1
|
Hashem AM, Moore S, Chen S, Hu C, Zhao Q, Elesawi IE, Feng Y, Topping JF, Liu J, Lindsey K, Chen C. Putrescine Depletion Affects Arabidopsis Root Meristem Size by Modulating Auxin and Cytokinin Signaling and ROS Accumulation. Int J Mol Sci 2021; 22:4094. [PMID: 33920993 PMCID: PMC8071467 DOI: 10.3390/ijms22084094] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Polyamines (PAs) dramatically affect root architecture and development, mainly by unknown mechanisms; however, accumulating evidence points to hormone signaling and reactive oxygen species (ROS) as candidate mechanisms. To test this hypothesis, PA levels were modified by progressively reducing ADC1/2 activity and Put levels, and then changes in root meristematic zone (MZ) size, ROS, and auxin and cytokinin (CK) signaling were investigated. Decreasing putrescine resulted in an interesting inverted-U-trend in primary root growth and a similar trend in MZ size, and differential changes in putrescine (Put), spermidine (Spd), and combined spermine (Spm) plus thermospermine (Tspm) levels. At low Put concentrations, ROS accumulation increased coincidently with decreasing MZ size, and treatment with ROS scavenger KI partially rescued this phenotype. Analysis of double AtrbohD/F loss-of-function mutants indicated that NADPH oxidases were not involved in H2O2 accumulation and that elevated ROS levels were due to changes in PA back-conversion, terminal catabolism, PA ROS scavenging, or another pathway. Decreasing Put resulted in a non-linear trend in auxin signaling, whereas CK signaling decreased, re-balancing auxin and CK signaling. Different levels of Put modulated the expression of PIN1 and PIN2 auxin transporters, indicating changes to auxin distribution. These data strongly suggest that PAs modulate MZ size through both hormone signaling and ROS accumulation in Arabidopsis.
Collapse
Affiliation(s)
- Ahmed M. Hashem
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.H.); (S.M.); (S.C.); (C.H.); (Q.Z.); (I.E.E.); (Y.F.)
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China
- Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Simon Moore
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.H.); (S.M.); (S.C.); (C.H.); (Q.Z.); (I.E.E.); (Y.F.)
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (J.F.T.); (J.L.); (K.L.)
| | - Shangjian Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.H.); (S.M.); (S.C.); (C.H.); (Q.Z.); (I.E.E.); (Y.F.)
| | - Chenchen Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.H.); (S.M.); (S.C.); (C.H.); (Q.Z.); (I.E.E.); (Y.F.)
| | - Qing Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.H.); (S.M.); (S.C.); (C.H.); (Q.Z.); (I.E.E.); (Y.F.)
| | - Ibrahim Eid Elesawi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.H.); (S.M.); (S.C.); (C.H.); (Q.Z.); (I.E.E.); (Y.F.)
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Yanni Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.H.); (S.M.); (S.C.); (C.H.); (Q.Z.); (I.E.E.); (Y.F.)
| | - Jennifer F. Topping
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (J.F.T.); (J.L.); (K.L.)
| | - Junli Liu
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (J.F.T.); (J.L.); (K.L.)
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (J.F.T.); (J.L.); (K.L.)
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.H.); (S.M.); (S.C.); (C.H.); (Q.Z.); (I.E.E.); (Y.F.)
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Dolzblasz A, Banasiak A, Vereecke D. A sustained CYCLINB1;1 and STM expression in the neoplastic tissues induced by Rhodococcus fascians on Arabidopsis underlies the persistence of the leafy gall structure. PLANT SIGNALING & BEHAVIOR 2020; 15:1816320. [PMID: 32897774 PMCID: PMC7676816 DOI: 10.1080/15592324.2020.1816320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
is a gram-positive phytopathogen that infects a wide range of plant species. The actinomycete induces the formation of neoplastic growths, termed leafy galls, that consist of a gall body covered by small shoots of which the outgrowth is arrested due to an extreme form of apical dominance. In our previous work, we demonstrated that in the developing gall, auxin drives the transdifferentiation of parenchyma cells into vascular elements. In this work, with the use of transgenic Arabidopsis thaliana plants carrying molecular reporters for cell division (pCYCB1;1:GUS) and meristematic activity (pSTM:GUS), we analyzed the fate of cells within the leafy gall. Our results indicate that the size of the gall body is determined by ongoing mitotic cell divisions as illustrated by strong CYCB1;1 expression combined with the de novo formation of new meristematic areas triggered by STM expression. The shoot meristems that develop in the peripheral parts of the gall are originating from high ectopic STM expression. Altogether the presented data provide further insight into the cellular events that accompany the development of leafy galls in response to R. fascians infection.
Collapse
Affiliation(s)
- Alicja Dolzblasz
- Department of Plant Developmental Biology, Faculty of Biological Sciences, Institute of Experimental Biology, University of Wroclaw, Wrocław, Poland
| | - Alicja Banasiak
- Department of Plant Developmental Biology, Faculty of Biological Sciences, Institute of Experimental Biology, University of Wroclaw, Wrocław, Poland
| | - Danny Vereecke
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Entomology, Plant Pathology, and Weed Sciences, New Mexico State University, NM, USA
| |
Collapse
|
3
|
Desvoyes B, Gutierrez C. Roles of plant retinoblastoma protein: cell cycle and beyond. EMBO J 2020; 39:e105802. [PMID: 32865261 PMCID: PMC7527812 DOI: 10.15252/embj.2020105802] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
The human retinoblastoma (RB1) protein is a tumor suppressor that negatively regulates cell cycle progression through its interaction with members of the E2F/DP family of transcription factors. However, RB-related (RBR) proteins are an early acquisition during eukaryote evolution present in plant lineages, including unicellular algae, ancient plants (ferns, lycophytes, liverworts, mosses), gymnosperms, and angiosperms. The main RBR protein domains and interactions with E2Fs are conserved in all eukaryotes and not only regulate the G1/S transition but also the G2/M transition, as part of DREAM complexes. RBR proteins are also important for asymmetric cell division, stem cell maintenance, and the DNA damage response (DDR). RBR proteins play crucial roles at every developmental phase transition, in association with chromatin factors, as well as during the reproductive phase during female and male gametes production and embryo development. Here, we review the processes where plant RBR proteins play a role and discuss possible avenues of research to obtain a full picture of the multifunctional roles of RBR for plant life.
Collapse
|
4
|
Plett JM, Plett KL, Wong-Bajracharya J, de Freitas Pereira M, Costa MD, Kohler A, Martin F, Anderson IC. Mycorrhizal effector PaMiSSP10b alters polyamine biosynthesis in Eucalyptus root cells and promotes root colonization. THE NEW PHYTOLOGIST 2020; 228:712-727. [PMID: 32562507 DOI: 10.1111/nph.16759] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Pathogenic microbes are known to manipulate the defences of their hosts through the production of secreted effector proteins. More recently, mutualistic mycorrhizal fungi have also been described as using these secreted effectors to promote host colonization. Here we characterize a mycorrhiza-induced small secreted effector protein of 10 kDa produced by the ectomycorrhizal fungus Pisolithus albus, PaMiSSP10b. We demonstrate that PaMiSSP10b is secreted from fungal hyphae, enters the cells of its host, Eucalyptus grandis, and interacts with an S-adenosyl methionine decarboxylase (AdoMetDC) in the polyamine pathway. Plant polyamines are regulatory molecules integral to the plant immune system during microbial challenge. Using biochemical and transgenic approaches we show that expression of PaMiSSP10b influences levels of polyamines in the plant roots as it enhances the enzymatic activity of AdoMetDC and increases the biosynthesis of higher polyamines. This ultimately favours the colonization success of P. albus. These results identify a new mechanism by which mutualistic microbes are able to manipulate the host´s enzymatic pathways to favour colonization.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Krista L Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Johanna Wong-Bajracharya
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Maíra de Freitas Pereira
- INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA GrandEst Nancy, Université de Lorraine, Champenoux, 54280, France
- Bolsista do CNPq, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Maurício Dutra Costa
- Bolsista do CNPq, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Annegret Kohler
- INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA GrandEst Nancy, Université de Lorraine, Champenoux, 54280, France
| | - Francis Martin
- INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA GrandEst Nancy, Université de Lorraine, Champenoux, 54280, France
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
5
|
Nehela Y, Killiny N. The unknown soldier in citrus plants: polyamines-based defensive mechanisms against biotic and abiotic stresses and their relationship with other stress-associated metabolites. PLANT SIGNALING & BEHAVIOR 2020; 15:1761080. [PMID: 32408848 PMCID: PMC8570725 DOI: 10.1080/15592324.2020.1761080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 05/07/2023]
Abstract
Citrus plants are challenged by a broad diversity of abiotic and biotic stresses, which definitely alter their growth, development, and productivity. In order to survive the various stressful conditions, citrus plants relay on multi-layered adaptive strategies, among which is the accumulation of stress-associated metabolites that play vital and complex roles in citrus defensive responses. These metabolites included amino acids, organic acids, fatty acids, phytohormones, polyamines (PAs), and other secondary metabolites. However, the contribution of PAs pathways in citrus defense responses is poorly understood. In this review article, we will discuss the recent metabolic, genetic, and molecular evidence illustrating the potential roles of PAs in citrus defensive responses against biotic and abiotic stressors. We believe that PAs-based defensive role, against biotic and abiotic stress in citrus, is involving the interaction with other stress-associated metabolites, particularly phytohormones. The knowledge gained so far about PAs-based defensive responses in citrus underpins our need for further genetic manipulation of PAs biosynthetic genes to produce transgenic citrus plants with modulated PAs content that may enhance the tolerance of citrus plants against stressful conditions. In addition, it provides valuable information for the potential use of PAs or their synthetic analogs and their emergence as a promising approach to practical applications in citriculture to enhance stress tolerance in citrus plants.
Collapse
Affiliation(s)
- Yasser Nehela
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Nabil Killiny
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
6
|
Dodueva IE, Lebedeva MA, Kuznetsova KA, Gancheva MS, Paponova SS, Lutova LL. Plant tumors: a hundred years of study. PLANTA 2020; 251:82. [PMID: 32189080 DOI: 10.1007/s00425-020-03375-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/11/2020] [Indexed: 05/21/2023]
Abstract
The review provides information on the mechanisms underlying the development of spontaneous and pathogen-induced tumors in higher plants. The activation of meristem-specific regulators in plant tumors of various origins suggests the meristem-like nature of abnormal plant hyperplasia. Plant tumor formation has more than a century of research history. The study of this phenomenon has led to a number of important discoveries, including the development of the Agrobacterium-mediated transformation technique and the discovery of horizontal gene transfer from bacteria to plants. There are two main groups of plant tumors: pathogen-induced tumors (e.g., tumors induced by bacteria, viruses, fungi, insects, etc.), and spontaneous ones, which are formed in the absence of any pathogen in plants with certain genotypes (e.g., interspecific hybrids, inbred lines, and mutants). The causes of the transition of plant cells to tumor growth are different from those in animals, and they include the disturbance of phytohormonal balance and the acquisition of meristematic characteristics by differentiated cells. The aim of this review is to discuss the mechanisms underlying the development of most known examples of plant tumors.
Collapse
Affiliation(s)
- Irina E Dodueva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Maria A Lebedeva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Kseniya A Kuznetsova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Maria S Gancheva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Svetlana S Paponova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Ludmila L Lutova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
7
|
Vereecke D, Zhang Y, Francis IM, Lambert PQ, Venneman J, Stamler RA, Kilcrease J, Randall JJ. Functional Genomics Insights Into the Pathogenicity, Habitat Fitness, and Mechanisms Modifying Plant Development of Rhodococcus sp. PBTS1 and PBTS2. Front Microbiol 2020; 11:14. [PMID: 32082278 PMCID: PMC7002392 DOI: 10.3389/fmicb.2020.00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/06/2020] [Indexed: 01/05/2023] Open
Abstract
Pistachio Bushy Top Syndrome (PBTS) is a recently emerged disease that has strongly impacted the pistachio industry in California, Arizona, and New Mexico. The disease is caused by two bacteria, designated PBTS1 that is related to Rhodococcus corynebacterioides and PBTS2 that belongs to the species R. fascians. Here, we assessed the pathogenic character of the causative agents and examined their chromosomal sequences to predict the presence of particular functions that might contribute to the observed co-occurrence and their effect on plant hosts. In diverse assays, we confirmed the pathogenicity of the strains on "UCB-1" pistachio rootstock and showed that they can also impact the development of tobacco species, but concurrently inconsistencies in the ability to induce symptoms were revealed. We additionally evidence that fas genes are present only in a subpopulation of pure PBTS1 and PBTS2 cultures after growth on synthetic media, that these genes are easily lost upon cultivation in rich media, and that they are enriched for in an in planta environment. Analysis of the chromosomal sequences indicated that PBTS1 and PBTS2 might have complementary activities that would support niche partitioning. Growth experiments showed that the nutrient utilization pattern of both PBTS bacteria was not identical, thus avoiding co-inhabitant competition. PBTS2 appeared to have the potential to positively affect the habitat fitness of PBTS1 by improving its resistance against increased concentrations of copper and penicillins. Finally, mining the chromosomes of PBTS1 and PBTS2 suggested that the bacteria could produce cytokinins, auxins, and plant growth-stimulating volatiles and that PBTS2 might interfere with ethylene levels, in support of their impact on plant development. Subsequent experimentation supported these in silico predictions. Altogether, our data provide an explanation for the observed pathogenic behavior and unveil part of the strategies used by PBTS1 and PBTS2 to interact with plants.
Collapse
Affiliation(s)
- Danny Vereecke
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Yucheng Zhang
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Isolde M Francis
- Department of Biology, California State University, Bakersfield, CA, United States
| | - Paul Q Lambert
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Jolien Venneman
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Rio A Stamler
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - James Kilcrease
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Jennifer J Randall
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
8
|
Wang W, Paschalidis K, Feng JC, Song J, Liu JH. Polyamine Catabolism in Plants: A Universal Process With Diverse Functions. FRONTIERS IN PLANT SCIENCE 2019; 10:561. [PMID: 31134113 PMCID: PMC6513885 DOI: 10.3389/fpls.2019.00561] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/12/2019] [Indexed: 05/18/2023]
Abstract
Polyamine (PA) catabolic processes are performed by copper-containing amine oxidases (CuAOs) and flavin-containing PA oxidases (PAOs). So far, several CuAOs and PAOs have been identified in many plant species. These enzymes exhibit different subcellular localization, substrate specificity, and functional diversity. Since PAs are involved in numerous physiological processes, considerable efforts have been made to explore the functions of plant CuAOs and PAOs during the recent decades. The stress signal transduction pathways usually lead to increase of the intracellular PA levels, which are apoplastically secreted and oxidized by CuAOs and PAOs, with parallel production of hydrogen peroxide (H2O2). Depending on the levels of the generated H2O2, high or low, respectively, either programmed cell death (PCD) occurs or H2O2 is efficiently scavenged by enzymatic/nonenzymatic antioxidant factors that help plants coping with abiotic stress, recruiting different defense mechanisms, as compared to biotic stress. Amine and PA oxidases act further as PA back-converters in peroxisomes, also generating H2O2, possibly by activating Ca2+ permeable channels. Here, the new research data are discussed on the interconnection of PA catabolism with the derived H2O2, together with their signaling roles in developmental processes, such as fruit ripening, senescence, and biotic/abiotic stress reactions, in an effort to elucidate the mechanisms involved in crop adaptation/survival to adverse environmental conditions and to pathogenic infections.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Konstantinos Paschalidis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Heraklion, Greece
| | - Jian-Can Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jie Song
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Francis IM, Vereecke D. Plant-Associated Rhodococcus Species, for Better and for Worse. BIOLOGY OF RHODOCOCCUS 2019. [DOI: 10.1007/978-3-030-11461-9_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Romero FM, Maiale SJ, Rossi FR, Marina M, Ruíz OA, Gárriz A. Polyamine Metabolism Responses to Biotic and Abiotic Stress. Methods Mol Biol 2018; 1694:37-49. [PMID: 29080153 DOI: 10.1007/978-1-4939-7398-9_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plants have developed different strategies to cope with the environmental stresses they face during their life cycle. The responses triggered under these conditions are usually characterized by significant modifications in the metabolism of polyamines such as putrescine, spermidine, and spermine. Several works have demonstrated that a fine-tuned regulation of the enzymes involved in the biosynthesis and catabolism of polyamines leads to the increment in the concentration of these compounds. Polyamines exert different effects that could help plants to deal with stressful conditions. For instance, they interact with negatively charged macromolecules and regulate their functions, they may act as compatible osmolytes, or present antimicrobial activity against plant pathogens. In addition, they have also been proven to act as regulators of gene expression during the elicitation of stress responses. In this chapter, we reviewed the information available till date in relation to the roles played by polyamines in the responses of plants during biotic and abiotic stress.
Collapse
Affiliation(s)
- Fernando M Romero
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Av. Intendente Marino, Km 8, 200 CC 164 (7130), Chascomús, Buenos Aires, Argentina.
| | - Santiago J Maiale
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Av. Intendente Marino, Km 8, 200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Franco R Rossi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Av. Intendente Marino, Km 8, 200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Maria Marina
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Av. Intendente Marino, Km 8, 200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Oscar A Ruíz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Av. Intendente Marino, Km 8, 200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Andrés Gárriz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Av. Intendente Marino, Km 8, 200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| |
Collapse
|
11
|
Dolzblasz A, Banasiak A, Vereecke D. Neovascularization during leafy gall formation on Arabidopsis thaliana upon Rhodococcus fascians infection. PLANTA 2018; 247:215-228. [PMID: 28942496 DOI: 10.1007/s00425-017-2778-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Extensive de novo vascularization of leafy galls emerging upon Rhodococcus fascians infection is achieved by fascicular/interfascicular cambium activity and transdifferentiation of parenchyma cells correlated with increased auxin signaling. A leafy gall consisting of fully developed yet growth-inhibited shoots, induced by the actinomycete Rhodococcus fascians, differs in structure compared to the callus-like galls induced by other bacteria. To get insight into the vascular development accompanying the emergence of the leafy gall, the anatomy of infected axillary regions of the inflorescence stem of wild-type Arabidopsis thaliana accession Col-0 plants and the auxin response in pDR5:GUS-tagged plants were followed in time. Based on our observations, three phases can be discerned during vascularization of the symptomatic tissue. First, existing fascicular cambium becomes activated and interfascicular cambium is formed giving rise to secondary vascular elements in a basipetal direction below the infection site in the main stem and in an acropetal direction in the entire side branch. Then, parenchyma cells in the region between both stems transdifferentiate acropetally towards the surface of the developing symptomatic tissue leading to the formation of xylem and vascularize the hyperplasia as they expand. Finally, parenchyma cells in the developing gall also transdifferentiate to vascular elements without any specific direction resulting in excessive vasculature disorderly distributed in the leafy gall. Prior to any apparent anatomical changes, a strong auxin response is mounted, implying that auxin is the signal that controls the vascular differentiation induced by the infection. To conclude, we propose the "sidetracking gall hypothesis" as we discuss the mechanisms driving the formation of superfluous vasculature of the emerging leafy gall.
Collapse
Affiliation(s)
- Alicja Dolzblasz
- Department of Plant Developmental Biology, Faculty of Biological Sciences, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland.
| | - Alicja Banasiak
- Department of Plant Developmental Biology, Faculty of Biological Sciences, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Danny Vereecke
- Department of Applied Biosciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
12
|
Fernández-Crespo E, González-Hernández A, Scalschi L, Llorens E, García-Agustín P, Camañes G. Putrescine Biosynthesis Inhibition in Tomato by DFMA and DFMO Treatment. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
13
|
Salazar-Badillo FB, Sánchez-Rangel D, Becerra-Flora A, López-Gómez M, Nieto-Jacobo F, Mendoza-Mendoza A, Jiménez-Bremont JF. Arabidopsis thaliana polyamine content is modified by the interaction with different Trichoderma species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 95:49-56. [PMID: 26186363 DOI: 10.1016/j.plaphy.2015.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 06/24/2015] [Accepted: 07/01/2015] [Indexed: 05/07/2023]
Abstract
Plants are associated with a wide range of microorganisms throughout their life cycle, and some interactions result on plant benefits. Trichoderma species are plant beneficial fungi that enhance plant growth and development, contribute to plant nutrition and induce defense responses. Nevertheless, the molecules involved in these beneficial effects still need to be identify. Polyamines are ubiquitous molecules implicated in plant growth and development, and in the establishment of plant microbe interactions. In this study, we assessed the polyamine profile in Arabidopsis plants during the interaction with Trichoderma virens and Trichoderma atroviride, using a system that allows direct plant-fungal contact or avoids their physical interaction (split system). The plantlets that grew in the split system exhibited higher biomass than the ones in direct contact with Trichoderma species. After 3 days of interaction, a significant decrease in Arabidopsis polyamine levels was observed in both systems (direct contact and split). After 5 days of interaction polyamine levels were increased. The highest levels were observed with T. atroviride (split system), and with T. virens (direct contact). The expression levels of Arabidopsis ADC1 and ADC2 genes during the interaction with the fungi were also assessed. We observed a time dependent regulation of ADC1 and ADC2 genes, which correlates with polyamine levels. Our data show an evident change in polyamine profile during Arabidopsis - Trichoderma interaction, accompanied by evident alterations in plant root architecture. Polyamines could be involved in the changes undergone by plant during the interaction with this beneficial fungus.
Collapse
Affiliation(s)
- Fatima Berenice Salazar-Badillo
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, Apartado Postal 3-74 Tangamanga, C.P. 78216, San Luis Potosí, San Luis Potosí, Mexico.
| | - Diana Sánchez-Rangel
- Investigador Cátedras CONACyT en el Instituto de Ecología A.C. (INECOL) Red de Estudios Moleculares Avanzados (REMAV) Carretera Antigua a Coatepec 351, El Haya, 91070, Xalapa, Ver., Mexico.
| | - Alicia Becerra-Flora
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, Apartado Postal 3-74 Tangamanga, C.P. 78216, San Luis Potosí, San Luis Potosí, Mexico.
| | - Miguel López-Gómez
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain.
| | - Fernanda Nieto-Jacobo
- Bio-Protection Research Centre, Lincoln University, PO Box 85084, Canterbury, 7647, New Zealand.
| | - Artemio Mendoza-Mendoza
- Bio-Protection Research Centre, Lincoln University, PO Box 85084, Canterbury, 7647, New Zealand.
| | - Juan Francisco Jiménez-Bremont
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, Apartado Postal 3-74 Tangamanga, C.P. 78216, San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
14
|
Sarazin V, Duclercq J, Mendou B, Aubanelle L, Nicolas V, Aono M, Pilard S, Guerineau F, Sangwan-Norreel B, Sangwan RS. Arabidopsis BNT1, an atypical TIR-NBS-LRR gene, acting as a regulator of the hormonal response to stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:216-229. [PMID: 26398806 DOI: 10.1016/j.plantsci.2015.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/20/2015] [Accepted: 07/25/2015] [Indexed: 06/05/2023]
Abstract
During their life cycle, plants have to cope with fluctuating environmental conditions. The perception of the stressful environmental conditions induces a specific stress hormone signature specifying a proper response with an efficient fitness. By reverse genetics, we isolated and characterized a novel mutation in Arabidopsis, associated with environmental stress responses, that affects the At5g11250/BURNOUT1 (BNT1) gene which encode a Toll/Interleukin1 receptor-nucleotide binding site leucine-rich repeat (TIR-NBS-LRR) protein. The knock-out bnt1 mutants displayed, in the absence of stress conditions, a multitude of growth and development defects, suchas severe dwarfism, early senescence and flower sterility, similar to those observed in vitro in wild type plants upon different biotic and/or abiotic stresses. The disruption of BNT1 causes also a drastic increase of the jasmonic, salicylic and abscisic acids as well as ethylene levels. Which was consistent with the expression pattern observed in bnt1 showing an over representation of genes involved in the hormonal response to stress? Therefore, a defect in BNT1 forced the plant to engage in an exhausting general stress response, which produced frail, weakened and poorly adapted plants expressing "burnout" syndromes. Furthermore, by in vitro phenocopying experiments, physiological, chemical and molecular analyses, we propose that BNT1 could represent a molecular link between stress perception and specific hormonal signature.
Collapse
Affiliation(s)
- Vivien Sarazin
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France; Laboulet Semences, Airaines, France
| | - Jérome Duclercq
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Benjamin Mendou
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Laurent Aubanelle
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Veyres Nicolas
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Mitsuko Aono
- National Institute for Environmental Studies, Environmental Biology Division, Tsukuba, Japan
| | | | | | - Brigitte Sangwan-Norreel
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Rajbir S Sangwan
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France.
| |
Collapse
|
15
|
Stes E, Depuydt S, De Keyser A, Matthys C, Audenaert K, Yoneyama K, Werbrouck S, Goormachtig S, Vereecke D. Strigolactones as an auxiliary hormonal defence mechanism against leafy gall syndrome in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5123-34. [PMID: 26136271 PMCID: PMC4513927 DOI: 10.1093/jxb/erv309] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Leafy gall syndrome is the consequence of modified plant development in response to a mixture of cytokinins secreted by the biotrophic actinomycete Rhodococcus fascians. The similarity of the induced symptoms with the phenotype of plant mutants defective in strigolactone biosynthesis and signalling prompted an evaluation of the involvement of strigolactones in this pathology. All tested strigolactone-related Arabidopsis thaliana mutants were hypersensitive to R. fascians. Moreover, treatment with the synthetic strigolactone mixture GR24 and with the carotenoid cleavage dioxygenase inhibitor D2 illustrated that strigolactones acted as antagonistic compounds that restricted the morphogenic activity of R. fascians. Transcript profiling of the MORE AXILLARY GROWTH1 (MAX1), MAX2, MAX3, MAX4, and BRANCHED1 (BRC1) genes in the wild-type Columbia-0 accession and in different mutant backgrounds revealed that upregulation of strigolactone biosynthesis genes was triggered indirectly by the bacterial cytokinins via host-derived auxin and led to the activation of BRC1 expression, inhibiting the outgrowth of the newly developing shoots, a typical hallmark of leafy gall syndrome. Taken together, these data support the emerging insight that balances are critical for optimal leafy gall development: the long-lasting biotrophic interaction is possible only because the host activates a set of countermeasures-including the strigolactone response-in reaction to bacterial cytokinins to constrain the activity of R. fascians.
Collapse
Affiliation(s)
- Elisabeth Stes
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Department of Medical Protein Research, VIB, 9000 Gent, Belgium Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Stephen Depuydt
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Ghent University Global Campus, Incheon 406-840, Republic of Korea
| | - Annick De Keyser
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Cedrick Matthys
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Kris Audenaert
- Department of Applied Biosciences, Ghent University, 9000 Gent, Belgium
| | - Koichi Yoneyama
- Center for Bioscience Research & Education, Utsunomiya University, Utsunomiya 321-8505, Japan
| | - Stefaan Werbrouck
- Department of Applied Biosciences, Ghent University, 9000 Gent, Belgium
| | - Sofie Goormachtig
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Danny Vereecke
- Department of Applied Biosciences, Ghent University, 9000 Gent, Belgium
| |
Collapse
|
16
|
Jiménez-Bremont JF, Marina M, Guerrero-González MDLL, Rossi FR, Sánchez-Rangel D, Rodríguez-Kessler M, Ruiz OA, Gárriz A. Physiological and molecular implications of plant polyamine metabolism during biotic interactions. FRONTIERS IN PLANT SCIENCE 2014; 5:95. [PMID: 24672533 PMCID: PMC3957736 DOI: 10.3389/fpls.2014.00095] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/25/2014] [Indexed: 05/19/2023]
Abstract
During ontogeny, plants interact with a wide variety of microorganisms. The association with mutualistic microbes results in benefits for the plant. By contrast, pathogens may cause a remarkable impairment of plant growth and development. Both types of plant-microbe interactions provoke notable changes in the polyamine (PA) metabolism of the host and/or the microbe, being each interaction a complex and dynamic process. It has been well documented that the levels of free and conjugated PAs undergo profound changes in plant tissues during the interaction with microorganisms. In general, this is correlated with a precise and coordinated regulation of PA biosynthetic and catabolic enzymes. Interestingly, some evidence suggests that the relative importance of these metabolic pathways may depend on the nature of the microorganism, a concept that stems from the fact that these amines mediate the activation of plant defense mechanisms. This effect is mediated mostly through PA oxidation, even though part of the response is activated by non-oxidized PAs. In the last years, a great deal of effort has been devoted to profile plant gene expression following microorganism recognition. In addition, the phenotypes of transgenic and mutant plants in PA metabolism genes have been assessed. In this review, we integrate the current knowledge on this field and analyze the possible roles of these amines during the interaction of plants with microbes.
Collapse
Affiliation(s)
- Juan F. Jiménez-Bremont
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis PotosíMéxico
| | - María Marina
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | | | - Franco R. Rossi
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | - Diana Sánchez-Rangel
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis PotosíMéxico
| | | | - Oscar A. Ruiz
- UB1, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | - Andrés Gárriz
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| |
Collapse
|
17
|
Tarkowski P, Vereecke D. Threats and opportunities of plant pathogenic bacteria. Biotechnol Adv 2013; 32:215-29. [PMID: 24216222 DOI: 10.1016/j.biotechadv.2013.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/22/2013] [Accepted: 11/03/2013] [Indexed: 02/08/2023]
Abstract
Plant pathogenic bacteria can have devastating effects on plant productivity and yield. Nevertheless, because these often soil-dwelling bacteria have evolved to interact with eukaryotes, they generally exhibit a strong adaptivity, a versatile metabolism, and ingenious mechanisms tailored to modify the development of their hosts. Consequently, besides being a threat for agricultural practices, phytopathogens may also represent opportunities for plant production or be useful for specific biotechnological applications. Here, we illustrate this idea by reviewing the pathogenic strategies and the (potential) uses of five very different (hemi)biotrophic plant pathogenic bacteria: Agrobacterium tumefaciens, A. rhizogenes, Rhodococcus fascians, scab-inducing Streptomyces spp., and Pseudomonas syringae.
Collapse
Affiliation(s)
- Petr Tarkowski
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic.
| | - Danny Vereecke
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, BE-9000 Ghent, Belgium.
| |
Collapse
|
18
|
Scoccianti V, Iacobucci M, Speranza A, Antognoni F. Over-accumulation of putrescine induced by cyclohexylamine interferes with chromium accumulation and partially restores pollen tube growth in Actinidia deliciosa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:424-432. [PMID: 23835360 DOI: 10.1016/j.plaphy.2013.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/12/2013] [Indexed: 06/02/2023]
Abstract
Both trivalent and hexavalent chromium, i.e., Cr(III) and Cr(VI), respectively, were previously demonstrated to affect in vitro germination and ultrastructure of kiwifruit (Actinidia deliciosa) pollen. In the present work, the response to chromium in germinating pollen was evaluated in terms of changes in the polyamine profile. Slight, though significant, increases in free spermidine and spermine occurred after exposure to Cr(III), while the levels remained almost unchanged after Cr(VI) treatment. The spermidine synthase inhibitor cyclohexylamine (CHA) caused a dramatic increase in free putrescine in both chromium-treated and untreated samples, while spermidine content was not affected. Interestingly, CHA positively affected the performance of chromium-treated pollen by partially, though significantly, restoring pollen tube growth. The major growth recovery was registered with 1 mM CHA in the presence of Cr(VI), concomitant with a considerable reduction in uptake of the metal. Conversely, endogenous calcium levels were more heavily affected in Cr(III)-treated pollen. The effect of CHA on production of reactive oxygen species also varied depending on the chromium species. The response of pollen to the CHA-induced putrescine excess was compared with that exerted by an exogenous supply of the same diamine. Results show that in Cr(III)-treated pollen, putrescine over-accumulation induced by CHA exerted similar effects as exogenous putrescine, while this was not true in the Cr(VI) treatment. It appears that the diamine was able to improve pollen tolerance to metal stress through different mechanisms, mostly depending upon the chromium species, namely via reduced metal uptake or by substituting for calcium.
Collapse
Affiliation(s)
- Valeria Scoccianti
- Dipartimento di Scienze della Terra, della Vita e dell'Ambiente, Sezione di Biologia Vegetale, Università di Urbino Carlo Bo, via Bramante 28, 61029 Urbino, Italy.
| | | | | | | |
Collapse
|
19
|
Stes E, Francis I, Pertry I, Dolzblasz A, Depuydt S, Vereecke D. The leafy gall syndrome induced byRhodococcus fascians. FEMS Microbiol Lett 2013; 342:187-94. [DOI: 10.1111/1574-6968.12119] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 12/20/2022] Open
Affiliation(s)
- Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Gent; Belgium
| | - Isolde Francis
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Gent; Belgium
| | - Ine Pertry
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Gent; Belgium
| | - Alicja Dolzblasz
- Institute of Experimental Biology; Department of Plant Developmental Biology; Wrocław University; Wrocław; Poland
| | | | - Danny Vereecke
- Department of Plant Production; University College Ghent; Ghent University; Gent; Belgium
| |
Collapse
|
20
|
Torrigiani P, Bressanin D, Ruiz KB, Tadiello A, Trainotti L, Bonghi C, Ziosi V, Costa G. Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling. PHYSIOLOGIA PLANTARUM 2012; 146:86-98. [PMID: 22409726 DOI: 10.1111/j.1399-3054.2012.01612.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Peach (Prunus persica var. laevis Gray) was chosen to unravel the molecular basis underlying the ability of spermidine (Sd) to influence fruit development and ripening. Field applications of 1 mM Sd on peach fruit at an early developmental stage, 41 days after full bloom (dAFB), i.e. at late stage S1, led to a slowing down of fruit ripening. At commercial harvest (125 dAFB, S4II) Sd-treated fruits showed a reduced ethylene production and flesh softening. The endogenous concentration of free and insoluble conjugated polyamines (PAs) increased (0.3-2.6-fold) 1 day after treatment (short-term response) butsoon it declined to control levels; starting from S3/S4, when soluble conjugated forms increased (up to five-fold relative to controls at ripening), PA levels became more abundant in treated fruits, (long-term response). Real-time reverse transcription-polymerase chain reaction analyses revealed that peaks in transcript levels of fruit developmental marker genes were shifted ahead in accord with a developmental slowing down. At ripening (S4I-S4II) the upregulation of the ethylene biosynthetic genes ACO1 and ACS1 was dramatically counteracted by Sd and this led to a strong downregulation of genes responsible for fruit softening, such as PG and PMEI. Auxin-related gene expression was also altered both in the short term (TRPB) and in the long term (GH3, TIR1 and PIN1), indicating that auxin plays different roles during development and ripening processes. Messenger RNA amounts of other hormone-related ripening-regulated genes, such as NCED and GA2-OX, were strongly downregulated at maturity. Results suggest that Sd interferes with fruit development/ripening by interacting with multiple hormonal pathways.
Collapse
Affiliation(s)
- Patrizia Torrigiani
- Department of Fruit Tree and Woody Plant Sciences, University of Bologna, Via Fanin 46, 40127 Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Stes E, Prinsen E, Holsters M, Vereecke D. Plant-derived auxin plays an accessory role in symptom development upon Rhodococcus fascians infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:513-527. [PMID: 22181713 DOI: 10.1111/j.1365-313x.2011.04890.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The biotrophic phytopathogen Rhodococcus fascians has a profound impact on plant development, mainly through its principal virulence factors, a mix of synergistically acting cytokinins that induce shoot formation. Expression profiling of marker genes for several auxin biosynthesis routes and mutant analysis demonstrated that the bacterial cytokinins stimulate the auxin biosynthesis of plants via specific targeting of the indole-3-pyruvic acid (IPA) pathway, resulting in enhanced auxin signaling in infected tissues. The double mutant tryptophan aminotransferase 1-1 tryptophan aminotransferase related 2-1 (taa1-1 tar2-1) of Arabidopsis (Arabidopsis thaliana), in which the IPA pathway is defective, displayed a decreased responsiveness towards R. fascians infection, although bacterial colonization and virulence gene expression were not impaired. These observations implied that plant-derived auxin was employed to reinforce symptom formation. Furthermore, the increased auxin production and, possibly, the accumulating bacterial cytokinins in infected plants modified the polar auxin transport so that new auxin maxima were repetitively established and distributed, a process that is imperative for symptom onset and maintenance. Based on these findings, we extend our model of the mode of action of bacterial and plant signals during the interaction between R. fascians and Arabidopsis.
Collapse
Affiliation(s)
- Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | | | | | | |
Collapse
|
22
|
Zalabák D, Pospíšilová H, Šmehilová M, Mrízová K, Frébort I, Galuszka P. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol Adv 2011; 31:97-117. [PMID: 22198203 DOI: 10.1016/j.biotechadv.2011.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/02/2011] [Indexed: 01/02/2023]
Abstract
Cytokinins (CKs) are ubiquitous phytohormones that participate in development, morphogenesis and many physiological processes throughout plant kingdom. In higher plants, mutants and transgenic cells and tissues with altered activity of CK metabolic enzymes or perception machinery, have highlighted their crucial involvement in different agriculturally important traits, such as productivity, increased tolerance to various stresses and overall plant morphology. Furthermore, recent precise metabolomic analyses have elucidated the specific occurrence and distinct functions of different CK types in various plant species. Thus, smooth manipulation of active CK levels in a spatial and temporal way could be a very potent tool for plant biotechnology in the future. This review summarises recent advances in cytokinin research ranging from transgenic alteration of CK biosynthetic, degradation and glucosylation activities and CK perception to detailed elucidation of molecular processes, in which CKs work as a trigger in model plants. The first attempts to improve the quality of crop plants, focused on cereals are discussed, together with proposed mechanism of action of the responses involved.
Collapse
Affiliation(s)
- David Zalabák
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
23
|
Stes E, Vandeputte OM, El Jaziri M, Holsters M, Vereecke D. A successful bacterial coup d'état: how Rhodococcus fascians redirects plant development. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:69-86. [PMID: 21495844 DOI: 10.1146/annurev-phyto-072910-095217] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rhodococcus fascians is a gram-positive phytopathogen that induces differentiated galls, known as leafy galls, on a wide variety of plants, employing virulence genes located on a linear plasmid. The pathogenic strategy consists of the production of a mixture of six synergistically acting cytokinins that overwhelm the plant's homeostatic mechanisms, ensuring the activation of a signaling cascade that targets the plant cell cycle and directs the newly formed cells to differentiate into shoot meristems. The shoots that are formed upon infection remain immature and never convert to source tissues resulting in the establishment of a nutrient sink that is a niche for the epiphytic and endophytic R. fascians subpopulations. Niche formation is accompanied by modifications of the transcriptome, metabolome, physiology, and morphology of both host and pathogen. Here, we review a decade of research and set the outlines of the molecular basis of the leafy gall syndrome.
Collapse
Affiliation(s)
- Elisabeth Stes
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium.
| | | | | | | | | |
Collapse
|