advances in N uptake, assimilation, and translocation in AM symbiosis, and also discuss how N interplays with C and P in modulating AM development, as well as the synergies between AM fungi and soil microbial communities in N uptake.
Collapse
Affiliation(s)
- Kun Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuhan Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Congfan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qingsong Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jun Chen
- College of Horticulture Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - Dongsheng Wang
- Department of Ecological Environment and Soil Science, Nanjing Institute of Vegetable Science, Nanjing, Jiangsu, China
| | - Yiting Li
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Shuijin Hu
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Abstract
Rhizophagus irregularis is one of the most extensively studied arbuscular mycorrhizal fungi (AMF) that forms symbioses with and improves the performance of many crops. Lack of transformation protocol for R. irregularis renders it challenging to investigate molecular mechanisms that shape the physiology and interactions of this AMF with plants. Here, we used all published genomics, transcriptomics, and metabolomics resources to gain insights into the metabolic functionalities of R. irregularis by reconstructing its high-quality genome-scale metabolic network that considers enzyme constraints. Extensive validation tests with the enzyme-constrained metabolic model demonstrated that it can be used to (i) accurately predict increased growth of R. irregularis on myristate with minimal medium; (ii) integrate enzyme abundances and carbon source concentrations that yield growth predictions with high and significant Spearman correlation (ρS = 0.74) to measured hyphal dry weight; and (iii) simulate growth rate increases with tighter association of this AMF with the host plant across three fungal structures. Based on the validated model and system-level analyses that integrate data from transcriptomics studies, we predicted that differences in flux distributions between intraradical mycelium and arbuscles are linked to changes in amino acid and cofactor biosynthesis. Therefore, our results demonstrated that the enzyme-constrained metabolic model can be employed to pinpoint mechanisms driving developmental and physiological responses of R. irregularis to different environmental cues. In conclusion, this model can serve as a template for other AMF and paves the way to identify metabolic engineering strategies to modulate fungal metabolic traits that directly affect plant performance. IMPORTANCE Mounting evidence points to the benefits of the symbiotic interactions between the arbuscular mycorrhiza fungus Rhizophagus irregularis and crops; however, the molecular mechanisms underlying the physiological responses of this fungus to different host plants and environments remain largely unknown. We present a manually curated, enzyme-constrained, genome-scale metabolic model of R. irregularis that can accurately predict experimentally observed phenotypes. We show that this high-quality model provides an entry point into better understanding the metabolic and physiological responses of this fungus to changing environments due to the availability of different nutrients. The model can be used to design metabolic engineering strategies to tailor R. irregularis metabolism toward improving the performance of host plants.
Collapse
|
23
|
Zhou X, Li J, Tang N, Xie H, Fan X, Chen H, Tang M, Xie X. Genome-Wide Analysis of Nutrient Signaling Pathways Conserved in Arbuscular Mycorrhizal Fungi. Microorganisms 2021; 9:1557. [PMID: 34442636 PMCID: PMC8401276 DOI: 10.3390/microorganisms9081557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/03/2023] Open
Abstract
Arbuscular mycorrhizal (AM) fungi form a mutualistic symbiosis with a majority of terrestrial vascular plants. To achieve an efficient nutrient trade with their hosts, AM fungi sense external and internal nutrients, and integrate different hierarchic regulations to optimize nutrient acquisition and homeostasis during mycorrhization. However, the underlying molecular networks in AM fungi orchestrating the nutrient sensing and signaling remain elusive. Based on homology search, we here found that at least 72 gene components involved in four nutrient sensing and signaling pathways, including cAMP-dependent protein kinase A (cAMP-PKA), sucrose non-fermenting 1 (SNF1) protein kinase, target of rapamycin kinase (TOR) and phosphate (PHO) signaling cascades, are well conserved in AM fungi. Based on the knowledge known in model yeast and filamentous fungi, we outlined the possible gene networks functioning in AM fungi. These pathways may regulate the expression of downstream genes involved in nutrient transport, lipid metabolism, trehalase activity, stress resistance and autophagy. The RNA-seq analysis and qRT-PCR results of some core genes further indicate that these pathways may play important roles in spore germination, appressorium formation, arbuscule longevity and sporulation of AM fungi. We hope to inspire further studies on the roles of these candidate genes involved in these nutrient sensing and signaling pathways in AM fungi and AM symbiosis.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Jiangyong Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China;
| | - Nianwu Tang
- UMR Interactions Arbres/Microorganismes, Centre INRA-Grand Est-Nancy, 54280 Champenoux, France;
| | - Hongyun Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Xiaoning Fan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| |
Collapse
|
24
|
Sun Y, Wang M, Mur LAJ, Shen Q, Guo S. The cross-kingdom roles of mineral nutrient transporters in plant-microbe relations. PHYSIOLOGIA PLANTARUM 2021; 171:771-784. [PMID: 33341944 DOI: 10.1111/ppl.13318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/27/2020] [Indexed: 05/23/2023]
Abstract
The regulation of plant physiology by plant mineral nutrient transporter (MNT) is well understood. Recently, the extensive characterization of beneficial and pathogenic plant-microbe interactions has defined the roles for MNTs in such relationships. In this review, we summarize the roles of diverse nutrient transporters in the symbiotic or pathogenic relationships between plants and microorganisms. In doing so, we highlight how MNTs of plants and microbes can act in a coordinated manner. In symbiotic relationships, MNTs play key roles in the establishment of the interaction between the host plant and rhizobium or mycorrhizae as well in the subsequent coordinated transport of nutrients. Additionally, MNTs may also regulate the colonization or degeneration of symbiotic microorganisms by reflecting the nutrient status of the plant and soil. This allows the host plant obtain nutrients from the soil in the most optimal manner. With pathogenic-interactions, MNTs influence pathogen proliferation, the efficacy of the host's biochemical defense and related signal transduction mechanisms. We classify the MNT effects in plant-pathogen interactions as either indirect by influencing the nutrient status and fitness of the pathogen, or direct by initiating host defense mechanisms. While such observations indicate the fundamental importance of MNTs in governing the interactions with a range of microorganisms, further work is needed to develop an integrative understanding of their functions.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
van't Padje A, Werner GDA, Kiers ET. Mycorrhizal fungi control phosphorus value in trade symbiosis with host roots when exposed to abrupt 'crashes' and 'booms' of resource availability. THE NEW PHYTOLOGIST 2021; 229:2933-2944. [PMID: 33124078 PMCID: PMC7898638 DOI: 10.1111/nph.17055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 05/06/2023]
Abstract
Biological market theory provides a conceptual framework to analyse trade strategies in symbiotic partnerships. A key prediction of biological market theory is that individuals can influence resource value - meaning the amount a partner is willing to pay for it - by mediating where and when it is traded. The arbuscular mycorrhizal symbiosis, characterised by roots and fungi trading phosphorus and carbon, shows many features of a biological market. However, it is unknown if or how fungi can control phosphorus value when exposed to abrupt changes in their trade environment. We mimicked an economic 'crash', manually severing part of the fungal network (Rhizophagus irregularis) to restrict resource access, and an economic 'boom' through phosphorus additions. We quantified trading strategies over a 3-wk period using a recently developed technique that allowed us to tag rock phosphate with fluorescing quantum dots of three different colours. We found that the fungus: compensated for resource loss in the 'crash' treatment by transferring phosphorus from alternative pools closer to the host root (Daucus carota); and stored the surplus nutrients in the 'boom' treatment until root demand increased. By mediating from where, when and how much phosphorus was transferred to the host, the fungus successfully controlled resource value.
Collapse
Affiliation(s)
- Anouk van't Padje
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Department of Ecological SciencesFaculty of Earth and Life SciencesVrije Universiteitde Boelelaan 1085Amsterdam1081 HVthe Netherlands
| | - Gijsbert D. A. Werner
- Department of ZoologyUniversity of OxfordOxfordOX1 3PSUK
- Netherlands Scientific Council for Government PolicyBuitenhof 34The Hague2513 AHthe Netherlands
| | - E. Toby Kiers
- Department of Ecological SciencesFaculty of Earth and Life SciencesVrije Universiteitde Boelelaan 1085Amsterdam1081 HVthe Netherlands
| |
Collapse
|
26
|
Nasir F, Bahadur A, Lin X, Gao Y, Tian C. Novel insights into host receptors and receptor-mediated signaling that regulate arbuscular mycorrhizal symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1546-1557. [PMID: 33252650 DOI: 10.1093/jxb/eraa538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
More than 80% of land plant species benefit from symbiotic partnerships with arbuscular mycorrhizal (AM) fungi, which assist in nutrient acquisition and enhance the ability of host plants to adapt to environmental constraints. Host-generated plasma membrane-residing receptor-like kinases and the intracellular α/β-hydrolase DWARF14-LIKE, a putative karrikin receptor, detect the presence of AM fungi before physical contact between the host and fungus. Detection induces appropriate symbiotic responses, which subsequently enables a favorable environment for AM symbiosis to occur. To prevent hyper-colonization and maintain a mutually beneficial association, the host plant precisely monitors and controls AM colonization by receptor-like kinases, such as SUPER NUMERIC NODULES. Previous studies have elucidated how host plant receptors and receptor-mediated signaling regulate AM symbiosis, but the underlying molecular mechanisms remain poorly understood. The identification of a rice CHITIN ELICITOR RECEPTOR KINASE 1 interaction partner, MYC FACTOR RECEPTOR 1, and new insights into DWARF14-LIKE receptor- and SUPER NUMERIC NODULES receptor-mediated signaling have expanded our understanding of how host plant receptors and their corresponding signals regulate AM symbiosis. This review summarizes these and other recent relevant findings. The identified receptors and/or their signaling components could be manipulated to engineer crops with improved agronomic traits by conferring the ability to precisely control AM colonization.
Collapse
Affiliation(s)
- Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin Province, China
| | - Ali Bahadur
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu Province, China
| | - Xiaolong Lin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin Province, China
| | - Yingzhi Gao
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin Province, China
- Key Laboratory of Straw Biology and Utilization of the Ministry of Education, Jilin Agricultural University, Changchun, Jilin Province, China
| |
Collapse
|
27
|
Bukovská P, Rozmoš M, Kotianová M, Gančarčíková K, Dudáš M, Hršelová H, Jansa J. Arbuscular Mycorrhiza Mediates Efficient Recycling From Soil to Plants of Nitrogen Bound in Chitin. Front Microbiol 2021; 12:574060. [PMID: 33679625 PMCID: PMC7933022 DOI: 10.3389/fmicb.2021.574060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/02/2021] [Indexed: 12/04/2022] Open
Abstract
Symbiosis between plants and arbuscular mycorrhizal (AM) fungi, involving great majority of extant plant species including most crops, is heavily implicated in plant mineral nutrition, abiotic and biotic stress tolerance, soil aggregate stabilization, as well as shaping soil microbiomes. The latter is particularly important for efficient recycling from soil to plants of nutrients such as phosphorus and nitrogen (N) bound in organic forms. Chitin is one of the most widespread polysaccharides on Earth, and contains substantial amounts of N (>6% by weight). Chitin is present in insect exoskeletons and cell walls of many fungi, and can be degraded by many prokaryotic as well as eukaryotic microbes normally present in soil. However, the AM fungi seem not to have the ability to directly access N bound in chitin molecules, thus relying on microbes in their hyphosphere to gain access to this nutrient-rich resource in the process referred to as organic N mineralization. Here we show, using data from two pot experiments, both including root-free compartments amended with 15N-labeled chitin, that AM fungi can channel substantial proportions (more than 20%) of N supplied as chitin into their plants hosts within as short as 5 weeks. Further, we show that overall N losses (leaching and/or volatilization), sometimes exceeding 50% of the N supplied to the soil as chitin within several weeks, were significantly lower in mycorrhizal as compared to non-mycorrhizal pots. Surprisingly, the rate of chitin mineralization and its N utilization by the AM fungi was at least as fast as that of green manure (clover biomass), based on direct 15N labeling and tracing. This efficient N recycling from soil to plant, observed in mycorrhizal pots, was not strongly affected by the composition of AM fungal communities or environmental context (glasshouse or outdoors, additional mineral N supply to the plants or not). These results indicate that AM fungi in general can be regarded as a critical and robust soil resource with respect to complex soil processes such as organic N mineralization and recycling. More specific research is warranted into the exact molecular mechanisms and microbial players behind the observed patterns.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Praha, Czechia
| |
Collapse
|
28
|
Proteome adaptations under contrasting soil phosphate regimes of Rhizophagus irregularis engaged in a common mycorrhizal network. Fungal Genet Biol 2021; 147:103517. [PMID: 33434644 DOI: 10.1016/j.fgb.2021.103517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022]
Abstract
For many plants, their symbiosis with arbuscular mycorrhizal fungi plays a key role in the acquisition of mineral nutrients such as inorganic phosphate (Pi), in exchange for assimilated carbon. To study gene regulation and function in the symbiotic partners, we and others have used compartmented microcosms in which the extra-radical mycelium (ERM), responsible for mineral nutrient supply for the plants, was separated by fine nylon nets from the associated host roots and could be harvested and analysed in isolation. Here, we used such a model system to perform a quantitative comparative protein profiling of the ERM of Rhizophagus irregularis BEG75, forming a common mycorrhizal network (CMN) between poplar and sorghum roots under a long-term high- or low-Pi fertilization regime. Proteins were extracted from the ERM and analysed by liquid chromatography-tandem mass spectrometry. This workflow identified a total of 1301 proteins, among which 162 displayed a differential amount during Pi limitation, as monitored by spectral counting. Higher abundances were recorded for proteins involved in the mobilization of external Pi, such as secreted acid phosphatase, 3',5'-bisphosphate nucleotidase, and calcium-dependent phosphotriesterase. This was also the case for intracellular phospholipase and lysophospholipases that are involved in the initial degradation of phospholipids from membrane lipids to mobilize internal Pi. In Pi-deficient conditions. The CMN proteome was especially enriched in proteins assigned to beta-oxidation, glyoxylate shunt and gluconeogenesis, indicating that storage lipids rather than carbohydrates are fuelled in ERM as the carbon source to support hyphal growth and energy requirements. The contrasting pattern of expression of AM-specific fatty acid biosynthetic genes between the two plants suggests that in low Pi conditions, fatty acid provision to the fungal network is mediated by sorghum roots but not by poplar. Loss of enzymes involved in arginine synthesis coupled to the mobilization of proteins involved in the breakdown of nitrogen sources such as intercellular purines and amino acids, support the view that ammonium acquisition by host plants through the mycorrhizal pathway may be reduced under low-Pi conditions. This proteomic study highlights the functioning of a CMN in Pi limiting conditions, and provides new perspectives to study plant nutrient acquisition as mediated by arbuscular mycorrhizal fungi.
Collapse
|
29
|
Franklin JB, Hockey K, Maherali H. Population-level variation in host plant response to multiple microbial mutualists. AMERICAN JOURNAL OF BOTANY 2020; 107:1389-1400. [PMID: 33029783 DOI: 10.1002/ajb2.1543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Multipartite mutualisms are widespread in nature, but population-level variation in these interactions is rarely quantified. In the model multipartite mutualism between legumes, arbuscular mycorrhizal (AM) fungi and rhizobia bacteria, host responses to microbial partners are expected to be synergistic because the nutrients provided by each microbe colimit plant growth, but tests of this prediction have not been done in multiple host populations. METHODS To test whether plant response to associations with AM fungi and rhizobia varies among host populations and whether synergistic responses to microbial mutualists are common, we grew 34 Medicago truncatula populations in a factorial experiment that manipulated the presence or absence of each mutualist. RESULTS Plant growth increased in response to each mutualist, but there were no synergistic effects. Instead, plant response to inoculation with AM fungi was an order of magnitude higher than with rhizobia. Plant response to AM fungi varied among populations, whereas responses to rhizobia were relatively uniform. There was a positive correlation between plant host response to each mutualist but no correlation between AM fungal colonization and rhizobia nodulation of plant roots. CONCLUSIONS The greater population divergence in host response to AM fungi relative to rhizobia, weak correlation in host response to each microbial mutualist, and the absence of a correlation between measures of AM fungal and rhizobia performance suggests that each plant-microbe mutualism evolved independently among M. truncatula populations.
Collapse
Affiliation(s)
- James B Franklin
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Kendra Hockey
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Hafiz Maherali
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
30
|
Wang S, Chen A, Xie K, Yang X, Luo Z, Chen J, Zeng D, Ren Y, Yang C, Wang L, Feng H, López-Arredondo DL, Herrera-Estrella LR, Xu G. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proc Natl Acad Sci U S A 2020; 117:16649-16659. [PMID: 32586957 PMCID: PMC7368293 DOI: 10.1073/pnas.2000926117] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Low availability of nitrogen (N) is often a major limiting factor to crop yield in most nutrient-poor soils. Arbuscular mycorrhizal (AM) fungi are beneficial symbionts of most land plants that enhance plant nutrient uptake, particularly of phosphate. A growing number of reports point to the substantially increased N accumulation in many mycorrhizal plants; however, the contribution of AM symbiosis to plant N nutrition and the mechanisms underlying the AM-mediated N acquisition are still in the early stages of being understood. Here, we report that inoculation with AM fungus Rhizophagus irregularis remarkably promoted rice (Oryza sativa) growth and N acquisition, and about 42% of the overall N acquired by rice roots could be delivered via the symbiotic route under N-NO3- supply condition. Mycorrhizal colonization strongly induced expression of the putative nitrate transporter gene OsNPF4.5 in rice roots, and its orthologs ZmNPF4.5 in Zea mays and SbNPF4.5 in Sorghum bicolor OsNPF4.5 is exclusively expressed in the cells containing arbuscules and displayed a low-affinity NO3- transport activity when expressed in Xenopus laevis oocytes. Moreover, knockout of OsNPF4.5 resulted in a 45% decrease in symbiotic N uptake and a significant reduction in arbuscule incidence when NO3- was supplied as an N source. Based on our results, we propose that the NPF4.5 plays a key role in mycorrhizal NO3- acquisition, a symbiotic N uptake route that might be highly conserved in gramineous species.
Collapse
Affiliation(s)
- Shuangshuang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China;
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Kun Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Xiaofeng Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhenzhen Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jiadong Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Dechao Zeng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yuhan Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Congfan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Lingxiao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Huimin Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Damar Lizbeth López-Arredondo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Sciences, Texas Tech University, Lubbock, TX 79409
| | - Luis Rafael Herrera-Estrella
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China;
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Sciences, Texas Tech University, Lubbock, TX 79409
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36500 Irapuato, Mexico
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China;
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
31
|
Zhang NN, Zou H, Lin XY, Pan Q, Zhang WQ, Zhang JH, Wei GH, Shangguan ZP, Chen J. Hydrogen sulfide and rhizobia synergistically regulate nitrogen (N) assimilation and remobilization during N deficiency-induced senescence in soybean. PLANT, CELL & ENVIRONMENT 2020; 43:1130-1147. [PMID: 32012309 DOI: 10.1111/pce.13736] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 05/09/2023]
Abstract
Hydrogen sulfide (H2 S) is emerging as an important signalling molecule that regulates plant growth and abiotic stress responses. However, the roles of H2 S in symbiotic nitrogen (N) assimilation and remobilization have not been characterized. Therefore, we examined how H2 S influences the soybean (Glycine max)/rhizobia interaction in terms of symbiotic N fixation and mobilization during N deficiency-induced senescence. H2 S enhanced biomass accumulation and delayed leaf senescence through effects on nodule numbers, leaf chlorophyll contents, leaf N resorption efficiency, and the N contents in different tissues. Moreover, grain numbers and yield were regulated by H2 S and rhizobia, together with N accumulation in the organs, and N use efficiency. The synergistic effects of H2 S and rhizobia were also demonstrated by effects on the enzyme activities, protein abundances, and gene expressions associated with N metabolism, and senescence-associated genes (SAGs) expression in soybeans grown under conditions of N deficiency. Taken together, these results show that H2 S and rhizobia accelerate N assimilation and remobilization by regulation of the expression of SAGs during N deficiency-induced senescence. Thus, H2 S enhances the vegetative and reproductive growth of soybean, presumably through interactions with rhizobia under conditions of N deficiency.
Collapse
Affiliation(s)
- Ni-Na Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, P.R. China
| | - Hang Zou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of life sciences, Northwest A&F University, Yangling, P.R. China
| | - Xue-Yuan Lin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, P.R. China
| | - Qing Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of life sciences, Northwest A&F University, Yangling, P.R. China
| | - Wei-Qin Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, P.R. China
| | - Jian-Hua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ge-Hong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of life sciences, Northwest A&F University, Yangling, P.R. China
| | - Zhou-Ping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, P.R. China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, P.R. China
| |
Collapse
|
32
|
Huang D, Ma M, Wang Q, Zhang M, Jing G, Li C, Ma F. Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:245-255. [PMID: 32087536 DOI: 10.1016/j.plaphy.2020.02.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 05/19/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) can form a symbiotic relationships with most terrestrial plants and play an important role in plant growth and adaptation to various stresses. To study the role of AMF in regulating drought resistance in apple, the effects of drought stress on Malus hupehensis inoculated with AMF were investigated. Inoculation of AMF enhanced apple plants growth. Mycorrhizal plants had higher total chlorophyll concentrations but lower relative electrolyte leakage under drought stress. Mycorrhizal plants increased net photosynthetic rate, stomatal conductance, and transpiration rate under drought stress, however, they showed lower inhibition in the quantum yield of PSII photochemistry. Mycorrhizal plants also had higher superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) enzyme activities under drought conditions. Thus, mycorrhizal plants had lower accumulated MDA, H2O2, and O2- than non-mycorrhizal seedlings. Total sugar and proline concentrations also significantly increased, helping maintain the osmotic balance. Furthermore, mitogen-activated protein kinase (MAPK) cascades, which participate in the regulation of responses of plants and microorganisms to biotic and abiotic stress, were up-regulated in apple plants and AMF during drought. We saw that there were at least two motifs that were identical in MAPK proteins and many elements that responded to hormones and stress from these MAPK genes. In summary, our results showed that mycorrhizal colonization enhanced apple drought tolerance by improving gas exchange capacity, increasing chlorophyll fluorescence parameters, creating a greater osmotic adjustment capacity, increasing scavenging of reactive oxygen species (ROS), and using MAPK signals for interactions between AMF and their apple plant hosts.
Collapse
Affiliation(s)
- Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengnan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Maoxue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guangquan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
33
|
Research Advances of Beneficial Microbiota Associated with Crop Plants. Int J Mol Sci 2020; 21:ijms21051792. [PMID: 32150945 PMCID: PMC7084388 DOI: 10.3390/ijms21051792] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Plants are associated with hundreds of thousands of microbes that are present outside on the surfaces or colonizing inside plant organs, such as leaves and roots. Plant-associated microbiota plays a vital role in regulating various biological processes and affects a wide range of traits involved in plant growth and development, as well as plant responses to adverse environmental conditions. An increasing number of studies have illustrated the important role of microbiota in crop plant growth and environmental stress resistance, which overall assists agricultural sustainability. Beneficial bacteria and fungi have been isolated and applied, which show potential applications in the improvement of agricultural technologies, as well as plant growth promotion and stress resistance, which all lead to enhanced crop yields. The symbioses of arbuscular mycorrhizal fungi, rhizobia and Frankia species with their host plants have been intensively studied to provide mechanistic insights into the mutual beneficial relationship of plant–microbe interactions. With the advances in second generation sequencing and omic technologies, a number of important mechanisms underlying plant–microbe interactions have been unraveled. However, the associations of microbes with their host plants are more complicated than expected, and many questions remain without proper answers. These include the influence of microbiota on the allelochemical effect caused by one plant upon another via the production of chemical compounds, or how the monoculture of crops influences their rhizosphere microbial community and diversity, which in turn affects the crop growth and responses to environmental stresses. In this review, first, we systematically illustrate the impacts of beneficial microbiota, particularly beneficial bacteria and fungi on crop plant growth and development and, then, discuss the correlations between the beneficial microbiota and their host plants. Finally, we provide some perspectives for future studies on plant–microbe interactions.
Collapse
|
34
|
Zhu X, Li X, Xing F, Chen C, Huang G, Gao Y. Interaction Between Root Exudates of the Poisonous Plant Stellera chamaejasme L. and Arbuscular Mycorrhizal Fungi on the Growth of Leymus chinensis (Trin.) Tzvel. Microorganisms 2020; 8:microorganisms8030364. [PMID: 32143469 PMCID: PMC7142538 DOI: 10.3390/microorganisms8030364] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/02/2022] Open
Abstract
The growth of a large number of poisonous plants is an indicator of grassland degradation. Releasing allelochemicals through root exudates is one of the strategies with which poisonous plants affect neighboring plants in nature. Arbuscular mycorrhizal fungi (AMF) can form a mutualistic symbiosis with most of the higher plants. However, the manner of interaction between root exudates of poisonous plants and AMF on neighboring herbage in grasslands remains poorly understood. Stellera chamaejasme L., a common poisonous plant with approved allelopathy, is widely distributed with the dominant grass of Leymus chinensis in the degradeds of Northern China. In this study, we investigated the addition of S. chamaejasme root exudates (SRE), the inoculation of AMF, and their interaction on the growth and tissue nitrogen contents of L. chinensis, the characteristics of rhizosphere AMF, and soil physicochemical properties. Results showed that SRE had significant effects on ramet number, aboveground biomass, and total nitrogen of L. chinensis in a concentration dependent manner. Additionally, SRE had a significant negative effect on the rate of mycorrhiza infection and spore density of the AMF. Meanwhile, the addition of SRE significantly affected soil pH, electrical conductivity, available nitrogen (AN), available phosphorus (AP), total nitrogen (TN), and total carbon (TC) contents; while neither inoculation of AMF itself nor the interaction of AMF with SRE significantly affected the growth of L. chinensis. The interaction between AMF and SRE dramatically changed the pH, AP, and TC of rhizosphere soil. Therefore, we suggested SRE of S. chamaejasme affected the growth of L. chinensis by altering soil pH and nutrient availability. AMF could change the effect of SRE on soil nutrients and have the potential to regulate the allelopathic effects of S. chamaejasme and the interspecific interaction between the two plant species. We have provided new evidence for the allelopathic mechanism of S. chamaejasme and the regulation effects of AMF on the interspecific relationship between poisonous plants and neighboring plants. Our findings reveal the complex interplay between the root exudates of poisonous plants and rhizosphere AMF in regulating population growth and dynamics of neighboring plants in degraded grassland ecosystems.
Collapse
Affiliation(s)
- Xinrui Zhu
- Institute of Grassland Science, Northeast Normal University, Changchun 130024, China; (X.Z.); (X.L.); (C.C.); (G.H.)
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Xiaote Li
- Institute of Grassland Science, Northeast Normal University, Changchun 130024, China; (X.Z.); (X.L.); (C.C.); (G.H.)
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Fu Xing
- Institute of Grassland Science, Northeast Normal University, Changchun 130024, China; (X.Z.); (X.L.); (C.C.); (G.H.)
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
- Correspondence: (F.X.); (Y.G.)
| | - Chen Chen
- Institute of Grassland Science, Northeast Normal University, Changchun 130024, China; (X.Z.); (X.L.); (C.C.); (G.H.)
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Guohui Huang
- Institute of Grassland Science, Northeast Normal University, Changchun 130024, China; (X.Z.); (X.L.); (C.C.); (G.H.)
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Ying Gao
- Institute of Grassland Science, Northeast Normal University, Changchun 130024, China; (X.Z.); (X.L.); (C.C.); (G.H.)
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
- Correspondence: (F.X.); (Y.G.)
| |
Collapse
|
35
|
Torres N, Hilbert G, Antolín MC, Goicoechea N. Aminoacids and Flavonoids Profiling in Tempranillo Berries Can Be Modulated by the Arbuscular Mycorrhizal Fungi. PLANTS (BASEL, SWITZERLAND) 2019; 8:E400. [PMID: 31597352 PMCID: PMC6843615 DOI: 10.3390/plants8100400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 11/17/2022]
Abstract
(1) Background: Vitis vinifera L. cv. Tempranillo is cultivated over the world for its wine of high quality. The association of Tempranillo with arbuscular mycorrhizal fungi (AMF) induced the accumulation of phenolics and carotenoids in leaves, affected the metabolism of abscisic acid (ABA) during berry ripening, and modulated some characteristics and quality aspects of grapes. The objective of this study was to elucidate if AMF influenced the profiles and the content of primary and secondary metabolites determinants for berry quality in Tempranillo. (2) Methods: Fruit-bearing cuttings inoculated with AMF or uninoculated were cultivated under controlled conditions. (3) Results: Mycorrhizal symbiosis modified the profile of metabolites in Tempranillo berries, especially those of the primary compounds. The levels of glucose and amino acids clearly increased in berries of mycorrhized Tempranillo grapevines, including those of the aromatic precursor amino acids. However, mycorrhizal inoculation barely influenced the total amount and the profiles of anthocyanins and flavonols in berries. (4) Conclusions: Mycorrhizal inoculation of Tempranillo grapevines may be an alternative to the exogenous application of nitrogen compounds in order to enhance the contents of amino acids in grapes, which may affect the aromatic characteristics of wines.
Collapse
Affiliation(s)
- Nazareth Torres
- Department of Environmental Biology, Plant Stress Physiology Group, Associated to CSIC (EEAD, Zaragoza, ICVV, Logroño), Universidad de Navarra, Schools of Sciences and Pharmacy and Nutrition,31008 Pamplona, Spain.
| | - Ghislaine Hilbert
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, Villenave d'Ornon, 75338 Paris, France.
| | - María Carmen Antolín
- Department of Environmental Biology, Plant Stress Physiology Group, Associated to CSIC (EEAD, Zaragoza, ICVV, Logroño), Universidad de Navarra, Schools of Sciences and Pharmacy and Nutrition,31008 Pamplona, Spain.
| | - Nieves Goicoechea
- Department of Environmental Biology, Plant Stress Physiology Group, Associated to CSIC (EEAD, Zaragoza, ICVV, Logroño), Universidad de Navarra, Schools of Sciences and Pharmacy and Nutrition,31008 Pamplona, Spain.
| |
Collapse
|
36
|
Kameoka H, Maeda T, Okuma N, Kawaguchi M. Structure-Specific Regulation of Nutrient Transport and Metabolism in Arbuscular Mycorrhizal Fungi. PLANT & CELL PHYSIOLOGY 2019; 60:2272-2281. [PMID: 31241164 DOI: 10.1093/pcp/pcz122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish symbiotic relationships with most land plants, mainly for the purpose of nutrient exchange. Many studies have revealed the regulation of processes in AMF, such as nutrient absorption from soil, metabolism and exchange with host plants, and the genes involved. However, the spatial regulation of the genes within the structures comprising each developmental stage is not well understood. Here, we demonstrate the structure-specific transcriptome of the model AMF species, Rhizophagus irregularis. We performed an ultra-low input RNA-seq analysis, SMART-seq2, comparing five extraradical structures, germ tubes, runner hyphae, branched absorbing structures (BAS), immature spores and mature spores. In addition, we reanalyzed the recently reported RNA-seq data comparing intraradical mycelium and arbuscule. Our analyses captured the distinct features of each structure and revealed the structure-specific expression patterns of genes related to nutrient transport and metabolism. Of note, the transcriptional profiles suggest distinct functions of BAS in nutrient absorption. These findings provide a comprehensive dataset to advance our understanding of the transcriptional dynamics of fungal nutrition in this symbiotic system.
Collapse
Affiliation(s)
- Hiromu Kameoka
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| | - Taro Maeda
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| | - Nao Okuma
- The Graduate University for Advanced Studies, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| |
Collapse
|
37
|
Tian L, Chang C, Ma L, Nasir F, Zhang J, Li W, Tran LSP, Tian C. Comparative study of the mycorrhizal root transcriptomes of wild and cultivated rice in response to the pathogen Magnaporthe oryzae. RICE (NEW YORK, N.Y.) 2019; 12:35. [PMID: 31076886 PMCID: PMC6510786 DOI: 10.1186/s12284-019-0287-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/09/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Rice, which serves as a staple food for more than half of the world's population, is very susceptible to the pathogenic fungus, Magnaporthe oryzae. However, common wild rice (Oryza rufipogon), which is the ancestor of Asian cultivated rice (O. sativa), has significant potential as a genetic source of resistance to M. oryzae. Recent studies have shown that the domestication of rice has altered its relationship to symbiotic arbuscular mycorrhizae. A comparative response of wild and domestic rice inhabited by mycorrhizae to infection by M. oryzae has not been documented. RESULTS In the current study, roots of wild and cultivated rice colonized with the arbuscular mycorrhizal (AM) fungus (AMF) Rhizoglomus intraradices were used to compare the transcriptomic responses of the two species to infection by M. oryzae. Phenotypic analysis indicated that the colonization of wild and cultivated rice with R. intraradices improved the resistance of both genotypes to M. oryzae. Wild AM rice, however, was more resistant to M. oryzae than the cultivated AM rice, as well as nonmycorrhizal roots of wild rice. Transcriptome analysis indicated that the mechanisms regulating the responses of wild and cultivated AM rice to M. oryzae invasion were significantly different. The expression of a greater number of genes was changed in wild AM rice than in cultivated AM rice in response to the pathogen. Both wild and cultivated AM rice exhibited a shared response to M. oryzae which included genes related to the auxin and salicylic acid pathways; all of these play important roles in pathogenesis-related protein synthesis. In wild AM rice, secondary metabolic and biotic stress-related analyses indicated that the jasmonic acid synthesis-related α-linolenic acid pathway, the phenolic and terpenoid pathways, as well as the phenolic and terpenoid syntheses-related mevalonate (MVA) pathway were more affected by the pathogen. Genes related to these pathways were more significantly enriched in wild AM rice than in cultivated AM rice in response to M. oryzae. On the other hand, genes associated with the 'brassinosteroid biosynthesis' were more enriched in cultivated AM rice. CONCLUSIONS The AMF R. intraradices-colonized rice plants exhibited greater resistance to M. oryzae than non-AMF-colonized plants. The findings of the current study demonstrate the potential effects of crop domestication on the benefits received by the host via root colonization with AMF(s), and provide new information on the underlying molecular mechanisms. In addition, results of this study can also help develop guidelines for the applications of AMF(s) when planting rice.
Collapse
Affiliation(s)
- Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
| | - Chunling Chang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lina Ma
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- School of Life Sciences, Northeast Normal University, Changchun City, Jilin China
| | - Jianfeng Zhang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- College of Life Science, Jilin Agricultural University, Changchun, Jilin China
| | - Weiqiang Li
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000 Vietnam
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
| |
Collapse
|
38
|
Contribution of different arbuscular mycorrhizal fungal inoculum to Elymus nutans under nitrogen addition. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1375-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
39
|
Chen A, Gu M, Wang S, Chen J, Xu G. Transport properties and regulatory roles of nitrogen in arbuscular mycorrhizal symbiosis. Semin Cell Dev Biol 2018. [DOI: 10.1016/j.semcdb.2017.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Pepe A, Sbrana C, Ferrol N, Giovannetti M. An in vivo whole-plant experimental system for the analysis of gene expression in extraradical mycorrhizal mycelium. MYCORRHIZA 2017; 27:659-668. [PMID: 28573458 DOI: 10.1007/s00572-017-0779-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/16/2017] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish beneficial mutualistic symbioses with land plants, receiving carbon in exchange for mineral nutrients absorbed by the extraradical mycelium (ERM). With the aim of obtaining in vivo produced ERM for gene expression analyses, a whole-plant bi-dimensional experimental system was devised and tested with three host plants and three fungal symbionts. In such a system, Funneliformis mosseae in symbiosis with Cichorium intybus var. foliosum, Lactuca sativa, and Medicago sativa produced ERM whose lengths ranged from 9.8 ± 0.8 to 20.8 ± 1.2 m per plant. Since ERM produced in symbiosis with C. intybus showed the highest values for the different structural parameters assessed, this host was used to test the whole-plant system with F. mosseae, Rhizoglomus irregulare, and Funneliformis coronatus. The whole-plant system yielded 1-7 mg of ERM fresh biomass per plant per harvest, and continued producing new ERM for 6 months. Variable amounts of high-quality and intact total RNA, ranging from 15 to 65 μg RNA/mg ERM fresh weight, were extracted from the ERM of the three AMF isolates. Ammonium transporter gene expression was successfully determined in the cDNAs obtained from ERM of the three fungal symbionts by RT-qPCR using gene-specific primers designed on available (R. irregulare) and new (F. mosseae and F. coronatus) ammonium transporter gene sequences. The whole-plant experimental system represents a useful research tool for large production and easy collection of ERM for morphological, physiological, and biochemical analyses, suitable for a wide variety of AMF species, for a virtually limitless range of host plants and for studies involving diverse symbiotic interactions.
Collapse
Affiliation(s)
- Alessandra Pepe
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Cristiana Sbrana
- CNR, Institute of Agricultural Biology and Biotechnology, UOS Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Nuria Ferrol
- Departamento de Microbiologia del Suelo y Sistemas Simbioticos, Estacion Experimental del Zaidin, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
41
|
Koegel S, Mieulet D, Baday S, Chatagnier O, Lehmann MF, Wiemken A, Boller T, Wipf D, Bernèche S, Guiderdoni E, Courty PE. Phylogenetic, structural, and functional characterization of AMT3;1, an ammonium transporter induced by mycorrhization among model grasses. MYCORRHIZA 2017; 27:695-708. [PMID: 28667402 DOI: 10.1007/s00572-017-0786-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
In the arbuscular mycorrhizal (AM) symbiosis, plants satisfy part of their nitrogen (N) requirement through the AM pathway. In sorghum, the ammonium transporters (AMT) AMT3;1, and to a lesser extent AMT4, are induced in cells containing developing arbuscules. Here, we have characterized orthologs of AMT3;1 and AMT4 in four other grasses in addition to sorghum. AMT3;1 and AMT4 orthologous genes are induced in AM roots, suggesting that in the common ancestor of these five plant species, both AMT3;1 and AMT4 were already present and upregulated upon AM colonization. An artificial microRNA approach was successfully used to downregulate either AMT3;1 or AMT4 in rice. Mycorrhizal root colonization and hyphal length density of knockdown plants were not affected at that time, indicating that the manipulation did not modify the establishment of the AM symbiosis and the interaction between both partners. However, expression of the fungal phosphate transporter FmPT was significantly reduced in knockdown plants, indicating a reduction of the nutrient fluxes from the AM fungus to the plant. The AMT3;1 knockdown plants (but not the AMT4 knockdown plants) were significantly less stimulated in growth by AM fungal colonization, and uptake of both 15N and 33P from the AM fungal network was reduced. This confirms that N and phosphorus nutrition through the mycorrhizal pathway are closely linked. But most importantly, it indicates that AMT3;1 is the prime plant transporter involved in the mycorrhizal ammonium transfer and that its function during uptake of N cannot be performed by AMT4.
Collapse
Affiliation(s)
- Sally Koegel
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse 1, 4056, Basel, Switzerland
| | | | - Sefer Baday
- SIB Swiss Institute of Bioinformatics and Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
- Applied Informatics Department, Informatics Institute, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Odile Chatagnier
- Agroécologie, AgroSupDijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Moritz F Lehmann
- Department of Environmental Sciences, Aquatic and Stable Isotope Biogeochemistry, University of Basel, Basel, Switzerland
| | - Andres Wiemken
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse 1, 4056, Basel, Switzerland
| | - Thomas Boller
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse 1, 4056, Basel, Switzerland
| | - Daniel Wipf
- Agroécologie, AgroSupDijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Simon Bernèche
- SIB Swiss Institute of Bioinformatics and Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | | | - Pierre-Emmanuel Courty
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse 1, 4056, Basel, Switzerland.
- Agroécologie, AgroSupDijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000, Dijon, France.
| |
Collapse
|
42
|
Calabrese S, Kohler A, Niehl A, Veneault-Fourrey C, Boller T, Courty PE. Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation. PLANT & CELL PHYSIOLOGY 2017; 58:1003-1017. [PMID: 28387868 DOI: 10.1093/pcp/pcx044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/17/2017] [Indexed: 05/21/2023]
Abstract
Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, membrane biogenesis and cell structural components were highly abundant. Interestingly, N starvation also led to a general induction of fungal transporters, indicating increased nutrient demand upon N starvation. In non-mycorrhizal P. trichocarpa roots, 1,341 genes were differentially expressed under N starvation. Among the 953 down-regulated genes in N starvation, most were involved in metabolic processes including amino acids, carbohydrate and inorganic ion transport, while the 342 up-regulated genes included many defense-related genes. Mycorrhization led to the up-regulation of 549 genes mainly involved in secondary metabolite biosynthesis and transport; only 24 genes were down-regulated. Mycorrhization specifically induced expression of three ammonium transporters and one phosphate transporter, independently of the N conditions, corroborating the hypothesis that these transporters are important for symbiotic nutrient exchange. In conclusion, our data establish a framework of gene expression in the two symbiotic partners under high-N and low-N conditions.
Collapse
Affiliation(s)
- Silvia Calabrese
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
| | - Annegret Kohler
- INRA, UMR1136 Interactions Arbres-Microorganismes, Champenoux, France
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes, Vandoeuvre-lès-Nancy, France
| | - Annette Niehl
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
| | - Claire Veneault-Fourrey
- INRA, UMR1136 Interactions Arbres-Microorganismes, Champenoux, France
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes, Vandoeuvre-lès-Nancy, France
| | - Thomas Boller
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
| | - Pierre-Emmanuel Courty
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
- Agroécologie, AgroSupDijon, CNRS, INRA, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
43
|
Quiroga G, Erice G, Aroca R, Chaumont F, Ruiz-Lozano JM. Enhanced Drought Stress Tolerance by the Arbuscular Mycorrhizal Symbiosis in a Drought-Sensitive Maize Cultivar Is Related to a Broader and Differential Regulation of Host Plant Aquaporins than in a Drought-Tolerant Cultivar. FRONTIERS IN PLANT SCIENCE 2017; 8:1056. [PMID: 28674550 DOI: 10.1007/s,00122-015-2453-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/31/2017] [Indexed: 05/23/2023]
Abstract
The arbuscular mycorrhizal (AM) symbiosis has been shown to improve maize tolerance to different drought stress scenarios by regulating a wide range of host plants aquaporins. The objective of this study was to highlight the differences in aquaporin regulation by comparing the effects of the AM symbiosis on root aquaporin gene expression and plant physiology in two maize cultivars with contrasting drought sensitivity. This information would help to identify key aquaporin genes involved in the enhanced drought tolerance by the AM symbiosis. Results showed that when plants were subjected to drought stress the AM symbiosis induced a higher improvement of physiological parameters in drought-sensitive plants than in drought-tolerant plants. These include efficiency of photosystem II, membrane stability, accumulation of soluble sugars and plant biomass production. Thus, drought-sensitive plants obtained higher physiological benefit from the AM symbiosis. In addition, the genes ZmPIP1;1, ZmPIP1;3, ZmPIP1;4, ZmPIP1;6, ZmPIP2;2, ZmPIP2;4, ZmTIP1;1, and ZmTIP2;3 were down-regulated by the AM symbiosis in the drought-sensitive cultivar and only ZmTIP4;1 was up-regulated. In contrast, in the drought-tolerant cultivar only three of the studied aquaporin genes (ZmPIP1;6, ZmPIP2;2, and ZmTIP4;1) were regulated by the AM symbiosis, resulting induced. Results in the drought-sensitive cultivar are in line with the hypothesis that down-regulation of aquaporins under water deprivation could be a way to minimize water loss, and the AM symbiosis could be helping the plant in this regulation. Indeed, during drought stress episodes, water conservation is critical for plant survival and productivity, and is achieved by an efficient uptake and stringently regulated water loss, in which aquaporins participate. Moreover, the broader and contrasting regulation of these aquaporins by the AM symbiosis in the drought-sensitive than the drought-tolerant cultivar suggests a role of these aquaporins in water homeostasis or in the transport of other solutes of physiological importance in both cultivars under drought stress conditions, which may be important for the AM-induced tolerance to drought stress.
Collapse
Affiliation(s)
- Gabriela Quiroga
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín - Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Gorka Erice
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín - Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín - Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Juan M Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín - Consejo Superior de Investigaciones CientíficasGranada, Spain
| |
Collapse
|
44
|
Plant Aquaporins and Mycorrhizae: Their Regulation and Involvement in Plant Physiology and Performance. PLANT AQUAPORINS 2017. [DOI: 10.1007/978-3-319-49395-4_15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Fochi V, Chitarra W, Kohler A, Voyron S, Singan VR, Lindquist EA, Barry KW, Girlanda M, Grigoriev IV, Martin F, Balestrini R, Perotto S. Fungal and plant gene expression in the Tulasnella calospora-Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. THE NEW PHYTOLOGIST 2017; 213:365-379. [PMID: 27859287 DOI: 10.1111/nph.14279] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/19/2016] [Indexed: 05/03/2023]
Abstract
Orchids are highly dependent on their mycorrhizal fungal partners for nutrient supply, especially during early developmental stages. In addition to organic carbon, nitrogen (N) is probably a major nutrient transferred to the plant because orchid tissues are highly N-enriched. We know almost nothing about the N form preferentially transferred to the plant or about the key molecular determinants required for N uptake and transfer. We identified, in the genome of the orchid mycorrhizal fungus Tulasnella calospora, two functional ammonium transporters and several amino acid transporters but found no evidence of a nitrate assimilation system, in agreement with the N preference of the free-living mycelium grown on different N sources. Differential expression in symbiosis of a repertoire of fungal and plant genes involved in the transport and metabolism of N compounds suggested that organic N may be the main form transferred to the orchid host and that ammonium is taken up by the intracellular fungus from the apoplatic symbiotic interface. This is the first study addressing the genetic determinants of N uptake and transport in orchid mycorrhizas, and provides a model for nutrient exchanges at the symbiotic interface, which may guide future experiments.
Collapse
Affiliation(s)
- Valeria Fochi
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| | - Annegret Kohler
- Lab of Excellence ARBRE, INRA-Nancy and Lorraine University, Unité Mixte de Recherche 1136, 54280, Champenoux, France
| | - Samuele Voyron
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
| | - Vasanth R Singan
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Erika A Lindquist
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Kerrie W Barry
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Mariangela Girlanda
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Francis Martin
- Lab of Excellence ARBRE, INRA-Nancy and Lorraine University, Unité Mixte de Recherche 1136, 54280, Champenoux, France
| | | | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| |
Collapse
|
46
|
Quiroga G, Erice G, Aroca R, Chaumont F, Ruiz-Lozano JM. Enhanced Drought Stress Tolerance by the Arbuscular Mycorrhizal Symbiosis in a Drought-Sensitive Maize Cultivar Is Related to a Broader and Differential Regulation of Host Plant Aquaporins than in a Drought-Tolerant Cultivar. FRONTIERS IN PLANT SCIENCE 2017; 8:1056. [PMID: 28674550 PMCID: PMC5474487 DOI: 10.3389/fpls.2017.01056] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/31/2017] [Indexed: 05/03/2023]
Abstract
The arbuscular mycorrhizal (AM) symbiosis has been shown to improve maize tolerance to different drought stress scenarios by regulating a wide range of host plants aquaporins. The objective of this study was to highlight the differences in aquaporin regulation by comparing the effects of the AM symbiosis on root aquaporin gene expression and plant physiology in two maize cultivars with contrasting drought sensitivity. This information would help to identify key aquaporin genes involved in the enhanced drought tolerance by the AM symbiosis. Results showed that when plants were subjected to drought stress the AM symbiosis induced a higher improvement of physiological parameters in drought-sensitive plants than in drought-tolerant plants. These include efficiency of photosystem II, membrane stability, accumulation of soluble sugars and plant biomass production. Thus, drought-sensitive plants obtained higher physiological benefit from the AM symbiosis. In addition, the genes ZmPIP1;1, ZmPIP1;3, ZmPIP1;4, ZmPIP1;6, ZmPIP2;2, ZmPIP2;4, ZmTIP1;1, and ZmTIP2;3 were down-regulated by the AM symbiosis in the drought-sensitive cultivar and only ZmTIP4;1 was up-regulated. In contrast, in the drought-tolerant cultivar only three of the studied aquaporin genes (ZmPIP1;6, ZmPIP2;2, and ZmTIP4;1) were regulated by the AM symbiosis, resulting induced. Results in the drought-sensitive cultivar are in line with the hypothesis that down-regulation of aquaporins under water deprivation could be a way to minimize water loss, and the AM symbiosis could be helping the plant in this regulation. Indeed, during drought stress episodes, water conservation is critical for plant survival and productivity, and is achieved by an efficient uptake and stringently regulated water loss, in which aquaporins participate. Moreover, the broader and contrasting regulation of these aquaporins by the AM symbiosis in the drought-sensitive than the drought-tolerant cultivar suggests a role of these aquaporins in water homeostasis or in the transport of other solutes of physiological importance in both cultivars under drought stress conditions, which may be important for the AM-induced tolerance to drought stress.
Collapse
Affiliation(s)
- Gabriela Quiroga
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Gorka Erice
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Juan M. Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranada, Spain
- *Correspondence: Juan M. Ruiz-Lozano,
| |
Collapse
|
47
|
Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty PE. Take a Trip Through the Plant and Fungal Transportome of Mycorrhiza. TRENDS IN PLANT SCIENCE 2016; 21:937-950. [PMID: 27514454 DOI: 10.1016/j.tplants.2016.07.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 05/21/2023]
Abstract
Soil nutrient acquisition and exchanges through symbiotic plant-fungus interactions in the rhizosphere are key features for the current agricultural and environmental challenges. Improved crop yield and plant mineral nutrition through a fungal symbiont has been widely described. In return, the host plant supplies carbon substrates to its fungal partner. We review here recent progress on molecular players of membrane transport involved in nutritional exchanges between mycorrhizal plants and fungi. We cover the transportome, from the transport proteins involved in sugar fluxes from plants towards fungi, to the uptake from the soil and exchange of nitrogen, phosphate, potassium, sulfate, and water. Together, these advances in the comprehension of the mycorrhizal transportome will help in developing the future engineering of new agro-ecological systems.
Collapse
Affiliation(s)
- Kevin Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joan Doidy
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Sabine D Zimmermann
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, Université de Montpellier, 34060 Montpellier, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Pierre-Emmanuel Courty
- University of Fribourg, Department of Biology, 3 rue Albert Gockel, 1700 Fribourg, Switzerland.
| |
Collapse
|
48
|
Wei X, Chen J, Zhang C, Pan D. Differential Gene Expression in Rhododendron fortunei Roots Colonized by an Ericoid Mycorrhizal Fungus and Increased Nitrogen Absorption and Plant Growth. FRONTIERS IN PLANT SCIENCE 2016; 7:1594. [PMID: 27826312 PMCID: PMC5078686 DOI: 10.3389/fpls.2016.01594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/10/2016] [Indexed: 05/03/2023]
Abstract
Ericoid mycorrhizal (ERM) fungi are specifically symbiotic with plants in the family Ericaceae. Little is known thus far about their symbiotic establishment and subsequent nitrogen (N) uptake at the molecular level. The present study devised a system for establishing a symbiotic relationship between Rhododendron fortunei Lindl. and an ERM fungus (Oidiodendron maius var. maius strain Om19), quantified seedling growth and N uptake, and compared transcriptome profiling between colonized and uncolonized roots using RNA-Seq. The Om19 colonization induced 16,892 genes that were differentially expressed in plant roots, of which 14,364 were upregulated and 2,528 were downregulated. These genes included those homologous to ATP-binding cassette transporters, calcium/calmodulin-dependent kinases, and symbiosis receptor-like kinases. N metabolism was particularly active in Om19-colonized roots, and 51 genes were upregulated, such as nitrate transporters, nitrate reductase, nitrite reductase, ammonium transporters, glutamine synthetase, and glutamate synthase. Transcriptome analysis also identified a series of genes involving endocytosis, Fc-gamma R-mediated phagocytosis, glycerophospholipid metabolism, and Gonadotropin-releasing hormone (GnRH) signal pathway that have not been reported previously. Their roles in the symbiosis require further investigation. The Om19 colonization significantly increased N uptake and seedling growth. Total N content and dry weight of colonized seedlings were 36.6 and 46.6% greater than control seedlings. This is the first transcriptome analysis of a species from the family Ericaceae colonized by an ERM fungus. The findings from this study will shed light on the mechanisms underlying symbiotic relationships of ericaceous species with ERM fungi and the symbiosis-resultant N uptake and plant growth.
Collapse
Affiliation(s)
- Xiangying Wei
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, ApopkaFL, USA
| | - Jianjun Chen
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, ApopkaFL, USA
| | - Chunying Zhang
- Shanghai Academy of Landscape Architecture Science and PlanningShanghai, China
| | - Dongming Pan
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
49
|
Schweiger PF. Nitrogen isotope fractionation during N uptake via arbuscular mycorrhizal and ectomycorrhizal fungi into grey alder. JOURNAL OF PLANT PHYSIOLOGY 2016; 205:84-92. [PMID: 27639038 DOI: 10.1016/j.jplph.2016.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
Arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi affect plant nitrogen (N) dynamics. Plant N isotope patterns have been used to characterise the contribution of ECM fungi to plant N uptake. By quantifying and comparing the effects of an AM and an ECM fungus on growth, N uptake and isotopic composition of one host plant grown at different relative N supply levels, the aim of this study was to improve the mechanistic understanding of natural 15N abundance patterns in mycorrhizal plants and their underlying causes. Grey alders were inoculated with one ECM fungus or one AM fungus or left non-mycorrhizal. Plants were grown under semi-hydroponic conditions and were supplied with three rates of relative N supply ranging from deficient to luxurious. Neither mycorrhizal fungus increased plant growth or N uptake. AM root colonisation had no effect on whole plant δ15N and decreased foliar δ 15N only under N deficiency. The roots of these plants were 15N-enriched. ECM root colonisation consistently decreased foliar and whole plant δ15N. It is concluded, that both mycorrhizal fungi contributed to plant N uptake into the shoot. Nitrogen isotope fractionation during N assimilation and transformations in fungal mycelia is suggested to have resulted in plants receiving 15N-depleted N via the mycorrhizal uptake pathways. Negative mycorrhizal growth effects are explained by symbiotic resource trade on carbon and N and decreased direct plant N uptake.
Collapse
Affiliation(s)
- Peter F Schweiger
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| |
Collapse
|
50
|
Afkhami ME, Stinchcombe JR. Multiple mutualist effects on genomewide expression in the tripartite association between
Medicago truncatula,
nitrogen‐fixing bacteria and mycorrhizal fungi. Mol Ecol 2016; 25:4946-62. [DOI: 10.1111/mec.13809] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Michelle E. Afkhami
- Department of Biology University of Miami 1301 Memorial Dr. #215 Coral Gables FL 33146 USA
- Department of Ecology and Evolutionary Biology University of Toronto 25 Willcocks St. Toronto ON Canada M5S 3B2
| | - John R. Stinchcombe
- Department of Ecology and Evolutionary Biology University of Toronto 25 Willcocks St. Toronto ON Canada M5S 3B2
| |
Collapse
|