1
|
Romig M, Eberwein M, Deobald D, Schmid A. Reactivation and long-term stabilization of the [NiFe] Hox hydrogenase of Synechocystis sp. PCC6803 by glutathione after oxygen exposure. J Biol Chem 2025; 301:108086. [PMID: 39675701 PMCID: PMC11780932 DOI: 10.1016/j.jbc.2024.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
Hydrogenases are key enzymes forming or consuming hydrogen. The inactivation of these transition metal biocatalysts with oxygen limits their biotechnological applications. Oxygen-sensitive hydrogenases are distinguished from oxygen-insensitive (tolerant) ones by their initial hydrogen turnover rates influenced by oxygen. Several hydrogenases, such as the oxygen-sensitive bidirectional [NiFe] Hox hydrogenase (Hox) of the unicellular cyanobacterium Synechocystis sp. PCC6803, are reactivated after oxygen-induced deactivation by redox mechanisms. In cyanobacteria, the glutathione (GSH) redox buffer majorly controls intracellular redox potentials. The relationship between Hox turnover rates and the redox potential in its natural reaction environment is not fully understood. We thus determined hydrogen oxidation rates as activities of Hox in cell-free extracts of Synechocystis using benzyl viologen as artificial electron acceptor. We found that GSH modulates Hox hydrogen oxidation rates under oxygen-free conditions. After oxygen exposure, it influences the maximal turnover rate and aids in the reactivation of Hox. Moreover, GSH stabilizes the long-term Hox activity under anoxic conditions and attenuates oxygen-induced deactivation of Hox in a concentration-dependent manner, probably by fostering reactivation. Conversely, oxidized GSH (GSSG) negatively affects Hox activity and oxygen insensitivity. Using Blue Native PAGE followed by mass spectrometry, we showed that oxygen affects Hox complex integrity. The in silico predicted structure of the Hox complex and complexome analyses reveal the formation of various Hox subcomplexes under different conditions. Our findings refine our current classification of oxygen-hydrogenase interactions beyond sensitive and insensitive, which is particularly important for understanding hydrogenase function under physiological conditions in future.
Collapse
Affiliation(s)
- Merle Romig
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany
| | - Marie Eberwein
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany
| | - Darja Deobald
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany.
| | - Andreas Schmid
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany.
| |
Collapse
|
2
|
Ji K, Zhang Y, Zhang T, Li D, Yuan Y, Wang L, Huang Q, Chen W. sll1019 and slr1259 encoding glyoxalase II improve tolerance of Synechocystis sp. PCC 6803 to methylglyoxal- and ethanol- induced oxidative stress by glyoxalase pathway. Appl Environ Microbiol 2024; 90:e0056424. [PMID: 39431850 PMCID: PMC11577758 DOI: 10.1128/aem.00564-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
The glyoxalase pathway is the primary detoxification mechanism for methylglyoxal (MG), a ubiquitous toxic metabolite that disrupts redox homeostasis. In the glyoxalase pathway, glyoxalase II (GlyII) can completely detoxify MG. Increasing the activity of the glyoxalase system can enhance the resistance of plants or organisms to abiotic stress, but the relevant mechanism remains largely unknown. In this study, we investigated the physiological functions of GlyII genes (sll1019 and slr1259) in Synechocystis sp. PCC 6803 under MG or ethanol stress based on transcriptome and metabolome data. High-performance liquid chromatography (HPLC) results showed that proteins Sll1019 and Slr1259 had GlyII activity. Under stress conditions, sll1019 and slr1259 protected the strain against oxidative stress by enhancing the activity of the glyoxalase pathway and raising the contents of antioxidants such as glutathione and superoxide dismutase. In the photosynthetic system, sll1019 and slr1259 indirectly affected the light energy absorption by strains, synthesis of photosynthetic pigments, and activities of photosystem I and photosystem II, which was crucial for the growth of the strain under stress conditions. In addition, sll1019 and slr1259 enhanced the tolerance of strain to oxidative stress by indirectly regulating metabolic networks, including ensuring energy acquisition, NADH and NADPH production, and phosphate and nitrate transport. This study reveals the mechanism by which sll1019 and slr1259 improve oxidative stress tolerance of strains by glyoxalase pathway. Our findings provide theoretical basis for breeding, seedling, and field production of abiotic stress tolerance-enhanced variety.IMPORTANCEThe glyoxalase system is present in most organisms, and it is the primary pathway for eliminating the toxic metabolite methylglyoxal. Increasing the activity of the glyoxalase system can enhance plant resistance to environmental stress, but the relevant mechanism is poorly understood. This study revealed the physiological functions of glyoxalase II genes sll1019 and slr1259 in Synechocystis sp. PCC 6803 under abiotic stress conditions and their regulatory effects on oxidative stress tolerance of strains. Under stress conditions, sll1019 and slr1259 enhanced the activity of the glyoxalase pathway and the antioxidant system, maintained photosynthesis, ensured energy acquisition, NADH and NADPH production, and phosphate and nitrate transport, thereby protecting the strain against oxidative stress. This study lays a foundation for further deciphering the mechanism by which the glyoxalase system enhances the tolerance of cells to abiotic stress, providing important information for breeding, seedling, and selection of plants with strong stress resistance.
Collapse
Affiliation(s)
- Kai Ji
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yihang Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tianyuan Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daixi Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuan Yuan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Li Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Yuan S, Fu W, Du M, Yao R, Zhang D, Li C, Chen Z, Wang J. Enhanced cold tolerance mechanisms in Euglena gracilis: comparative analysis of pre-adaptation and direct low-temperature exposure. Front Microbiol 2024; 15:1465351. [PMID: 39483759 PMCID: PMC11524907 DOI: 10.3389/fmicb.2024.1465351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Microalgae, known for their adaptability to extreme environments, are important for basic research and industrial applications. Euglena, unique for its lack of a cell wall, has garnered attention due to its versatility and the presence of bioactive compounds. Despite its potential, few studies have focused on Euglena's cold adaptation mechanisms. Methods This study investigates the cold adaptation mechanisms of Euglena gracilis, a microalga found in highly diverse environmental habitats, by comparing its growth, photosynthetic performance, and physiological and biochemical responses under two low-temperature cultivation modes: pre-adaptation to 16°C followed by exposure to 4°C (PreC) and direct exposure to 4°C (DirC). Results and discussion In this study, the PreC group exhibited superior growth rates, higher photosynthetic efficiency, and more excellent antioxidant activity compared to the DirC group. These advantages were attributed to higher levels of protective compounds, enhanced membrane stability, and increased unsaturated fatty acid content. The PreC group's ability to maintain higher cell vitality under cold stress conditions underscores the significance of pre-adaptation in enhancing cold tolerance. The findings from this research provide valuable insights into the mechanisms underlying cold adaptation in E. gracilis, emphasizing the benefits of pre-adaptation. These insights are crucial for optimizing the cultivation of algal species under cold stress conditions, which is essential for both biotechnological applications and ecological studies. This study not only advances our understanding of Euglena's adaptive responses to low temperatures but also contributes to the broader field of algal research and its industrial exploitation.
Collapse
Affiliation(s)
- Shuai Yuan
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Hainan Chenhai Aquatic Co., Ltd., Sanya, China
| | - Wen Fu
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ming Du
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Rao Yao
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Dan Zhang
- Mechanical Engineering College, Xi’an Shiyou University, Xi’an, China
| | - Chao Li
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zixi Chen
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Gu Y, Yang Y, Kou C, Peng Y, Yang W, Zhang J, Jin H, Han X, Wang Y, Shen X. Classical and novel properties of Holliday junction resolvase SynRuvC from Synechocystis sp. PCC6803. Front Microbiol 2024; 15:1362880. [PMID: 38699476 PMCID: PMC11063404 DOI: 10.3389/fmicb.2024.1362880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Cyanobacteria, which have a photoautotrophic lifestyle, are threatened by ultraviolet solar rays and the reactive oxygen species generated during photosynthesis. They can adapt to environmental conditions primarily because of their DNA damage response and repair mechanisms, notably an efficient homologous recombination repair system. However, research on double-strand break (DSB) repair pathways, including the Holliday junction (HJ) resolution process, in Synechocystis sp. PCC6803 is limited. Here, we report that SynRuvC from cyanobacteria Synechocystis sp. PCC6803 has classical HJ resolution activity. We investigated the structural specificity, sequence preference, and biochemical properties of SynRuvC. SynRuvC strongly preferred Mn2+ as a cofactor, and its cleavage site predominantly resides within the 5'-TG↓(G/A)-3' sequence. Interestingly, novel flap endonuclease and replication fork intermediate cleavage activities of SynRuvC were also determined, which distinguish it from other reported RuvCs. To explore the effect of SynRuvC on cell viability, we constructed a knockdown mutant and an overexpression strain of Synechocystis sp. PCC6803 (synruvCKD and synruvCOE) and assessed their survival under a variety of conditions. Knockdown of synruvC increased the sensitivity of cells to MMS, HU, and H2O2. The findings suggest that a novel RuvC family HJ resolvase SynRuvC is important in a variety of DNA repair processes and stress resistance in Synechocystis sp. PCC6803.
Collapse
Affiliation(s)
- Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yantao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunhua Kou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenguang Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayu Zhang
- Suzhou XinBio Co., Ltd., Suzhou, Jiangsu, China
| | - Han Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoru Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Turunen O, Saleem T, Kurkela J, Kallio P, Tyystjärvi T. Engineering RNA polymerase to construct biotechnological host strains of cyanobacteria. PHYSIOLOGIA PLANTARUM 2024; 176:e14263. [PMID: 38528669 DOI: 10.1111/ppl.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Application of cyanobacteria for bioproduction, bioremediation and biotransformation is being increasingly explored. Photoautotrophs are carbon-negative by default, offering a direct pathway to reducing emissions in production systems. More robust and versatile host strains are needed for constructing production strains that would function as efficient and carbon-neutral cyanofactories. We have tested if the engineering of sigma factors, regulatory units of the bacterial RNA polymerase, could be used to generate better host strains of the model cyanobacterium Synechocystis sp. PCC 6803. Overexpressing the stress-responsive sigB gene under the strong psbA2 promoter (SigB-oe) led to improved tolerance against heat, oxidative stress and toxic end-products. By targeting transcription initiation in the SigB-oe strain, we could simultaneously activate a wide spectrum of cellular protective mechanisms, including carotenoids, the HspA heat shock protein, and highly activated non-photochemical quenching. Yellow fluorescent protein was used to test the capacity of the SigB-oe strain to produce heterologous proteins. In standard conditions, the SigB-oe strain reached a similar production as the control strain, but when cultures were challenged with oxidative stress, the production capacity of SigB-oe surpassed the control strain. We also tested the production of growth-rate-controlled host strains via manipulation of RNA polymerase, but post-transcriptional regulation prevented excessive overexpression of the primary sigma factor SigA, and overproduction of the growth-restricting SigC factor was lethal. Thus, more research is needed before cyanobacteria growth can be manipulated by engineering RNA polymerase.
Collapse
Affiliation(s)
- Otso Turunen
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Tayyab Saleem
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Juha Kurkela
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Pauli Kallio
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Taina Tyystjärvi
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Kharwar S, Mishra AK. Nitrogen and Redox Metabolism in Cyanobacterium Anabaena sp. PCC 7120 Exposed to Different Sulfate Regimes. Curr Microbiol 2023; 80:265. [PMID: 37393301 DOI: 10.1007/s00284-023-03374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Sulfur is an important key nutrient required for the growth and development of cyanobacteria. Several reports showed the effect of sulfate limitation in unicellular and filamentous cyanobacteria, but such studies have not yet been reported in heterocytous cyanobacteria to ascribe the mechanisms of nitrogen and thiol metabolisms. Thus, the present work was carried out to appraise the impacts of sulfate limitation on nitrogen and thiol metabolisms in Anabaena sp. PCC 7120 by analyzing the contents as well as enzymes of nitrogen and thiol metabolisms. Cells of Anabaena sp. PCC 7120 were exposed to different regimes of sulfate, i.e., 300, 30, 3, and 0 µM. Application of reduced concentration of sulfate showed negative impact on the cyanobacterium. Sulfate-limiting conditions reduces nitrogen-containing compounds in the cells of Anabaena. Additionally, reduced activities of nitrogen metabolic enzymes represented the role of sulfate in nitrogen metabolism. However, decreased activities of thiol metabolic enzymes indicated that sulfate-limited cyanobacterial cells have lower amount of glutathione and total thiol contents. Reduced accumulation of thiol components in the stressed cells indicated that sulfate-limited cells have lower ability to withstand stressful condition. Hence, Anabaena displays differential response to different concentrations of sulfate, and thus, stipulated that sulfur plays an important role in nitrogen and thiol metabolisms. To the best of our knowledge, this is the first report demonstrating the impact of sulfate stress on nitrogen and redox metabolisms in heterocytous cyanobacteria. This preliminary study provides a baseline idea that may help improve the production of paddy.
Collapse
Affiliation(s)
- Surbhi Kharwar
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
7
|
Cassier-Chauvat C, Marceau F, Farci S, Ouchane S, Chauvat F. The Glutathione System: A Journey from Cyanobacteria to Higher Eukaryotes. Antioxidants (Basel) 2023; 12:1199. [PMID: 37371929 DOI: 10.3390/antiox12061199] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
From bacteria to plants and humans, the glutathione system plays a pleiotropic role in cell defense against metabolic, oxidative and metal stresses. Glutathione (GSH), the γ-L-glutamyl-L-cysteinyl-glycine nucleophile tri-peptide, is the central player of this system that acts in redox homeostasis, detoxification and iron metabolism in most living organisms. GSH directly scavenges diverse reactive oxygen species (ROS), such as singlet oxygen, superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide and carbon radicals. It also serves as a cofactor for various enzymes, such as glutaredoxins (Grxs), glutathione peroxidases (Gpxs), glutathione reductase (GR) and glutathione-S-transferases (GSTs), which play crucial roles in cell detoxication. This review summarizes what is known concerning the GSH-system (GSH, GSH-derived metabolites and GSH-dependent enzymes) in selected model organisms (Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana and human), emphasizing cyanobacteria for the following reasons. Cyanobacteria are environmentally crucial and biotechnologically important organisms that are regarded as having evolved photosynthesis and the GSH system to protect themselves against the ROS produced by their active photoautotrophic metabolism. Furthermore, cyanobacteria synthesize the GSH-derived metabolites, ergothioneine and phytochelatin, that play crucial roles in cell detoxication in humans and plants, respectively. Cyanobacteria also synthesize the thiol-less GSH homologs ophthalmate and norophthalmate that serve as biomarkers of various diseases in humans. Hence, cyanobacteria are well-suited to thoroughly analyze the role/specificity/redundancy of the players of the GSH-system using a genetic approach (deletion/overproduction) that is hardly feasible with other model organisms (E. coli and S. cerevisiae do not synthesize ergothioneine, while plants and humans acquire it from their soil and their diet, respectively).
Collapse
Affiliation(s)
- Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Fanny Marceau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Sandrine Farci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Soufian Ouchane
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Franck Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| |
Collapse
|
8
|
Tanaka K, Shirai T, Vavricka CJ, Matsuda M, Kondo A, Hasunuma T. Dark accumulation of downstream glycolytic intermediates initiates robust photosynthesis in cyanobacteria. PLANT PHYSIOLOGY 2023; 191:2400-2413. [PMID: 36574371 PMCID: PMC10069908 DOI: 10.1093/plphys/kiac602] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/09/2022] [Indexed: 06/19/2023]
Abstract
Photosynthesis must maintain stability and robustness throughout fluctuating natural environments. In cyanobacteria, dark-to-light transition leads to drastic metabolic changes from dark respiratory metabolism to CO2 fixation through the Calvin-Benson-Bassham (CBB) cycle using energy and redox equivalents provided by photosynthetic electron transfer. Previous studies have shown that catabolic metabolism supports the smooth transition into CBB cycle metabolism. However, metabolic mechanisms for robust initiation of photosynthesis are poorly understood due to lack of dynamic metabolic characterizations of dark-to-light transitions. Here, we show rapid dynamic changes (on a time scale of seconds) in absolute metabolite concentrations and 13C tracer incorporation after strong or weak light irradiation in the cyanobacterium Synechocystis sp. PCC 6803. Integration of this data enabled estimation of time-resolved nonstationary metabolic flux underlying CBB cycle activation. This dynamic metabolic analysis indicated that downstream glycolytic intermediates, including phosphoglycerate and phosphoenolpyruvate, accumulate under dark conditions as major substrates for initial CO2 fixation. Compared with wild-type Synechocystis, significant decreases in the initial oxygen evolution rate were observed in 12 h dark preincubated mutants deficient in glycogen degradation or oxidative pentose phosphate pathways. Accordingly, the degree of decrease in the initial oxygen evolution rate was proportional to the accumulated pool size of glycolytic intermediates. These observations indicate that the accumulation of glycolytic intermediates is essential for efficient metabolism switching under fluctuating light environments.
Collapse
Affiliation(s)
- Kenya Tanaka
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Tomokazu Shirai
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Christopher J Vavricka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Mami Matsuda
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
9
|
Balogh E, Kalapos B, Ahres M, Boldizsár Á, Gierczik K, Gulyás Z, Gyugos M, Szalai G, Novák A, Kocsy G. Far-Red Light Coordinates the Diurnal Changes in the Transcripts Related to Nitrate Reduction, Glutathione Metabolism and Antioxidant Enzymes in Barley. Int J Mol Sci 2022; 23:ijms23137479. [PMID: 35806480 PMCID: PMC9267158 DOI: 10.3390/ijms23137479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Spectral quality, intensity and period of light modify many regulatory and stress signaling pathways in plants. Both nitrate and sulfate assimilations must be synchronized with photosynthesis, which ensures energy and reductants for these pathways. However, photosynthesis is also a source of reactive oxygen species, whose levels are controlled by glutathione and other antioxidants. In this study, we investigated the effect of supplemental far-red (735 nm) and blue (450 nm) lights on the diurnal expression of the genes related to photoreceptors, the circadian clock, nitrate reduction, glutathione metabolism and various antioxidants in barley. The maximum expression of the investigated four photoreceptor and three clock-associated genes during the light period was followed by the peaking of the transcripts of the three redox-responsive transcription factors during the dark phase, while most of the nitrate and sulfate reduction, glutathione metabolism and antioxidant-enzyme-related genes exhibited high expression during light exposure in plants grown in light/dark cycles for two days. These oscillations changed or disappeared in constant white light during the subsequent two days. Supplemental far-red light induced the activation of most of the studied genes, while supplemental blue light did not affect or inhibited them during light/dark cycles. However, in constant light, several genes exhibited greater expression in blue light than in white and far-red lights. Based on a correlation analysis of the gene expression data, we propose a major role of far-red light in the coordinated transcriptional adjustment of nitrate reduction, glutathione metabolism and antioxidant enzymes to changes of the light spectrum.
Collapse
|
10
|
Abstract
Strains of the freshwater cyanobacterium Synechococcus elongatus were first isolated approximately 60 years ago, and PCC 7942 is well established as a model for photosynthesis, circadian biology, and biotechnology research. The recent isolation of UTEX 3055 and subsequent discoveries in biofilm and phototaxis phenotypes suggest that lab strains of S. elongatus are highly domesticated. We performed a comprehensive genome comparison among the available genomes of S. elongatus and sequenced two additional laboratory strains to trace the loss of native phenotypes from the standard lab strains and determine the genetic basis of useful phenotypes. The genome comparison analysis provides a pangenome description of S. elongatus, as well as correction of extensive errors in the published sequence for the type strain PCC 6301. The comparison of gene sets and single nucleotide polymorphisms (SNPs) among strains clarifies strain isolation histories and, together with large-scale genome differences, supports a hypothesis of laboratory domestication. Prophage genes in laboratory strains, but not UTEX 3055, affect pigmentation, while unique genes in UTEX 3055 are necessary for phototaxis. The genomic differences identified in this study include previously reported SNPs that are, in reality, sequencing errors, as well as SNPs and genome differences that have phenotypic consequences. One SNP in the circadian response regulator rpaA that has caused confusion is clarified here as belonging to an aberrant clone of PCC 7942, used for the published genome sequence, that has confounded the interpretation of circadian fitness research.
Collapse
|
11
|
Jaiswal D, Nenwani M, Mishra V, Wangikar PP. Probing the metabolism of γ-glutamyl peptides in cyanobacteria via metabolite profiling and 13 C labeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:708-726. [PMID: 34727398 DOI: 10.1111/tpj.15564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria are attractive model organisms for the study of photosynthesis and diurnal metabolism and as hosts for photoautotrophic production of chemicals. Exposure to bright light or environmental pollutants and a diurnal lifestyle of these prokaryotes may result in significant oxidative stress. Glutathione is a widely studied γ-glutamyl peptide that plays a key role in managing oxidative stress and detoxification of xenobiotics in cyanobacteria. The functional role and biosynthesis pathways of this tripeptide have been studied in detail in various phyla, including cyanobacteria. However, other γ-glutamyl peptides remain largely unexplored. We use an integrated approach to identify a number of γ-glutamyl peptides based on signature mass fragments and mass shifts in them in 13 C and 15 N enriched metabolite extracts. The newly identified compounds include γ-glutamyl dipeptides and derivatives of glutathione. Carbon backbones of the former turn over much faster than that of glutathione, suggesting that they follow a distinct biosynthesis pathway. Further, transients of isotopic 13 C enrichment show positional labeling in these peptides, which allows us to delineate the alternative biosynthesis pathways. Importantly, the amino acid of γ-glutamyl dipeptides shows much faster turnover compared to the glutamate moiety. The significant accumulation of γ-glutamyl dipeptides under slow-growth conditions combined with the results from dynamic 13 C labeling suggests that these compounds may act as reservoirs of amino acids in cyanobacteria.
Collapse
Affiliation(s)
- Damini Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Minal Nenwani
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Vivek Mishra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
12
|
Spectroscopic and functional characterization of the [2Fe-2S] scaffold protein Nfu from Synechocystis PCC6803. Biochimie 2022; 192:51-62. [PMID: 34582998 PMCID: PMC8724361 DOI: 10.1016/j.biochi.2021.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/03/2023]
Abstract
Iron-sulfur clusters are ubiquitous cofactors required for various essential metabolic processes. Conservation of proteins required for their biosynthesis and trafficking allows for simple bacteria to be used as models to aid in exploring these complex pathways in higher organisms. Cyanobacteria are among the most investigated organisms for these processes, as they are unicellular and can survive under photoautotrophic and heterotrophic conditions. Herein, we report the potential role of Synechocystis PCC6803 NifU (now named SyNfu) as the principal scaffold protein required for iron-sulfur cluster biosynthesis in that organism. SyNfu is a well-folded protein with distinct secondary structural elements, as evidenced by circular dichroism and a well-dispersed pattern of 1H-15N HSQC NMR peaks, and readily reconstitutes as a [2Fe-2S] dimeric protein complex. Cluster exchange experiments show that glutathione can extract the cluster from holo-SyNfu, but the transfer is unidirectional. We also confirm the ability of SyNfu to transfer cluster to both human ferredoxin 1 and ferredoxin 2, while also demonstrating the capacity to deliver cluster to both monothiol glutaredoxin 3 and dithiol glutaredoxin 2. This evidence supports the hypothesis that SyNfu indeed serves as the main scaffold protein in Synechocystis, as it has been shown to be the only protein required for viability in the absence of photoautotrophic conditions. Similar to other NFU-type cluster donors and other scaffold and carrier proteins, such as ISCU, SyNfu is shown by DSC to be structurally less stable than regular protein donors, while retaining a relatively well-defined tertiary structure as represented by 1H-15N HSQC NMR experiments.
Collapse
|
13
|
Rai R, Singh S, Rai KK, Raj A, Sriwastaw S, Rai LC. Regulation of antioxidant defense and glyoxalase systems in cyanobacteria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:353-372. [PMID: 34700048 DOI: 10.1016/j.plaphy.2021.09.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 05/19/2023]
Abstract
Oxidative stress is common consequence of abiotic stress in plants as well as cyanobacteria caused by generation of reactive oxygen species (ROS), an inevitable product of respiration and photosynthetic electron transport. ROS act as signalling molecule at low concentration however, when its production exceeds the endurance capacity of antioxidative defence system, the organisms suffer oxidative stress. A highly toxic metabolite, methylglyoxal (MG) is also produced in cyanobacteria in response to various abiotic stresses which consequently augment the ensuing oxidative damage. Taking recourse to the common lineage of eukaryotic plants and cyanobacteria, it would be worthwhile to explore the regulatory role of glyoxalase system and antioxidative defense mechanism in combating abiotic stress in cyanobacteria. This review provides comprehensive information on the complete glyoxalase system (GlyI, GlyII and GlyIII) in cyanobacteria. Furthermore, it elucidates the recent understanding regarding the production of ROS and MG, noteworthy link between intracellular MG and ROS and its detoxification via synchronization of antioxidants (enzymatic and non-enzymatic) and glyoxalase systems using glutathione (GSH) as common co-factor.
Collapse
Affiliation(s)
- Ruchi Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shilpi Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Krishna Kumar Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alka Raj
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sonam Sriwastaw
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - L C Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
14
|
Shabestary K, Hernández HP, Miao R, Ljungqvist E, Hallman O, Sporre E, Branco Dos Santos F, Hudson EP. Cycling between growth and production phases increases cyanobacteria bioproduction of lactate. Metab Eng 2021; 68:131-141. [PMID: 34601120 DOI: 10.1016/j.ymben.2021.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 01/23/2023]
Abstract
Decoupling growth from product synthesis is a promising strategy to increase carbon partitioning and maximize productivity in cell factories. However, reduction in both substrate uptake rate and metabolic activity in the production phase are an underlying problem for upscaling. Here, we used CRISPR interference to repress growth in lactate-producing Synechocystis sp. PCC 6803. Carbon partitioning to lactate in the production phase exceeded 90%, but CO2 uptake was severely reduced compared to uptake during the growth phase. We characterized strains during the onset of growth arrest using transcriptomics and proteomics. Multiple genes involved in ATP homeostasis were regulated once growth was inhibited, which suggests an alteration of energy charge that may lead to reduced substrate uptake. In order to overcome the reduced metabolic activity and take advantage of increased carbon partitioning, we tested a novel production strategy that involved alternating growth arrest and recovery by periodic addition of an inducer molecule to activate CRISPRi. Using this strategy, we maintained lactate biosynthesis in Synechocystis for 30 days in a constant light turbidostat cultivation. Cumulative lactate titers were also increased by 100% compared to a constant growth-arrest regime, and reached 1 g/L. Further, the cultivation produced lactate for 30 days, compared to 20 days for the non-growth arrest cultivation. Periodic growth arrest could be applicable for other products, and in cyanobacteria, could be linked to internal circadian rhythms that persist in constant light.
Collapse
Affiliation(s)
- Kiyan Shabestary
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Hugo Pineda Hernández
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Rui Miao
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Emil Ljungqvist
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Olivia Hallman
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Emil Sporre
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Filipe Branco Dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Elton P Hudson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
15
|
Perin G, Fletcher T, Sagi-Kiss V, Gaboriau DCA, Carey MR, Bundy JG, Jones PR. Calm on the surface, dynamic on the inside. Molecular homeostasis of Anabaena sp. PCC 7120 nitrogen metabolism. PLANT, CELL & ENVIRONMENT 2021; 44:1885-1907. [PMID: 33608943 DOI: 10.1111/pce.14034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen sources are all converted into ammonium/ia as a first step of assimilation. It is reasonable to expect that molecular components involved in the transport of ammonium/ia across biological membranes connect with the regulation of both nitrogen and central metabolism. We applied both genetic (i.e., Δamt mutation) and environmental treatments to a target biological system, the cyanobacterium Anabaena sp PCC 7120. The aim was to both perturb nitrogen metabolism and induce multiple inner nitrogen states, respectively, followed by targeted quantification of key proteins, metabolites and enzyme activities. The absence of AMT transporters triggered a substantial whole-system response, affecting enzyme activities and quantity of proteins and metabolites, spanning nitrogen and carbon metabolisms. Moreover, the Δamt strain displayed a molecular fingerprint indicating nitrogen deficiency even under nitrogen replete conditions. Contrasting with such dynamic adaptations was the striking near-complete lack of an externally measurable altered phenotype. We conclude that this species evolved a highly robust and adaptable molecular network to maintain homeostasis, resulting in substantial internal but minimal external perturbations. This analysis provides evidence for a potential role of AMT transporters in the regulatory/signalling network of nitrogen metabolism and the existence of a novel fourth regulatory mechanism controlling glutamine synthetase activity.
Collapse
Affiliation(s)
- Giorgio Perin
- Department of Life Sciences, Imperial College London, London, UK
| | - Tyler Fletcher
- Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Virag Sagi-Kiss
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - David C A Gaboriau
- Facility for Imaging by Light Microscopy, NHLI, Imperial College London, London, UK
| | - Mathew R Carey
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jacob G Bundy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Patrik R Jones
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
16
|
Kultschar B, Dudley E, Wilson S, Llewellyn CA. Response of Key Metabolites during a UV-A Exposure Time-Series in the Cyanobacterium Chlorogloeopsis fritschii PCC 6912. Microorganisms 2021; 9:910. [PMID: 33923254 PMCID: PMC8145266 DOI: 10.3390/microorganisms9050910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Ultraviolet A (UV-A) is the major component of UV radiation reaching the Earth's surface, causing indirect damage to photosynthetic organisms via the production of reactive oxygen species (ROS). In comparison, UV-B causes both direct damage to biomolecules and indirect damage. UV-B is well studied in cyanobacterial research due to their long evolutionary history and adaptation to high levels of UV, with less work on the effects of UV-A. In this study, the response of key metabolites in Chlorogloeopsis fritschii (C. fritschii) during 48 h of photosynthetically active radiation (PAR, 15 µmol·m-2·s-1) supplemented with UV-A (11 µmol·m-2·s-1) was investigated using gas chromatography- mass spectrometry (GC-MS). Results showed an overall significant increase in metabolite levels up to 24 h of UV-A exposure. Compared with previously reported UV-B (PAR + UV-B) and PAR only results, UV-A showed more similarity compared to PAR only exposure as opposed to supplemented UV-B. The amino acids glutamate, phenylalanine and leucine showed differences in levels between UV (both supplemented UV-A and supplemented UV-B) and PAR only (non-supplemented PAR), hinting to their relevance in UV stress response. The fatty acids, palmitic and stearic acid, showed positive log2 fold-change (FC) in supplemented UV-A and PAR only experiments but negative log2 FC in UV-B, indicating the more harmful effect of UV-B on primary metabolism. Less research has been conducted on UV-A exposure and cyanobacteria, a potential environmental stimuli for the optimisation of metabolites for industrial biotechnology. This study will add to the literature and knowledge on UV-A stress response at the metabolite level in cyanobacteria, especially within the less well-known species C. fritschii.
Collapse
Affiliation(s)
- Bethan Kultschar
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK;
| | - Ed Dudley
- Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK;
| | - Steve Wilson
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK;
| | | |
Collapse
|
17
|
Nichols RJ, LaFrance B, Phillips NR, Radford DR, Oltrogge LM, Valentin-Alvarado LE, Bischoff AJ, Nogales E, Savage DF. Discovery and characterization of a novel family of prokaryotic nanocompartments involved in sulfur metabolism. eLife 2021; 10:e59288. [PMID: 33821786 PMCID: PMC8049743 DOI: 10.7554/elife.59288] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 04/04/2021] [Indexed: 11/13/2022] Open
Abstract
Prokaryotic nanocompartments, also known as encapsulins, are a recently discovered proteinaceous organelle-like compartment in prokaryotes that compartmentalize cargo enzymes. While initial studies have begun to elucidate the structure and physiological roles of encapsulins, bioinformatic evidence suggests that a great diversity of encapsulin nanocompartments remains unexplored. Here, we describe a novel encapsulin in the freshwater cyanobacterium Synechococcus elongatus PCC 7942. This nanocompartment is upregulated upon sulfate starvation and encapsulates a cysteine desulfurase enzyme via an N-terminal targeting sequence. Using cryo-electron microscopy, we have determined the structure of the nanocompartment complex to 2.2 Å resolution. Lastly, biochemical characterization of the complex demonstrated that the activity of the cysteine desulfurase is enhanced upon encapsulation. Taken together, our discovery, structural analysis, and enzymatic characterization of this prokaryotic nanocompartment provide a foundation for future studies seeking to understand the physiological role of this encapsulin in various bacteria.
Collapse
Affiliation(s)
- Robert J Nichols
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Benjamin LaFrance
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Naiya R Phillips
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Devon R Radford
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Luke M Oltrogge
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Luis E Valentin-Alvarado
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Amanda J Bischoff
- Department of Chemistry, University of California BerkeleyBerkeleyUnited States
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Molecular Biophysics and Integrated Bio-Imaging Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - David F Savage
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
18
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
19
|
Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci Rep 2021; 40:222317. [PMID: 32149336 PMCID: PMC7133116 DOI: 10.1042/bsr20193325] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Cyanobacteria are key organisms in the global ecosystem, useful models for studying metabolic and physiological processes conserved in photosynthetic organisms, and potential renewable platforms for production of chemicals. Characterizing cyanobacterial metabolism and physiology is key to understanding their role in the environment and unlocking their potential for biotechnology applications. Many aspects of cyanobacterial biology differ from heterotrophic bacteria. For example, most cyanobacteria incorporate a series of internal thylakoid membranes where both oxygenic photosynthesis and respiration occur, while CO2 fixation takes place in specialized compartments termed carboxysomes. In this review, we provide a comprehensive summary of our knowledge on cyanobacterial physiology and the pathways in Synechocystis sp. PCC 6803 (Synechocystis) involved in biosynthesis of sugar-based metabolites, amino acids, nucleotides, lipids, cofactors, vitamins, isoprenoids, pigments and cell wall components, in addition to the proteins involved in metabolite transport. While some pathways are conserved between model cyanobacteria, such as Synechocystis, and model heterotrophic bacteria like Escherichia coli, many enzymes and/or pathways involved in the biosynthesis of key metabolites in cyanobacteria have not been completely characterized. These include pathways required for biosynthesis of chorismate and membrane lipids, nucleotides, several amino acids, vitamins and cofactors, and isoprenoids such as plastoquinone, carotenoids, and tocopherols. Moreover, our understanding of photorespiration, lipopolysaccharide assembly and transport, and degradation of lipids, sucrose, most vitamins and amino acids, and haem, is incomplete. We discuss tools that may aid our understanding of cyanobacterial metabolism, notably CyanoSource, a barcoded library of targeted Synechocystis mutants, which will significantly accelerate characterization of individual proteins.
Collapse
|
20
|
Xie Y, Chen L, Sun T, Zhang W. Deciphering and engineering high-light tolerant cyanobacteria for efficient photosynthetic cell factories. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Zhang X, Chen H, Wang H, Wang Q. Time-course effects of Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) on Chlorella pyrenoidosa: Growth inhibition and adaptability mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123784. [PMID: 33254794 DOI: 10.1016/j.jhazmat.2020.123784] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/31/2020] [Accepted: 08/20/2020] [Indexed: 06/12/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP), a widely used chlorinated organophosphorus flame retardant, is an increasingly widespread contaminant of aquatic environment. In this study, time-dependent effect of TDCPP on the freshwater green-algae Chlorella pyrenoidosa was investigated and its underlying mechanisms were explored. We show that TDCPP lower than 10 ppm caused a reversible inhibition of algal growth, with complete inhibition occurring at 15 ppm. This inhibition was not caused by damage from reactive oxygen species, but rather resulted from the impairment of photosynthetic function, with PSII reaction center as the primary target, as indicated by Chl a fluorescence induction, QA- reoxidation, S-state distribution and immunoblot analysis. The reversal of damage caused by TDCPP concentrations under 10 ppm might be attributable to the repair of photosynthetic function by de novo protein biosynthesis in the chloroplast, with the most likely explanation being the replacement of the damaged PSII D1 protein. The results provide novel insights into mechanisms of TDCPP toxicity toward freshwater microalgae and better understanding of ecological consequences of TDCPP in the environment.
Collapse
Affiliation(s)
- Xin Zhang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, 430074, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Haiying Wang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, 430074, China.
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China; Innovation Academy for Seed Design, CAS, China.
| |
Collapse
|
22
|
Phycobilisome breakdown effector NblD is required to maintain the cellular amino acid composition during nitrogen starvation. J Bacteriol 2021; 204:JB0015821. [PMID: 34228497 PMCID: PMC8765419 DOI: 10.1128/jb.00158-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small proteins are critically involved in the acclimation response of photosynthetic cyanobacteria to nitrogen starvation. NblD is the 66-amino-acid effector of nitrogen-limitation-induced phycobilisome breakdown, which is believed to replenish the cellular amino acid pools. To address the physiological functions of NblD, the concentrations of amino acids, intermediates of the arginine catabolism pathway and several organic acids were measured during the response to nitrogen starvation in the cyanobacterium Synechocystis sp. PCC 6803 wild type and in an nblD deletion strain. A characteristic signature of metabolite pool composition was identified, which shows that NblD-mediated phycobilisome degradation is required to maintain the cellular amino acid and organic acid pools during nitrogen starvation. Specific deviations from the wild type suggest wider-reaching effects that also affect such processes as redox homeostasis via glutathione and tetrapyrrole biosynthesis, both of which are linked to the strongly decreased glutamate pool, and transcriptional reprogramming via an enhanced concentration of 2-oxoglutarate, the metabolite co-regulator of the NtcA transcription factor. The essential role played by NblD in metabolic homeostasis is consistent with the widespread occurrence of NblD throughout the cyanobacterial radiation and the previously observed strong positive selection for the nblD gene under fluctuating nitrogen supply. Importance Cyanobacteria play important roles in the global carbon and nitrogen cycles. In their natural environment, these organisms are exposed to fluctuating nutrient conditions. Nitrogen starvation induces a coordinated nitrogen-saving program that includes the breakdown of nitrogen-rich photosynthetic pigments, particularly phycobiliproteins. The small protein NblD was recently identified as an effector of phycobilisome breakdown in cyanobacteria. In this study, we demonstrate that the NblD-mediated degradation of phycobiliproteins is needed to sustain cellular pools of soluble amino acids and other crucial metabolites. The essential role played by NblD in metabolic homeostasis explains why genes encoding this small protein are conserved in almost all members of cyanobacterial radiation.
Collapse
|
23
|
Chakraborty S, Mishra AK. Mitigation of zinc toxicity through differential strategies in two species of the cyanobacterium Anabaena isolated from zinc polluted paddy field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114375. [PMID: 32220689 DOI: 10.1016/j.envpol.2020.114375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 05/27/2023]
Abstract
The present study describes the physiological and biochemical mechanisms of zinc tolerance in two heterocytous cyanobacteria i.e. Anabaena doliolum and Anabaena oryzae, treated with their respective LC50 concentrations of zinc (3 and 4.5 mg L-1) for eight days. The feedbacks were examined in terms of growth, metabolism, zinc exclusion, zinc accumulation, oxidative stress, antioxidants and metallothionein contents. Although the growth and metabolic activities were reduced in both the cyanobacterium, maximum adversity was noticed in A. doliolum. The higher order of abnormalities in A. doliolum was attributed to excessive accumulation of zinc and enhanced reactive oxygen species (ROS) production. However, the comparatively higher growth and metabolic activities of A. oryzae were ascribed to the lower accumulation of zinc as a result of released polysaccharides mediated zinc exclusion, synthesis of zinc chelating metallothioneins and subsequent less production of ROS. The oxidative stress and macromolecular damages were prominent in both the cyanobacterium but the condition was much harsher in A. doliolum which may be explained by its comparatively low antioxidative enzyme activities (SOD, APX and GR) and smaller amount of ascorbate-glutathione-tocopherol contents than that of A. oryzae. However, sustenance of 50% growth by A. doliolum under zinc stress despite severe cellular damages was attributed to the enhanced synthesis of phenolics, flavonoids, and proline. Thus, differential zinc tolerance in A. doliolum and A. oryzae is possibly the outcome of their distinct mitigation strategies. Although the two test organisms followed pseudo second order kinetics model during zinc biosorption yet they exhibited differential zinc biosorption capacity. The cyanobacterium A. oryzae was found to be more efficient in removing zinc as compared to A. doliolum and this efficiency makes A. oryzae a promising candidate for the phycoremediation of zinc polluted environments.
Collapse
Affiliation(s)
| | - Arun K Mishra
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
24
|
Guyet U, Nguyen NA, Doré H, Haguait J, Pittera J, Conan M, Ratin M, Corre E, Le Corguillé G, Brillet-Guéguen L, Hoebeke M, Six C, Steglich C, Siegel A, Eveillard D, Partensky F, Garczarek L. Synergic Effects of Temperature and Irradiance on the Physiology of the Marine Synechococcus Strain WH7803. Front Microbiol 2020; 11:1707. [PMID: 32793165 PMCID: PMC7393227 DOI: 10.3389/fmicb.2020.01707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022] Open
Abstract
Understanding how microorganisms adjust their metabolism to maintain their ability to cope with short-term environmental variations constitutes one of the major current challenges in microbial ecology. Here, the best physiologically characterized marine Synechococcus strain, WH7803, was exposed to modulated light/dark cycles or acclimated to continuous high-light (HL) or low-light (LL), then shifted to various stress conditions, including low (LT) or high temperature (HT), HL and ultraviolet (UV) radiations. Physiological responses were analyzed by measuring time courses of photosystem (PS) II quantum yield, PSII repair rate, pigment ratios and global changes in gene expression. Previously published membrane lipid composition were also used for correlation analyses. These data revealed that cells previously acclimated to HL are better prepared than LL-acclimated cells to sustain an additional light or UV stress, but not a LT stress. Indeed, LT seems to induce a synergic effect with the HL treatment, as previously observed with oxidative stress. While all tested shift conditions induced the downregulation of many photosynthetic genes, notably those encoding PSI, cytochrome b6/f and phycobilisomes, UV stress proved to be more deleterious for PSII than the other treatments, and full recovery of damaged PSII from UV stress seemed to involve the neo-synthesis of a fairly large number of PSII subunits and not just the reassembly of pre-existing subunits after D1 replacement. In contrast, genes involved in glycogen degradation and carotenoid biosynthesis pathways were more particularly upregulated in response to LT. Altogether, these experiments allowed us to identify responses common to all stresses and those more specific to a given stress, thus highlighting genes potentially involved in niche acclimation of a key member of marine ecosystems. Our data also revealed important specific features of the stress responses compared to model freshwater cyanobacteria.
Collapse
Affiliation(s)
- Ulysse Guyet
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Ngoc A Nguyen
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Hugo Doré
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Julie Haguait
- LS2N, UMR CNRS 6004, IMT Atlantique, ECN, Université de Nantes, Nantes, France
| | - Justine Pittera
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Maël Conan
- DYLISS (INRIA-IRISA)-INRIA, CNRS UMR 6074, Université de Rennes 1, Rennes, France
| | - Morgane Ratin
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Erwan Corre
- CNRS, FR2424, ABiMS, Station Biologique, Sorbonne Université, Roscoff, France
| | - Gildas Le Corguillé
- CNRS, FR2424, ABiMS, Station Biologique, Sorbonne Université, Roscoff, France
| | - Loraine Brillet-Guéguen
- CNRS, FR2424, ABiMS, Station Biologique, Sorbonne Université, Roscoff, France.,CNRS, UMR 8227 Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Mark Hoebeke
- CNRS, FR2424, ABiMS, Station Biologique, Sorbonne Université, Roscoff, France
| | - Christophe Six
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | | | - Anne Siegel
- DYLISS (INRIA-IRISA)-INRIA, CNRS UMR 6074, Université de Rennes 1, Rennes, France
| | - Damien Eveillard
- LS2N, UMR CNRS 6004, IMT Atlantique, ECN, Université de Nantes, Nantes, France
| | - Frédéric Partensky
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Laurence Garczarek
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| |
Collapse
|
25
|
Eukaryotic and Prokaryotic Phytochelatin Synthases Differ Less in Functional Terms Than Previously Thought: A Comparative Analysis of Marchantia polymorpha and Geitlerinema sp. PCC 7407. PLANTS 2020; 9:plants9070914. [PMID: 32698350 PMCID: PMC7411734 DOI: 10.3390/plants9070914] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
This paper reports functional studies on the enzyme phytochelatin synthase in the liverwort Marchantia polymorpha and the cyanobacterium Geitlerinema sp. strain PCC 7407. In vitro activity assays in control samples (cadmium-untreated) showed that phytochelatin synthase was constitutively expressed in both organisms. In the presence of 100 µM cadmium, in both the liverwort and the cyanobacterium, the enzyme was promptly activated in vitro, and produced phytochelatins up to the oligomer PC4. Likewise, in vivo exposure to 10–36 µM cadmium for 6-120 h induced in both organisms phytochelatin synthesis up to PC4. Furthermore, the glutathione (GSH) levels in M. polymorpha were constitutively low (compared with the average content in higher plants), but increased considerably under cadmium stress. Conversely, the GSH levels in Geitlerinema sp. PCC 7407 were constitutively high, but were halved under metal treatments. At odds with former papers, our results demonstrate that, as in M. polymorpha and other plants, the cyanobacterial phytochelatin synthase exposed to cadmium possesses manifest transpeptidasic activity, being able to synthesize phytochelatins with a degree of oligomerization higher than PC2. Therefore, prokaryotic and eukaryotic phytochelatin synthases differ less in functional terms than previously thought.
Collapse
|
26
|
Qiao Y, Wang W, Lu X. High Light Induced Alka(e)ne Biodegradation for Lipid and Redox Homeostasis in Cyanobacteria. Front Microbiol 2020; 11:1659. [PMID: 32765469 PMCID: PMC7379126 DOI: 10.3389/fmicb.2020.01659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/25/2020] [Indexed: 01/09/2023] Open
Abstract
Cyanobacteria are the oldest photosynthetic microorganisms with good environmental adaptability. They are ubiquitous in light-exposed habitats on Earth. In recent years, cyanobacteria have become an ideal platform for producing biofuels and biochemicals from solar energy and carbon dioxide. Alka(e)nes are the main constituents of gasoline, diesel, and jet fuels. Alka(e)ne biosynthesis pathways are present in all sequenced cyanobacteria. Most cyanobacteria biosynthesize long chain alka(e)nes via acyl-acyl-carrier proteins reductase (AAR) and aldehyde-deformylating oxygenase (ADO). Alka(e)nes can be biodegraded by a variety of cyanobacteria, which lack a β-oxidation pathway. However, the mechanisms of alka(e)ne biodegradation in cyanobacteria remain elusive. In this study, a cyanobacterial alka(e)ne biodegradation pathway was uncovered by in vitro enzyme assays. Under high light, alka(e)nes in the membrane can be converted into alcohols and aldehydes by ADO, and aldehyde dehydrogenase (ALDH) can then convert the aldehydes into fatty acids to maintain lipid homeostasis in cyanobacteria. As highly reduced molecules, alka(e)nes could serve as electron donors to further reduce partially reduced reactive oxygen species (ROS) in cyanobacteria under high light. Alka(e)ne biodegradation may serve as an emergency mechanism for responding to the oxidative stress generated by excess light exposure. This study will shed new light on the roles of alka(e)ne metabolism in cyanobacteria. It is important to reduce the content of ROS by optimization of cultivation and genetic engineering for efficient alka(e)ne biosynthesis in cyanobacteria.
Collapse
Affiliation(s)
- Yue Qiao
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Weihua Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Dalian National Laboratory for Clean Energy, Dalian, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
27
|
Resilience and self-regulation processes of microalgae under UV radiation stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2019.100322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Diversity of Glutathione S-Transferases (GSTs) in Cyanobacteria with Reference to Their Structures, Substrate Recognition and Catalytic Functions. Microorganisms 2020; 8:microorganisms8050712. [PMID: 32403363 PMCID: PMC7286025 DOI: 10.3390/microorganisms8050712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/17/2023] Open
Abstract
Glutathione S-Transferases (GSTs) comprise a diverse group of protein superfamily involved in cellular detoxification of various harmful xenobiotics and endobiotics. Cyanobacteria, being the primordial photosynthetic prokaryotes, served as an origin for the evolution of GSTs with diversity in their structures, substrate recognition, and catalytic functions. This study analysed the diversity of GSTs in cyanobacteria for the first time. Based on the sequence alignment and phylogenetic tree analysis, 12 GST classes were identified, which are distributed variedly within cyanobacterial orders such as four in Pleurocapsales, eight in Chroococcales, seven in Oscillatoriales, five in Stigonematales, and nine in Nostocales. Detailed evolutionary analysis of cyanobacterial GSTs suggested that the order Pleurocapsales served as the ancestry for GST evolution. The analysis also identified a conserved motif S[GLNTARS][ADE]I[LAI] with signature residues, cysteine, serine, and tyrosine at the N-terminal end that serves as the initiating residue for detoxification. Alternatively, the grouping of cyanobacterial GSTs and their unique signature residues were located, which serve as a possible discriminating factor. The study also described the mode of glutathione binding between the identified cyanobacterial GST groups highlighting the differences among the GST classes. New GST sequence data may improve further our understanding on GST evolution and other possible divergences in cyanobacteria.
Collapse
|
29
|
Mechanical regulation of photosynthesis in cyanobacteria. Nat Microbiol 2020; 5:757-767. [PMID: 32203409 DOI: 10.1038/s41564-020-0684-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022]
Abstract
Photosynthetic organisms regulate their responses to many diverse stimuli in an effort to balance light harvesting with utilizable light energy for carbon fixation and growth (source-sink regulation). This balance is critical to prevent the formation of reactive oxygen species that can lead to cell death. However, investigating the molecular mechanisms that underlie the regulation of photosynthesis in cyanobacteria using ensemble-based measurements remains a challenge due to population heterogeneity. Here, to address this problem, we used long-term quantitative time-lapse fluorescence microscopy, transmission electron microscopy, mathematical modelling and genetic manipulation to visualize and analyse the growth and subcellular dynamics of individual wild-type and mutant cyanobacterial cells over multiple generations. We reveal that mechanical confinement of actively growing Synechococcus sp. PCC 7002 cells leads to the physical disassociation of phycobilisomes and energetic decoupling from the photosynthetic reaction centres. We suggest that the mechanical regulation of photosynthesis is a critical failsafe that prevents cell expansion when light and nutrients are plentiful, but when space is limiting. These results imply that cyanobacteria must convert a fraction of the available light energy into mechanical energy to overcome frictional forces in the environment, providing insight into the regulation of photosynthesis and how microorganisms navigate their physical environment.
Collapse
|
30
|
Sengupta S, Jaiswal D, Sengupta A, Shah S, Gadagkar S, Wangikar PP. Metabolic engineering of a fast-growing cyanobacterium Synechococcus elongatus PCC 11801 for photoautotrophic production of succinic acid. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:89. [PMID: 32467730 PMCID: PMC7236211 DOI: 10.1186/s13068-020-01727-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/09/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Cyanobacteria, a group of photosynthetic prokaryotes, are being increasingly explored for direct conversion of carbon dioxide to useful chemicals. However, efforts to engineer these photoautotrophs have resulted in low product titers. This may be ascribed to the bottlenecks in metabolic pathways, which need to be identified for rational engineering. We engineered the recently reported, fast-growing and robust cyanobacterium, Synechococcus elongatus PCC 11801 to produce succinate, an important platform chemical. Previously, engineering of the model cyanobacterium S. elongatus PCC 7942 has resulted in succinate titer of 0.43 g l-1 in 8 days. RESULTS Building on the previous report, expression of α-ketoglutarate decarboxylase, succinate semialdehyde dehydrogenase and phosphoenolpyruvate carboxylase yielded a succinate titer of 0.6 g l-1 in 5 days suggesting that PCC 11801 is better suited as host for production. Profiling of the engineered strains for 57 intermediate metabolites, a number of enzymes and qualitative analysis of key transcripts revealed potential flux control points. Based on this, we evaluated the effects of overexpression of sedoheptulose-1,7-bisphosphatase, citrate synthase and succinate transporters and knockout of succinate dehydrogenase and glycogen synthase A. The final construct with seven genes overexpressed and two genes knocked out resulted in photoautotrophic production of 0.93 g l-1 succinate in 5 days. CONCLUSION While the fast-growing strain PCC 11801 yielded a much higher titer than the model strain, the efficient photoautotrophy of this novel isolate needs to be harnessed further for the production of desired chemicals. Engineered strains of S. elongatus PCC 11801 showed dramatic alterations in the levels of several metabolites suggesting far reaching effects of pathway engineering. Attempts to overexpress enzymes deemed to be flux controlling led to the emergence of other potential rate-limiting steps. Thus, this process of debottlenecking of the pathway needs to be repeated several times to obtain a significantly superior succinate titer.
Collapse
Affiliation(s)
- Shinjinee Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
- DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Damini Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Annesha Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Shikha Shah
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
- DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Shruti Gadagkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Pramod P. Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
- DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
- Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| |
Collapse
|
31
|
Lienkamp AC, Heine T, Tischler D. Glutathione: A powerful but rare cofactor among Actinobacteria. ADVANCES IN APPLIED MICROBIOLOGY 2020; 110:181-217. [PMID: 32386605 DOI: 10.1016/bs.aambs.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glutathione (γ-l-glutamyl-l-cysteinylglycine, GSH) is a powerful cellular redox agent. In nature only the l,l-form is common among the tree of life. It serves as antioxidant or redox buffer system, protein regeneration and activation by interaction with thiol groups, unspecific reagent for conjugation during detoxification, marker for amino acid or peptide transport even through membranes, activation or solubilization of compounds during degradative pathways or just as redox shuttle. However, the role of GSH production and utilization in bacteria is more complex and especially little is known for the Actinobacteria. Some recent reports on GSH use in degradative pathways came across and this is described herein. GSH is used by transferases to activate and solubilize epoxides. It allows funneling epoxides as isoprene oxide or styrene oxide into central metabolism. Thus, the distribution of GSH synthesis, recycling and application among bacteria and especially Actinobacteria are highlighted including the pathways and contributing enzymes.
Collapse
Affiliation(s)
- Anna C Lienkamp
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Heine
- Environmental Microbiology, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Freiberg, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
32
|
Robles-Rengel R, Florencio FJ, Muro-Pastor MI. Redox interference in nitrogen status via oxidative stress is mediated by 2-oxoglutarate in cyanobacteria. THE NEW PHYTOLOGIST 2019; 224:216-228. [PMID: 31168850 DOI: 10.1111/nph.15979] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/30/2019] [Indexed: 05/10/2023]
Abstract
Reactive oxygen species (ROS) are generated naturally in photosynthetic organisms by respiration and photosynthesis. Therefore, detoxification of these compounds, avoiding oxidative stress, is essential for proper cell function. In cyanobacteria, some observations point to a crosstalk between ROS homeostasis, in particular hydrogen peroxide, and nitrogen metabolism by a mechanism independent of known redox regulators. Using glutamine synthetase (GS), a finely regulated enzyme essential for nitrogen assimilation, as a tool, we were able to monitor nitrogen metabolism in relation to oxidative stress. We show that hydrogen peroxide clearly alters the expression of different genes related to nitrogen metabolism, both in the wild-type strain of the cyanobacterium Synechocystis sp. PCC 6803 and in a mutant strain lacking the catalase-peroxidase encoded by the katG gene and therefore highly sensitive to oxidative stress. As cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate (2-OG) concentrations, the hydrogen peroxide effect was analysed under different nitrogen conditions in the wild-type, the ∆katG strain and in a strain able to transport 2-OG. The results obtained demonstrate that hydrogen peroxide interferes with signalling of cellular carbon : nitrogen status by decreasing the intracellular concentrations of 2-OG and hence altering the function of the 2-OG-sensing global nitrogen regulator NtcA.
Collapse
Affiliation(s)
- Rocío Robles-Rengel
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, 41092, Spain
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, 41092, Spain
| | - M Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, 41092, Spain
| |
Collapse
|
33
|
Universal Molecular Triggers of Stress Responses in Cyanobacterium Synechocystis. Life (Basel) 2019; 9:life9030067. [PMID: 31434306 PMCID: PMC6789579 DOI: 10.3390/life9030067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023] Open
Abstract
Systemic analysis of stress-induced transcription in the cyanobacterium Synechocystis sp. strain PCC 6803 identifies a number of genes as being induced in response to most abiotic stressors (heat, osmotic, saline, acid stress, strong light, and ultraviolet radiation). Genes for heat-shock proteins (HSPs) are activated by all these stresses and form a group that universally responds to all environmental changes. The functions of universal triggers of stress responses in cyanobacteria can be performed by reactive oxygen species (ROS), in particular H2O2, as well as changes in the redox potential of the components of the photosynthetic electron transport chain. The double mutant of Synechocystis sp. PCC 6803 (katG/tpx, or sll1987/sll0755), which is defective in antioxidant enzymes catalase (KatG) and thioredoxin peroxidase (Tpx), cannot grow in the presence of exogenous hydrogen peroxide (H2O2); and it is extremely sensitive to low concentrations of H2O2, especially under conditions of cold stress. Experiments on this mutant demonstrate that H2O2 is involved in regulation of gene expression that responds to a decrease in ambient temperature, and affects both the perception and the signal transduction of cold stress. In addition, they suggest that formation of ROS largely depends on the physical state of the membranes such as fluidity or viscosity. In cyanobacteria, an increase in membrane turnover leads to a decrease in the formation of ROS and an increase in resistance to cold stress. Therefore: (1) H2O2 is the universal trigger of stress responses in cyanobacterial cells; (2) ROS formation (in particular, H2O2) depends on the physical properties of both cytoplasmic and thylakoid membranes; (3) The destructive effect of H2O2 is reduced by increasing of fluidity of biological membranes.
Collapse
|
34
|
Krausfeldt LE, Farmer AT, Castro Gonzalez HF, Zepernick BN, Campagna SR, Wilhelm SW. Urea Is Both a Carbon and Nitrogen Source for Microcystis aeruginosa: Tracking 13C Incorporation at Bloom pH Conditions. Front Microbiol 2019; 10:1064. [PMID: 31164875 PMCID: PMC6536089 DOI: 10.3389/fmicb.2019.01064] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/26/2019] [Indexed: 12/03/2022] Open
Abstract
The use of urea as a nitrogenous fertilizer has increased over the past two decades, with urea itself being readily detected at high concentrations in many lakes. Urea has been linked to cyanobacterial blooms as it is a readily assimilated nitrogen (N) - source for cyanobacteria that possess the enzyme urease. We tested the hypothesis that urea may also act as a carbon (C) source to supplemental growth requirements during the alkaline conditions created by dense cyanobacterial blooms, when concentrations of dissolved CO2 are vanishingly low. High rates of photosynthesis markedly reduce dissolved CO2 concentrations and drive up pH. This was observed in Lake Erie during the largest bloom on record (2015) over long periods (months) and short periods (days) of time, suggesting blooms experience periods of CO2-limitation on a seasonal and daily basis. We used 13C-urea to demonstrate that axenic cultures of the model toxic cyanobacterium, Microcystis aeruginosa NIES843, assimilated C at varying environmentally relevant pH conditions directly into a spectrum of metabolic pools during urea hydrolysis. Primarily, 13C from urea was assimilated into central C metabolism and amino acid biosynthesis pathways, including those important for the production of the hepatotoxin, microcystin, and incorporation into these pathways was at a higher percentage during growth at higher pH. This corresponded to increased growth rates on urea as the sole N source with increasing pH. We propose this ability to incorporate C from urea represents yet another competitive advantage for this cyanobacterium during dense algal blooms.
Collapse
Affiliation(s)
- Lauren E. Krausfeldt
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Abigail T. Farmer
- Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Brittany N. Zepernick
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Shawn R. Campagna
- Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Steven W. Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
35
|
Kultschar B, Dudley E, Wilson S, Llewellyn CA. Intracellular and Extracellular Metabolites from the Cyanobacterium Chlorogloeopsis fritschii, PCC 6912, During 48 Hours of UV-B Exposure. Metabolites 2019; 9:E74. [PMID: 30995751 PMCID: PMC6523833 DOI: 10.3390/metabo9040074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/23/2022] Open
Abstract
Cyanobacteria have many defence strategies to overcome harmful ultraviolet (UV) stress including the production of secondary metabolites. Metabolomics can be used to investigate this altered metabolism via targeted and untargeted techniques. In this study we assessed the changes in the intra- and extracellular low molecular weight metabolite levels of Chlorogloeopsis fritschii (C. fritschii) during 48 h of photosynthetically active radiation (PAR) supplemented with UV-B (15 µmol m-2 s-1 of PAR plus 3 µmol m-2 s-1 of UV-B) and intracellular levels during 48 h of PAR only (15 µmol m-2 s-1) with sampling points at 0, 2, 6, 12, 24 and 48 h. Gas chromatography-mass spectrometry (GC-MS) was used as a metabolite profiling tool to investigate the global changes in metabolite levels. The UV-B time series experiment showed an overall significant reduction in intracellular metabolites involved with carbon and nitrogen metabolism such as the amino acids tyrosine and phenylalanine which have a role in secondary metabolite production. Significant accumulation of proline was observed with a potential role in stress mitigation as seen in other photosynthetic organisms. 12 commonly identified metabolites were measured in both UV-B exposed (PAR + UV-B) and PAR only experiments with differences in significance observed. Extracellular metabolites (PAR + UV-B) showed accumulation of sugars as seen in other cyanobacterial species as a stress response to UV-B. In conclusion, a snapshot of the metabolome of C. fritschii was measured. Little work has been undertaken on C. fritschii, a novel candidate for use in industrial biotechnology, with, to our knowledge, no previous literature on combined intra- and extracellular analysis during a UV-B treatment time-series. This study is important to build on experimental data already available for cyanobacteria and other photosynthetic organisms exposed to UV-B.
Collapse
Affiliation(s)
- Bethan Kultschar
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| | - Ed Dudley
- Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| | - Steve Wilson
- Unilever Corporate Research, Colworth Park, Sharnbrook, Bedfordshire MK44 1LQ, UK.
| | - Carole A Llewellyn
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
36
|
Welkie DG, Rubin BE, Diamond S, Hood RD, Savage DF, Golden SS. A Hard Day's Night: Cyanobacteria in Diel Cycles. Trends Microbiol 2019; 27:231-242. [PMID: 30527541 PMCID: PMC6377297 DOI: 10.1016/j.tim.2018.11.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/31/2022]
Abstract
Cyanobacteria are photosynthetic prokaryotes that are influential in global geochemistry and are promising candidates for industrial applications. Because the livelihood of cyanobacteria is directly dependent upon light, a comprehensive understanding of metabolism in these organisms requires taking into account the effects of day-night transitions and circadian regulation. These events synchronize intracellular processes with the solar day. Accordingly, metabolism is controlled and structured differently in cyanobacteria than in heterotrophic bacteria. Thus, the approaches applied to engineering heterotrophic bacteria will need to be revised for the cyanobacterial chassis. Here, we summarize important findings related to diurnal metabolism in cyanobacteria and present open questions in the field.
Collapse
Affiliation(s)
- David G Welkie
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Benjamin E Rubin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Spencer Diamond
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA 94720, USA
| | - Rachel D Hood
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - David F Savage
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - Susan S Golden
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
37
|
Hakkila K, Valev D, Antal T, Tyystjï Rvi E, Tyystjï Rvi T. Group 2 Sigma Factors are Central Regulators of Oxidative Stress Acclimation in Cyanobacteria. PLANT & CELL PHYSIOLOGY 2019; 60:436-447. [PMID: 30407607 DOI: 10.1093/pcp/pcy221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/04/2018] [Indexed: 06/08/2023]
Abstract
Regulatory σ factors of the RNA polymerase (RNAP) adjust gene expression according to environmental cues when the cyanobacterium Synechocystis sp. PCC 6803 acclimates to suboptimal conditions. Here we show central roles of the non-essential group 2 σ factors in oxidative stress responses. Cells missing all group 2 σ factors fail to acclimate to chemically induced singlet oxygen, superoxide or H2O2 stresses, and lose pigments in high light. SigB and SigD are the major σ factors in oxidative stress, whereas SigC and SigE play only minor roles. The SigD factor is up-regulated in high light, singlet oxygen and H2O2 stresses, and overproduction of the SigD factor in the ΔsigBCE strain leads to superior growth of ΔsigBCE cells in those stress conditions. Superoxide does not induce the production of the SigD factor but instead SigB and SigC factors are moderately induced. The SigB factor alone in ΔsigCDE can support almost as fast growth in superoxide stress as the full complement of σ factors in the control strain, but an overdose of the stationary phase-related SigC factor causes growth arrest of ΔsigBDE in superoxide stress. A drastic decrease of the functional RNAP limits the transcription capacity of the cells in H2O2 stress, which explains why cyanobacteria are sensitive to H2O2. Formation of RNAP-SigB and RNAP-SigD holoenzymes is highly enhanced in H2O2 stress, and cells containing only SigB (ΔsigCDE) or SigD (ΔsigBCE) show superior growth in H2O2 stress.
Collapse
Affiliation(s)
- Kaisa Hakkila
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Dimitar Valev
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Taras Antal
- Biological Faculty, Moscow State University, Vorobyevi Gory, Moscow, Russia
| | - Esa Tyystjï Rvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Taina Tyystjï Rvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| |
Collapse
|
38
|
Vasireddi M, Crum A, May H, Katz D, Hilliard J. A novel antiviral inhibits Zika virus infection while increasing intracellular glutathione biosynthesis in distinct cell culture models. Antiviral Res 2018; 161:46-52. [PMID: 30217651 DOI: 10.1016/j.antiviral.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 06/29/2018] [Accepted: 09/10/2018] [Indexed: 01/23/2023]
Abstract
We investigated the effects of a specific free-form amino acids formulation on Zika virus replication in two different cell culture model systems, one representative of humans and the other of Old World primates from whom Zika virus was first isolated. Here we present data demonstrating that the formulation of the specific free-form amino acid (FFAAP), comprising cystine, glycine, and a glutamate source, along with a minute concentration of selenium inhibited Zika virus replication by up to 90% with an ED90 (effective dose at which 90% of a dose of Zika virus was inhibited) of 2.5 mM in human cells and 4 mM Vero cells. The ED90 concentration of precursors was innocuous for uninfected cells, but resulted in reduced Zika virus replication by up to 90% at 2-5 mM concentrations in nonhuman primate cells and at 1-3 mM concentration in human placental cells. Two important observations were forthcoming: 1) Zika virus production was decreased by up to 90% in Vero and JEG-3 cells treated with FFAAP (ED90 4.0 mM, and 2.5 mM, respectively) throughout 48-72 h of post infection (hpi) compared to untreated infected cells and 2) Zika virus requires intracellular glutathione for replication in human placental cells, while showing enhanced replication in Vero cells with no glutathione. Relative increases in intracellular glutathione biosynthesis followed FFAAP treatment but blocking intracellular biosynthesis of glutathione in human cells resulted in virus inhibition in human placental cells. The blockade of biosynthesis actually increased Zika virus replication in Vero cells. These findings identify an efficacious inhibitor, FFAAP, of Zika virus replication in both human and nonhuman primate cells, while providing novel insight into the different roles of intracellular glutathione in Zika virus replication.
Collapse
Affiliation(s)
- Mugdha Vasireddi
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Albert Crum
- ProImmune Research Institute, LLC, Rhinebeck, NY, 12572, USA
| | | | - David Katz
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Julia Hilliard
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
39
|
Driscoll CB, Meyer KA, Šulčius S, Brown NM, Dick GJ, Cao H, Gasiūnas G, Timinskas A, Yin Y, Landry ZC, Otten TG, Davis TW, Watson SB, Dreher TW. A closely-related clade of globally distributed bloom-forming cyanobacteria within the Nostocales. HARMFUL ALGAE 2018; 77:93-107. [PMID: 30005805 DOI: 10.1016/j.hal.2018.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
In order to better understand the relationships among current Nostocales cyanobacterial blooms, eight genomes were sequenced from cultured isolates or from environmental metagenomes of recent planktonic Nostocales blooms. Phylogenomic analysis of publicly available sequences placed the new genomes among a group of 15 genomes from four continents in a distinct ADA clade (Anabaena/Dolichospermum/Aphanizomenon) within the Nostocales. This clade contains four species-level groups, two of which include members with both Anabaena-like and Aphanizomenon flos-aquae-like morphology. The genomes contain many repetitive genetic elements and a sizable pangenome, in which ABC-type transporters are highly represented. Alongside common core genes for photosynthesis, the differentiation of N2-fixing heterocysts, and the uptake and incorporation of the major nutrients P, N and S, we identified several gene pathways in the pangenome that may contribute to niche partitioning. Genes for problematic secondary metabolites-cyanotoxins and taste-and-odor compounds-were sporadically present, as were other polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) gene clusters. By contrast, genes predicted to encode the ribosomally generated bacteriocin peptides were found in all genomes.
Collapse
Affiliation(s)
- Connor B Driscoll
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Kevin A Meyer
- Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USA; Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, MI 48109-1005, USA
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | - Nathan M Brown
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Gregory J Dick
- Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USA
| | - Huansheng Cao
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA
| | - Giedrius Gasiūnas
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257, Vilnius, Lithuania
| | - Albertas Timinskas
- Department of Bioinformatics, Institute of Biotechnology, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Yanbin Yin
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Zachary C Landry
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Timothy G Otten
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Timothy W Davis
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43402, USA
| | - Susan B Watson
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON L7S 1A1, Canada
| | - Theo W Dreher
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
40
|
Swapnil P, Rai AK. Physiological responses to salt stress of salt-adapted and directly salt (NaCl and NaCl+Na 2SO 4 mixture)-stressed cyanobacterium Anabaena fertilissima. PROTOPLASMA 2018; 255:963-976. [PMID: 29352355 DOI: 10.1007/s00709-018-1205-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/10/2018] [Indexed: 05/13/2023]
Abstract
Soil salinity in nature is generally mixed type; however, most of the studies on salt toxicity are performed with NaCl and little is known about sulfur type of salinity (Na2SO4). Present study discerns the physiologic mechanisms responsible for salt tolerance in salt-adapted Anabaena fertilissima, and responses of directly stressed parent cells to NaCl and NaCl+Na2SO4 mixture. NaCl at 500 mM was lethal to the cyanobacterium, whereas salt-adapted cells grew luxuriantly. Salinity impaired gross photosynthesis, electron transport activities, and respiration in parent cells, but not in the salt-adapted cells, except a marginal increase in PSI activity. Despite higher Na+ concentration in the salt mixture, equimolar NaCl appeared more inhibitive to growth. Sucrose and trehalose content and antioxidant activities were maximal in 250 mM NaCl-treated cells, followed by salt mixture and was almost identical in salt-adapted (exposed to 500 mm NaCl) and control cells, except a marginal increase in ascorbate peroxidase activity and an additional fourth superoxide dismutase isoform. Catalase isoform of 63 kDa was induced only in salt-stressed cells. Salinity increased the uptake of intracellular Na+ and Ca2+ and leakage of K+ in parent cells, while cation level in salt-adapted cells was comparable to control. Though there was differential increase in intracellular Ca2+ under different salt treatments, ratio of Ca2+/Na+ remained the same. It is inferred that stepwise increment in the salt concentration enabled the cyanobacterium to undergo priming effect and acquire robust and efficient defense system involving the least energy.
Collapse
Affiliation(s)
- Prashant Swapnil
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Ashwani K Rai
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
41
|
Pérez AA, Ferlez BH, Applegate AM, Walters K, He Z, Shen G, Golbeck JH, Bryant DA. Presence of a [3Fe-4S] cluster in a PsaC variant as a functional component of the photosystem I electron transfer chain in Synechococcus sp. PCC 7002. PHOTOSYNTHESIS RESEARCH 2018; 136:31-48. [PMID: 28916964 DOI: 10.1007/s11120-017-0437-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
A site-directed C14G mutation was introduced into the stromal PsaC subunit of Synechococcus sp. strain PCC 7002 in vivo in order to introduce an exchangeable coordination site into the terminal FB [4Fe-4S] cluster of Photosystem I (PSI). Using an engineered PSI-less strain (psaAB deletion), psaC was deleted and replaced with recombinant versions controlled by a strong promoter, and the psaAB deletion was complemented. Modified PSI accumulated at lower levels in this strain and supported slower photoautotrophic growth than wild type. As-isolated PSI complexes containing PsaCC14G showed resonances with g values of 2.038 and 2.007 characteristic of a [3Fe-4S]1+ cluster. When the PSI complexes were illuminated at 15 K, these resonances partially disappeared and two new sets of resonances appeared. The majority set had g values of 2.05, 1.95, and 1.85, characteristic of FA-, and the minority set had g values of 2.11, 1.90, and 1.88 from FB' in the modified site. The S = 1/2 spin state of the latter implied the presence of a thiolate as the terminal ligand. The [3Fe-4S] clusters could be partially reconstituted with iron, producing a larger population of [4Fe-4S] clusters. Rates of flavodoxin reduction were identical in PSI complexes isolated from wild type and the PsaCC14G variant strain; this implied equivalent capacity for forward electron transfer in PSI complexes that contained [3Fe-4S] and [4Fe-4S] clusters. The development of this cyanobacterial strain is a first step toward translation of in vitro PSI-based biosolar molecular wire systems in vivo and provides new insights into the formation of Fe/S clusters.
Collapse
Affiliation(s)
- Adam A Pérez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Bryan H Ferlez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 28824, USA
| | - Amanda M Applegate
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
- Musculoskeletal Transplant Foundation, Jessup, PA, 18434, USA
| | - Karim Walters
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Zhihui He
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
42
|
Willis A, Woodhouse JN, Ongley SE, Jex AR, Burford MA, Neilan BA. Genome variation in nine co-occurring toxic Cylindrospermopsis raciborskii strains. HARMFUL ALGAE 2018; 73:157-166. [PMID: 29602504 DOI: 10.1016/j.hal.2018.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria form harmful algal blooms and are highly adapted to a range of habitats, in part due to their phenotype plasticity. This plasticity is partially the result of co-existence of multiple strains within a single population. The toxic cyanobacterium Cylindrospermopsis raciborskii has remarkable phenotypic plasticity, strain variation and environmental adaptation resulting in an expansion of its global range. To understand the genetic basis of the high level of plasticity within a C. raciborskii population, the genomes of nine co-occurring strains were compared. The strains differed in morphology, toxin cell quotas and physiology, despite being obtained from a single water sample. Comparative genomics showed that three coiled strains were 3.9 Mbp in size, with 3544 ± 11 genes, while straight strains were 3.8 Mbp in size, with 3485 ± 20 genes. The core proteome comprised 86% of the genome and consisted of 2891 orthologous groups (OGs), whereas the variable genome comprised ∼14% (847 OGs), and the strain specific genome only ∼1% (433 OGs).There was a high proportion of variable strain-specific genes for the very closely related strains, which may underpin strain differentiation. The variable genes were associated with environmental responses and adaptation, particularly phage defence, DNA repair, membrane transport, and stress, illustrative of the adaptability of the strains in response to environmental and biological stressors. This study shows that high genomic variability exists between co-occurring strains and may be the basis of strain phenotypic differences and plasticity of populations. Therefore management and prediction of blooms of this harmful species requires different approaches to capture this strain variability.
Collapse
Affiliation(s)
- Anusuya Willis
- Australian Rivers Institute, Griffith University, QLD, Australia.
| | - Jason N Woodhouse
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW, Australia
| | - Sarah E Ongley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW, Australia; School of Environmental and Life Sciences, The University of Newcastle, NSW, Australia
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, VIC, Australia; Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | | | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW, Australia; School of Environmental and Life Sciences, The University of Newcastle, NSW, Australia.
| |
Collapse
|
43
|
Krishnan HB, Song B, Oehrle NW, Cameron JC, Jez JM. Impact of overexpression of cytosolic isoform of O-acetylserine sulfhydrylase on soybean nodulation and nodule metabolome. Sci Rep 2018; 8:2367. [PMID: 29402985 PMCID: PMC5799319 DOI: 10.1038/s41598-018-20919-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/25/2018] [Indexed: 01/05/2023] Open
Abstract
Nitrogen-fixing nodules, which are also major sites of sulfur assimilation, contribute significantly to the sulfur needs of whole soybean plants. Nodules are the predominant sites for cysteine accumulation and the activity of O-acetylserine(thiol)lyase (OASS) is central to the sulfur assimilation process in plants. Here, we examined the impact of overexpressing OASS on soybean nodulation and nodule metabolome. Overexpression of OASS did not affect the nodule number, but negatively impacted plant growth. HPLC measurement of antioxidant metabolites demonstrated that levels of cysteine, glutathione, and homoglutathione nearly doubled in OASS overexpressing nodules when compared to control nodules. Metabolite profiling by LC-MS and GC-MS demonstrated that several metabolites related to serine, aspartate, glutamate, and branched-chain amino acid pathways were significantly elevated in OASS overexpressing nodules. Striking differences were also observed in the flavonoid levels between the OASS overexpressing and control soybean nodules. Our results suggest that OASS overexpressing plants compensate for the increase in carbon requirement for sulfur assimilation by reducing the biosynthesis of some amino acids, and by replenishing the TCA cycle through fatty acid hydrolysis. These data may indicate that in OASS overexpressing soybean nodules there is a moderate decease in the supply of energy metabolites to the nodule, which is then compensated by the degradation of cellular components to meet the needs of the nodule energy metabolism.
Collapse
Affiliation(s)
- Hari B Krishnan
- USDA-ARS, Plant Genetics Research Unit, 105 Curtis Hall, University of Missouri, Columbia, MO, 65211, USA.
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Bo Song
- USDA-ARS, Plant Genetics Research Unit, 105 Curtis Hall, University of Missouri, Columbia, MO, 65211, USA
- Key Laboratory of Soybean Biology at the Chinese Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Nathan W Oehrle
- USDA-ARS, Plant Genetics Research Unit, 105 Curtis Hall, University of Missouri, Columbia, MO, 65211, USA
| | - Jeffrey C Cameron
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309-0596, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| |
Collapse
|
44
|
Kurkela J, Hakkila K, Antal T, Tyystjärvi T. Acclimation to High CO 2 Requires the ω Subunit of the RNA Polymerase in Synechocystis. PLANT PHYSIOLOGY 2017; 174:172-184. [PMID: 28351910 PMCID: PMC5411146 DOI: 10.1104/pp.16.01953] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/23/2017] [Indexed: 06/06/2023]
Abstract
Inactivation of the nonessential ω-subunit of the RNA polymerase core in the ΔrpoZ strain of the model cyanobacterium Synechocystis sp. PCC 6803 leads to a unique high-CO2-sensitive phenotype. Supplementing air in the growth chamber with 30 mL L-1 (3%) CO2 accelerated the growth rate of the control strain (CS) 4-fold, whereas ΔrpoZ did not grow faster than under ambient air. The slow growth of ΔrpoZ during the first days in high CO2 was due to the inability of the mutant cells to adjust photosynthesis to high CO2 The light-saturated photosynthetic activity of ΔrpoZ in high CO2 was only half of that measured in CS, Rubisco content was one-third lower, and cells of ΔrpoZ were not able to increase light-harvesting phycobilisome antenna like CS upon high-CO2 treatment. In addition, altered structural and functional organization of photosystem I and photosystem II were detected in the ΔrpoZ strain compared with CS when cells were grown in high CO2 but not in ambient air. Moreover, respiration of ΔrpoZ did not acclimate to high CO2 Unlike the photosynthetic complexes, the RNA polymerase complex and ribosomes were produced in high CO2 similarly as in CS Our results indicate that the deletion of the ω-subunit specifically affects photosynthesis and respiration, but transcription and translation remain active. Thus, the specific effect of the ω-subunit on photosynthesis but not on all household processes suggests that the ω-subunit might have a regulatory function in cyanobacteria.
Collapse
Affiliation(s)
- Juha Kurkela
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (J.K., K.H., T.T.); and
- Biological Faculty, Moscow State University, Vorobyevi Gory 119992, Moscow, Russia (T.A.)
| | - Kaisa Hakkila
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (J.K., K.H., T.T.); and
- Biological Faculty, Moscow State University, Vorobyevi Gory 119992, Moscow, Russia (T.A.)
| | - Taras Antal
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (J.K., K.H., T.T.); and
- Biological Faculty, Moscow State University, Vorobyevi Gory 119992, Moscow, Russia (T.A.)
| | - Taina Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (J.K., K.H., T.T.); and
- Biological Faculty, Moscow State University, Vorobyevi Gory 119992, Moscow, Russia (T.A.)
| |
Collapse
|
45
|
Biphasic ROS accumulation and programmed cell death in a cyanobacterium exposed to salinity (NaCl and Na 2 SO 4 ). ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Diamond S, Rubin BE, Shultzaberger RK, Chen Y, Barber CD, Golden SS. Redox crisis underlies conditional light-dark lethality in cyanobacterial mutants that lack the circadian regulator, RpaA. Proc Natl Acad Sci U S A 2017; 114:E580-E589. [PMID: 28074036 PMCID: PMC5278464 DOI: 10.1073/pnas.1613078114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cyanobacteria evolved a robust circadian clock, which has a profound influence on fitness and metabolism under daily light-dark (LD) cycles. In the model cyanobacterium Synechococcus elongatus PCC 7942, a functional clock is not required for diurnal growth, but mutants defective for the response regulator that mediates transcriptional rhythms in the wild-type, regulator of phycobilisome association A (RpaA), cannot be cultured under LD conditions. We found that rpaA-null mutants are inviable after several hours in the dark and compared the metabolomes of wild-type and rpaA-null strains to identify the source of lethality. Here, we show that the wild-type metabolome is very stable throughout the night, and this stability is lost in the absence of RpaA. Additionally, an rpaA mutant accumulates excessive reactive oxygen species (ROS) during the day and is unable to clear it during the night. The rpaA-null metabolome indicates that these cells are reductant-starved in the dark, likely because enzymes of the primary nighttime NADPH-producing pathway are direct targets of RpaA. Because NADPH is required for processes that detoxify ROS, conditional LD lethality likely results from inability of the mutant to activate reductant-requiring pathways that detoxify ROS when photosynthesis is not active. We identified second-site mutations and growth conditions that suppress LD lethality in the mutant background that support these conclusions. These results provide a mechanistic explanation as to why rpaA-null mutants die in the dark, further connect the clock to metabolism under diurnal growth, and indicate that RpaA likely has important unidentified functions during the day.
Collapse
Affiliation(s)
- Spencer Diamond
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Benjamin E Rubin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Ryan K Shultzaberger
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093
| | - You Chen
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Chase D Barber
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Susan S Golden
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093;
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
47
|
Grim SL, Dick GJ. Photosynthetic Versatility in the Genome of Geitlerinema sp. PCC 9228 (Formerly Oscillatoria limnetica 'Solar Lake'), a Model Anoxygenic Photosynthetic Cyanobacterium. Front Microbiol 2016; 7:1546. [PMID: 27790189 PMCID: PMC5061849 DOI: 10.3389/fmicb.2016.01546] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022] Open
Abstract
Anoxygenic cyanobacteria that use sulfide as the electron donor for photosynthesis are a potentially influential but poorly constrained force on Earth's biogeochemistry. Their versatile metabolism may have boosted primary production and nitrogen cycling in euxinic coastal margins in the Proterozoic. In addition, they represent a biological mechanism for limiting the accumulation of atmospheric oxygen, especially before the Great Oxidation Event and in the low-oxygen conditions of the Proterozoic. In this study, we describe the draft genome sequence of Geitlerinema sp. PCC 9228, formerly Oscillatoria limnetica 'Solar Lake', a mat-forming diazotrophic cyanobacterium that can switch between oxygenic photosynthesis and sulfide-based anoxygenic photosynthesis (AP). Geitlerinema possesses three variants of psbA, which encodes protein D1, a core component of the photosystem II reaction center. Phylogenetic analyses indicate that one variant is closely affiliated with cyanobacterial psbA genes that code for a D1 protein used for oxygen-sensitive processes. Another version is phylogenetically similar to cyanobacterial psbA genes that encode D1 proteins used under microaerobic conditions, and the third variant may be cued to high light and/or elevated oxygen concentrations. Geitlerinema has the canonical gene for sulfide quinone reductase (SQR) used in cyanobacterial AP and a putative transcriptional regulatory gene in the same operon. Another operon with a second, distinct sqr and regulatory gene is present, and is phylogenetically related to sqr genes used for high sulfide concentrations. The genome has a comprehensive nif gene suite for nitrogen fixation, supporting previous observations of nitrogenase activity. Geitlerinema possesses a bidirectional hydrogenase rather than the uptake hydrogenase typically used by cyanobacteria in diazotrophy. Overall, the genome sequence of Geitlerinema sp. PCC 9228 highlights potential cyanobacterial strategies to cope with fluctuating redox gradients and nitrogen availability that occur in benthic mats over a diel cycle. Such dynamic geochemical conditions likely also challenged Proterozoic cyanobacteria, modulating oxygen production. The genetic repertoire that underpins flexible oxygenic/anoxygenic photosynthesis in cyanobacteria provides a foundation to explore the regulation, evolutionary context, and biogeochemical implications of these co-occurring metabolisms in Earth history.
Collapse
Affiliation(s)
- Sharon L. Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| |
Collapse
|
48
|
Sinetova MA, Los DA. New insights in cyanobacterial cold stress responses: Genes, sensors, and molecular triggers. Biochim Biophys Acta Gen Subj 2016; 1860:2391-2403. [PMID: 27422804 DOI: 10.1016/j.bbagen.2016.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/16/2016] [Accepted: 07/09/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cold stress strongly induces the expression of ~100 genes in cyanobacteria. Some of these genes are necessary to protect cellular functions by adjustment of membranes, as well as transcriptional and translational machineries. About a half of cold-induced genes are not functionally characterized. A part of cold-induced genes is under control of a two-component regulatory system, consisting of histidine kinase Hik33 and response regulator Rre26. The mechanism(s) that control another part of cold-inducible genes are still unknown. SCOPE OF REVIEW The aim of this review is to summarise the latest findings in cyanobacterial cold-stress responses including transcriptomics, cold sensing, and molecular triggers. MAJOR CONCLUSIONS A feedback loop between the membrane fluidity and transcription of genes for fatty acid desaturases operates via the transmembrane red-light-activated cold sensor Hik33, which perceives cold-induced membrane rigidification as a change in its thickness. The cold-induced kinase activity of Hik33 is facilitated by interaction with a small protein, Ssl3451 - the third contributor to a canonical two-component regulatory system, which may explain the ability of some cyanobacterial histidine kinases to interact with different response regulators under different stress conditions. Other regulatory systems that control cold-stress responses operate via Ser/Thr protein kinase, SpkE, and via temperature-dependent changes in DNA supercoiling. Transcriptomic analysis shows that universal triggers of stress responses are reactive oxygen species and changes in redox status of plastoquinone pool. GENERAL SIGNIFICANCE Deeper understanding of molecular mechanisms of temperature sensing and regulation of cold-stress responses in photosynthetic cells provide a background for generation of cold-resistant crops.
Collapse
Affiliation(s)
- Maria A Sinetova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russian Federation
| | - Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russian Federation.
| |
Collapse
|
49
|
Deletion of the gene family of small chlorophyll-binding proteins (ScpABCDE) offsets C/N homeostasis in Synechocystis PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:396-407. [DOI: 10.1016/j.bbabio.2015.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 02/03/2023]
|
50
|
Narainsamy K, Farci S, Braun E, Junot C, Cassier-Chauvat C, Chauvat F. Oxidative-stress detoxification and signalling in cyanobacteria: the crucial glutathione synthesis pathway supports the production of ergothioneine and ophthalmate. Mol Microbiol 2016; 100:15-24. [DOI: 10.1111/mmi.13296] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Kinsley Narainsamy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Sandrine Farci
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Emilie Braun
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Christophe Junot
- CEA, iBiTec-S, SPI, LEMM, Bat 136 CEA-Saclay; F-91191 Gif sur Yvette cedex France
| | - Corinne Cassier-Chauvat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Franck Chauvat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| |
Collapse
|